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ABSTRACT
This work contributes an optimization framework in the context

of structured interactions between an agent playing the role of a

‘provider’ and a human ‘receiver’. Examples of provider/receiver

interactions of interest include ones between occupational therapist

and patient, or teacher and student. We specifically consider tasks

where the provider agent needs to plan a sequence of actions with

a fixed horizon, where actions are organized along a hierarchy with

increasing probabilities of success and associated costs. The goal

of the provider is to achieve a success with the lowest expected

cost possible. In our application domains, a success may be for

instance eliciting a desired behavior or a correct response from the

receiver. We present a linear-time optimal planning algorithm that

generates cost-optimal sequences for given action parameters. We

also provide proofs for a number of properties of optimal solutions

that align with typical human provider strategies. Finally, we in-

stantiate our general formulation in the context of robot-assisted

therapy tasks for children with Autism Spectrum Disorders (ASD).

In this context, we present methods for determining action param-

eters, namely (1) an online survey with experts for determining

action costs, and (2) a probabilistic model of child response based

on data collected in a real child-robot interaction scenario. Our

contributions may unlock increased levels of adaptivity for agents

introduced in a variety of assistive contexts.
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1 INTRODUCTION
Autonomous and semi-autonomous agents are being increasingly

introduced to complement and assist therapeutic or educational

interventions. In therapy contexts, virtual agents are being used

in applications such as speech therapy [30] or mental health [16],

and robots are being used for both physical [17] and cognitive

[11] rehabilitation. In particular, robots have been identified to be

good candidates for inclusion in therapy for children with Autism

Spectrum Disorders (ASD) [2]. Because of their predictability, con-

trollability and simplicity of social interactions, they have shown

promise in socially assisting such individuals suffering from social

impairments, among others [9, 10, 27]. In the educational context,

Intelligent Tutoring Systems (ITS) [1] provide automated and per-

sonalized teaching and assessment to students. Robotic agents have

also been used to promote engagement in learning, specifically with

children, for a diverse set of skills [5, 29, 32].

Motivated by the use of all sorts of agents in these extremely

diverse contexts, we contribute in this work a context-independent

optimization framework for planning simple tasks in which an

agent playing the general role of a ‘provider’ is assisting a ‘receiver’

to achieve a goal. Our framework is inspired by task structures that

exist across a variety of human-based provider/receiver interactions,

such as therapy/patient or teacher/student interactions. Tomotivate

the different components of our approach, we first provide some

background on typical provider/receiver interaction structures in

the context of therapy and education.

Human-based provider/receiver interactions are typically struc-

tured in tasks with a clearly defined goal – e.g., eliciting a desired

behavior, or obtaining a correct answer from the receiver – which

can often be measured in a binary way: success or failure. More-

over, in tasks meant to build or improve receiver skills over time

through learning or training, the provider often uses a hierarchy of
actions with the aim of assisting the receiver in achieving the goal.

Actions higher in the hierarchy provide higher levels of assistance.

In Table 1, we show examples of action hierarchies used in practice

in three different fields and possessing a similar structure. The first

one [19] is from the field of speech therapy, where cueing is used

to assist patients suffering from aphasia [13], a disorder affecting

speech production. The second one [20], part of our case study in

this paper, is used to train attention skills in therapy for children
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Table 1: Examples of action hierarchies used in speech therapy, autism therapy, and education, adapted from [19], [20] and
[21] respectively. Actions of higher level in the hierarchy provide more assistance, hence have a higher probability of success.

Domain Speech therapy for aphasia
Autism therapy for
joint attention training

Science education

Success
(task goal) Patient retrieves word correctly Patient looks at target object Student enters units correctly in a problem

Hierarchy
of actions

1-“What’s this called?”

2-Directions to state function of item

3-Directions to demonstrate function

4-Statement of function by clinician

5-Statement and demonstration of func-

tion by clinician

6-Sentence completion

7-Sentence completion + silent articula-

tion of first phoneme

8-Sentence completion + vocalization

of first phoneme

9-Sentence completion + vocalization

of first two phonemes

10-Say “——”.

1-Say: “[Child’s name], look!”

(exaggerate gaze shift)

2-Say: “[Child’s name], look at

that!” (exaggerate gaze shift)

3-Say: “[Child’s name], look at

that!” (with a gaze shift and a

point)

4-Activate the target object

1-“You have entered the right numbers,

but units are wrong. Look in the problem.

Enter units now.”

2-“You have entered [...] wrong. Dis-

tance is in meters. Time is in seconds. Enter

units now.”

3-“You have entered [...]. Distance is

in meters and should be written as 200m.

Time is in seconds and should be written as

25s. Enter that now.”

with ASD. The third example [21] is from an educational context

involving giving hints on a science problem. Actions of higher level

in the hierarchy are more likely to cause a success, hence, we can

think of such hierarchies as sets of actions ordered by increasing
success probabilities. It is important to note that those success prob-

abilities are different for each receiver, depending on their abilities.

Our generic problem formulation considers hierarchies with an

arbitrary number of actions ordered by increasing arbitrary success

probabilities.

In addition to success probabilities, provider actions typically

have associated implicit costs. Depending on the context and task,

therapeutic costs may come from a number of factors, including

explicitness, difficulty, or stimulus intensity. In a therapy context,

the more an action differs from what is considered desirable or

natural, the higher its therapeutic cost because it is less likely to

build the desired receiver skills over time [14]. Costs could also

include practical considerations such as financial cost, energy or

time. Our problem formulation considers arbitrary action costs

within a specified range.

Furthermore, there often exist constraints on the number of

actions to be performed. This constraint can come from a number

of factors, including time frame of a task or a session, engagement of

the receiver, or energy of the provider. In our problem formulation,

we include a horizon corresponding to the maximum number of

successive action trials that can be performed in a single task.

Finally, as part of their typical strategies, human providers con-

stantly personalize the tasks according to the receiver’s profile. This
personalization includes selecting the appropriate level to start in

the hierarchy, corresponding to the generally idea of “grading” [14]

extensively used in therapy and education. It also includes per-

sonalizing the way one follows the hierarchy, including potential

repetitions of action levels, skipping levels, or dynamically adapting

to changes in performance. These personalization methods take

into account assessed receiver abilities or past performance on the

same task, e.g., level of impairment (speech or ASD therapy exam-

ple), and student skills or past performance (educational example).

Occupational therapists often refer to this process as the “just right

challenge” [28]. In our generic problem solution, we devise a plan-

ning algorithm that finds the optimal planned sequence of actions

to be followed, given a set of action success probabilities and costs,

and rigorously analyze its mathematical properties. To illustrate our

approach, we apply it to a robot-assisted ASD therapy scenario. We

first estimate action costs using expert data, then estimate success

probabilities for a given pre-assessed child profile, based on real

interaction data. Our algorithm returns different optimal sequences

for different child profiles, hence achieving personalization.

The contributions of this work are organized as follows:

• Amathematical formulation of the optimal planning problem

in a multi-trial task with: (1) a hierarchy of actions with

known costs and probabilities of success, (2) success/failure

outcomes at each trial, (3) a horizon corresponding to the

maximum allowed number of trials (section 3.1)

• A linear-time optimal algorithm based on Dynamic Program-

ming that solves the above problem (section 3.2)

• A number of proofs about properties of optimal solutions,

including monotonicity and convergence, and constraints

on model parameters for suitable algorithm behavior

• A methodology for determining action parameters in a real-

world setting, illustrated in the context of two robot-assisted

therapy tasks for children with ASD (section 4), namely:

(1) an online survey with psychology experts for determining

action costs, and

(2) a probabilistic model of children response to robot actions,

based on data collected during a real interaction between a

humanoid robot and 10 children with different ASD levels.

Session 1B: Socially Intelligent Agents 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

96



2 RELATEDWORK
Before presenting our approach, we provide a brief overview of

relevant works in the fields of Human-Agent Interaction, Intelligent

Tutoring Systems and robot-assisted autism therapy.

Probabilistic models for Human-Agent Interaction. While proba-

bilistic models are widely used by agents operating in uncertain

environments [26], they seem to be much less used in human-

interactive contexts. If some human modeling approaches incorpo-

rate uncertainty as part of the model [7, 15], planning and adap-

tation in typical Human-Computer Interaction scenarios rarely

accounts for this uncertainty. In the field of Human-Robot Interac-

tion however, probabilistic models have gained more interest, and

reached the ability to model mutual adaptation between human and

robot in certain collaborative contexts [23]. In this work, we rely

on a simple probabilistic model of the receiver’s response to the

provider’s actions, which introduces uncertainty in the reasoning

process of the agent.

Intelligent Tutoring Systems. ITS are computer-based solutions

that provide personalized and immediate tools and feedback to

learners, with minimal human intervention. There is a very large

literature on ITS and a number of approaches consider variations

of the personalization problem related to this paper’s goals, ac-

cording to a number of context-dependent variables. Grover et al.

(2018) specifically frame ITS as a collection of planning problems

[12]. Two such problems closest to ours in the ITS literature are

the problem of optimal teaching sequence generation [6] and the

problem of hint generation [4, 25], which aim at providing tailored

context-specific content according to student performance. These

problems have mainly been studied in the context of teaching very

structured concepts such as programming [25] or logic proofs [4].

Most state-of-the-art methods rely on a large amount of data, based

on recommender systems style algorithms, while earlier work tends

to be more analytic and model-based [22]. In an agent-based ther-

apeutic setting, such amount of data is far from being available

for a number of reasons, including scarceness of available tech-

nologies for special populations, higher-than-normal variability of

profiles, and data privacy. As a result, the application of these types

of algorithms to therapeutic contexts is difficult. In this paper, a

relatively small amount of data is needed to be able to estimate

model parameters and use them to generate personalized plans.

Even though the ITS literature considers more complex problems,

many of them are not transferable to other domains falling under

the provider/receiver interactive paradigm. The present work con-

tributes a thorough theoretical analysis of a simple and general

model for certain types of tasks, which we believe may be of valu-

able across a variety of domains. In any case, the ITS field may

provide a valuable line of research to accelerate advances in other

types of agent-based interventions in the future, especially as more

data becomes available.

Personalization in robotic interactions with ASD children. We have

established the importance of personalization in relation to general

provider/receiver interactions. In this paper, we use robot-assisted

therapy for children with ASD as a case study to illustrate our

approach (section 4). While the personalization problem has been

tackled in general child-robot interactions [18], it remains an impor-

tant open problem with special needs populations. As children with

ASD specifically present immense variability, powerful automated

personalization mechanisms are needed for the success of such

robotic solutions. Most existing work to date still heavily relies on

teleoperation, or content customization [24]. Some architectures for

personalization using child behavioral profiles have been devised

[9], but their effectiveness in practice remains to be demonstrated.

Real-time adaptation is another major aspect of autonomy. So far,

it appears that the only successful such system to date relies on

affective adaptation [8] through multimodal measurements of af-

fect to regulate a basketball-based task. The illustrative tasks used

in this work build on structured tasks from the Autism Diagnosis

Observation Schedule (ADOS-2) [20], extending the line of work

of Warren et al. [31], which inspired our scenario. We believe our

algorithmic contribution can enrich robot-based therapeutic scenar-

ios by automatically generating optimal sequences for every child

profile, which could have an impact on their clinical effectiveness.

3 OPTIMIZATION FRAMEWORK
3.1 Problem formulation
We now provide a mathematical formulation of the general plan-

ning problem informally defined in section 1. We frame it as an

optimization problem that takes into account action costs and prob-

abilities of success.

3.1.1 Input. Assume we have a hierarchy of actions 1, ...,N
with fixed probabilities of success p1 < ... < pN ∈ (0, 1) and costs

c1, ..., cN ∈ (0, 1]. Let xa be the outcome (success=1; failure=0) of

performing action a. Then xa is a Bernoulli variable with expecta-

tion pa . Also assume there is a reward (negative cost) r associated
with each value of xa , say r = R if xa = 1 and r = 0 if xa = 0,

where R is a positive constant.

3.1.2 Setup. At each trial t , select an action a(t ) and observe

x (t ). If x (t ) = 0, a new trial is executed; if x (t ) = 1 or the maxi-

mum number of trials T is reached, the process stops. Trials are

assumed to be independent, meaning the values of ca and pa are

not influenced by previous actions in the sequence.

3.1.3 Goal. The goal is to find the optimal plan for horizon

T , i.e., a sequence of actions with minimal expected overall cost,

where overall cost of a sequence is defined as the sum of costs of

individual actions and potentially the negative reward if a success

occurs. Note that according to the setup above, the plan is followed

until a success occurs or the horizon T is reached. In the next

subsection, we derive a closed form for the expected overall cost

of a sequence, which corresponds to the objective function to be

minimized.

3.1.4 Objective function. Let
〈
a(1),a(2),a(3), ...,a(T )

〉
be an ar-

bitrary plan. The probability Pt that the plan aborts at trial t due to
a success is given by:

Pt = P(x (t ) = 1 ∧ x (τ ) = 0,τ < t) = pa(t )

t−1∏
τ=1
(1 − pa(τ ) ) (1)

Note that for the same sequence we have the recursive relation:
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Pt+1 = Pt
pa(t+1) (1 − pa(t ) )

pa(t )
, P1 = pa(1) (2)

Denoting Ct the overall sequence cost with success at trial t :

Ct =
t∑

τ=1
caτ − R (3)

We also have the following recursive relation:

Ct+1 = Ct + ct+1, C1 = ca(1) − R (4)

The expected overall cost of the actual sequence followed (aborted

upon the occurrence of the first success) is hence given by:

OT =
T∑
t=1

PtCt + (1 −
T∑
t=1

Pt )(CT + R) (5)

The optimal action sequence

〈
a∗(1),a∗(2), ...,a∗(T )

〉
is the se-

quence that minimizes the objective OT .

3.2 Optimal sequence planning
We now present an optimal solution to the optimization problem

defined above, as well as proofs for a number of properties of

optimal solutions.

3.2.1 Recursive relations and optimal algorithm.

Single-trial case. ForT = 1, the expected overall cost is ca − paR,
and the optimal action a∗ = argmina (ca − paR).

Multi-trial case. We can relate the objective OT of sequence

AT =
〈
a(1), ...,a(T )

〉
and the objective OT−1 of sequence AT−1 =〈

a(2), ...,a(T )
〉
as follows:

OT = (1 − pa(1) )OT−1 + ca(1) − pa(1)R (6)

Therefore, the optimal solution for horizon T can be obtained

by first solving for the optimal solution for horizon T − 1 then

appending at the beginning of the found sequence the action a that

minimizes the quantity (1−pa )O
∗
T−1 +ca −paR, whereO

∗
T−1 is the

optimal objective function for horizon T − 1.
Hence, we have the following recursive relations,

O∗T = min

a
{(1 − pa )O

∗
T−1 + ca − paR}, O

∗
1
= min

a
{ca − paR} (7)

A∗T =
〈
argmin

a
{(1 − pa )O

∗
T−1 + ca − paR}, A

∗
T−1

〉
,

A∗
1
=
〈
argmin

a
{ca − paR}

〉 (8)

Based on Eq. 7 and 8, we devise planning algorithm 1, based on

dynamic programming (DP). The resulting algorithm has linear

complexity in T and N (Θ(TN )).

3.2.2 Monotonicity of optimal solutions. We now provide proofs

of properties ofO∗T , including monotonicity and convergence prop-

erties, and use those results to prove that all optimal action se-

quences are monotonous.

We structure our demonstration along the three following cases:

• Case (a): O∗
1
> 0, or equivalently R < mina ca/pa

• Case (b): O∗
1
< 0, or equivalently R > mina ca/pa

• Case (c): O∗
1
= 0, or equivalently R = mina ca/pa

Algorithm 1 Linear-time iterative DP algorithm to find an optimal

sequence for horizon T

1: procedure PLAN-OPT(p,c,R,T ) ▷ p and c are vectors
containing pa ’s and ca ’s respectively

2: Opart ← c − pR
3: O← Opart
4: O∗ ← minO
5: A← ⟨argminO⟩
6: for i ← 1, ...,T − 1 do
7: O← (1 − p)O∗ + Opart
8: O∗ ← minO
9: A← ⟨argminO,A⟩
10: end for
11: return A

12: end procedure

Lemma 3.1. For any T, 0 < O∗T < mina ca/pa − R in case (a) and
0 > O∗T > mina ca/pa − R in case (b)

Proof. We use induction on T. From Eq. 7:

O∗T = mina {(1 − pa )O
∗
T−1 + ca − paR}, O∗

1
= mina {ca − paR}

applies in all cases.

Case (a):
Base case: 0 < O∗

1
= mina ca − paR < mina ca/pa − R

Induction step: Assume 0 < O∗T−1 < mina ca/pa − R, then O∗T is

also positive from Eq. 7 and base case. Also, for all a:

O∗T ≤ (1 − pa )O
∗
T−1 + ca − paR

< (1 − pa )(ca/pa − R) + ca − paR = ca/pa − R

By induction, 0 < O∗T < mina (ca/pa ) − R for all T .

Case (b):
Base case: 0 > O∗

1
= mina ca − paR > mina ca/pa − R

Induction step: Assume 0 > O∗T−1 > mina ca/pa − R, and let a† =
argmina ca/pa − R, and a

∗
be the optimal action of stage T .

O∗T ≤ (1 − pA∗
1

)O∗T−1 + cA∗
1

− pA∗
1

R < 0

since (1 − pa )O
∗
T−1 < 0 for any a, and cA∗

1

− pA∗
1

R < 0 (base case).

Also, for all a:

O∗T = (1 − pa∗ )O
∗
T−1 + ca∗ − pa∗R

> (1 − pa∗ )(ca†/pa† − R) + ca∗ − pa∗R

= (ca†/pa† )(1 − pa∗ ) + ca∗ − R

Using pa∗ < pa† (ca∗/ca† ):

O∗T > (ca†/pa† )(1 − pa† (ca∗/ca† )) + ca∗ − R = ca†/pa† − R
By induction, 0 > O∗T > mina ca/pa − R for all T . □

Lemma 3.2. O∗T is monotonous in T . In particular, it is: strictly
increasing in case (a), strictly decreasing in case (b), and constant in
case (c).

Proof. Case (a):
O∗T /O

∗
T−1 = 1 − pa∗ + (ca∗ − pa∗R)/OT−1

From lemma 3.1, for any a:
0 < O∗T−1 < ca/pa − R , so (ca∗ − pa∗R)/O

∗
T−1 > pa , hence:
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O∗T /O
∗
T−1 > 1, which establishes that O∗T is strictly increasing.

Case (b):
Using Eq. 7: O∗T /O

∗
T−1 = maxa {1 − pa + (ca − paR)/OT−1}

since OT−1 < 0 from lemma 3.1.

Let a† = argmina ca/pa − R, then:
O∗T /O

∗
T−1 = 1 − pa + (ca − paR)/OT−1

From lemma 3.1, 0 > O∗T−1 > ca/pa − R, so:
(ca∗ − pa∗R)/O

∗
T−1 > pa , hence: O

∗
T /O

∗
T−1 > 1, and O∗T < 0 for all

T , which establishes that O∗T is strictly decreasing.

Case (c) is easily proven by induction on T . □

Theorem 3.3. O∗T converges to mina ca/pa − R.

Proof. Lemmas 3.1 and 3.2 imply convergence of O∗T in cases

(a) and (b). Furthermore, setting OT−1 to OT in equation 7 results

in a single fixed point mina ca/pa − R, which establishes the result.

Case (c) is trivial since mina ca/pa − R = 0. □

Theorem 3.4. If A∗ is an optimal sequence, then it is monotonous.
In particular, A∗ is:

• nonincreasing in case (a), i.e., a∗(1) ≥ a∗(2) ≥ ... ≥ a∗(T )

• nondecreasing in case (b), i.e., a∗(1) ≤ a∗(2) ≤ ... ≤ a∗(T )

• constant in case (c), i.e., a∗(1) = a∗(2) = ... = a∗(T )

Proof. Let a′ be an optimal action associated with O∗T−1 and
a′′ an optimal action associated with O∗T . Then:
(1 − pa′′)O

∗
T + ca′′ − pa′′R ≤ (1 − pa′)O

∗
T + ca′ − pa′R

(pa′ − pa′′)O
∗
T ≤ ca′ − ca′′ − R(pa′ − pa′′) (9)

and

(1 − pa′)O
∗
T−1 + ca′ − pa′R ≤ (1 − pa′′)O

∗
T−1 + ca′′ − pa′′R

(pa′ − pa′′)O
∗
T−1 ≥ ca′ − ca′′ − R(pa′ − pa′′) (10)

Combining Eq. 9 and 10, we get:

(pa′ − pa′′)O
∗
T ≤ (pa′ − pa′′)O

∗
T−1

We can conclude that:

If pa′ > pa′′ : O
∗
T ≤ O∗T−1 and if pa′ < pa′′ : O

∗
T ≥ O∗T−1

Case (a): Assume a′ > a′′. Then pa′ > pa′′ . From the previous

result: O∗T ≤ O∗T−1, which contradicts lemma 3.2. Hence, a′ ≤ a′′,
which establishes that A∗ is nonincreasing.

Similarly, we can show that, in case (b), A∗ is nondecreasing.
In case (c), every step is equivalent to the single trial case, and

the same action is selected at every trial, so the resulting sequence

is constant. □

3.2.3 Graphical representation ofO∗T versusO∗T−1. In the update

function relating OT to OT−1 (Eq. 6), every action a contributes

a different linear relationship between the two quantities, with a

different slope (1−pa ) and potentially different y-intercept (ca−paR).
As a result, according to Eq. 7, we can see thatO∗T is piecewise linear

inO∗T−1. Fig. 1 shows a graphical representation of this relationship

with sample costs and success probabilities. As can be noticed,

changing the value of R effectively translates the curve without

changing its shape, nor the relative location of the convergence

point.

Figure 1: Sample graphical representation (red curves) ofO∗T
as a piecewise linear function ofO∗T−1 for different R values
falling in case (b). Arrows represent the direction of evolu-
tion of O∗T−1 and the dotted lines the convergence points.
The resulting optimal sequences for T = 4 are ⟨2, 2, 3, 4⟩
(R = 5) and ⟨2, 2, 3, 3⟩ (R = 2.5)

3.2.4 Interpretation of results in relation to provider strategies.
In a real-world provider/receiver scenario, when a failure occurs,

human providers typically increase the action level along the hierar-

chy or repeat the same action, to provide increasing or equal level of

assistance to the receiver in achieving the task. This monotonically

nondecreasing behavior is in accordance with Theorem 3.4 case

(b). As a result, we conclude that in real applications, a value of R
larger than mina ca/pa should be selected to incentivize increasing

or maintaining action levels along the hierarchy throughout the

computed optimal sequences. Note that the proven monotonicity

properties hold for any numberN of actions such thatp1 < ... < pN ,

and arbitrary costs in (0, 1].

4 APPLICATION: ROBOT-ASSISTED AUTISM
THERAPY

To demonstrate the applicability of our optimization framework,

we apply it to a robot-assisted therapy scenario for children with

ASD, for two tasks related to attention, one of the core deficit of

ASD. The use of a model-based method like ours for optimizing

the robot behavior for each child is motivated by the fact that as-

sessment is usually part of the regular therapy process. We provide

a methodology for estimating costs on the provider side (thera-

pist), and success probabilities on the receiver side (ASD child), and

report some illustrative results with the estimated parameters.
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4.1 Scenario
Figure 2 shows the scenario considered, inspired by the work of

Warren et al. [31]. The setup consists of a humanoid NAO robot

standing on a table, at which the child is seated, and two LCD

screens that can be triggered individually to show a video or a

static picture. Within this setup, we consider the following simple

tasks, inspired by activities from the ADOS-2 tool [20]:

• Joint Attention (JATT) task: The robot’s goal is to direct

the child’s gaze from looking at the robot to looking at a

target screen, using a combination of verbal and non-verbal

cues. A success occurs if the child looks at the target screen,

upon which a video is triggered as a reward.

• Name Calling (NAME) task: The robot’s goal is to catch

the child’s attention when he/she is looking away from the

robot (in our case, at the screen). The robot does so by calling

the child’s name and potentially using non-verbal cues. A

success occurs if the child looks at the robot.

In both tasks, if no success occurs after a fixed timeout, it is

considered a failure and a new trial starts. A perception ‘wizard’

informs the robot of a success when it occurs. Aside from the

perception, the robot control was automated during the tasks.

We designed a hierarchy of 4 possible robot actions for each task,

inspired by the hierarchy of presses in ADOS-2, and summarized

in Table 2. Note that level i + 1 is a replica of level i , with an added

stimulus. For more details on how parameters of the scenario and

the task were tuned, robot control, and the role and validation of

the perception wizard please refer to [3].

We now provide our methodology for estimating: (1) the thera-

peutic costs of the robot actions, and (2) their success probabilities

as a function of child profile (as will be defined in section 4.3).

Table 2: Hierarchies of robot actions with 4 levels, inspired
by the ADOS-2 presses.

Task

Action

level

Robot behavior

1

Gaze shift from child to target screen + “[Name],

look!” (Static picture on both screens)

JATT

2

Gaze shift + “[Name], look at that!” + pointing
(Static picture on both screens)

3

Gaze shift + “[Name], look at that!” + pointing +

muted video on target screen

4

Gaze shift + “[Name], look at that!” + pointing +

video with sound on target screen

NAME

1 “[Name!]”

2 “[Name], look over here!”.
3 “[Name], look over here!” + Blinking lights

4

“[Name], look over here!” + Blinking lights +

Waving arm

4.2 Estimating action costs from experts’
assessment

In a sensory integration context [28] such as in autism therapy, it

can be argued that the therapeutic cost comes mainly from how

explicit a certain action is. The more explicit the action (usually

through the activation of more sensory channels, as is the case

in our action hierarchies) the further away it moves from natural

everyday scenarios, which should be avoided. For these reasons, we

use level of explicitness as a measure for action cost in this context,

and we expect this measure to increase as the action level increases.

Furthermore, we assume that the actions costs, unlike the success

probabilities, do not vary according to the receiver’s abilities. They

were hence measured with respect to what is expected for a non-

ASD virtual child matching the age of our targeted population. The

cost measured would then capture for each action its deviance from

a natural interaction with a non-ASD child.

To determine these action costs, we ran a video-based online

survey where professionals in the fields of clinical, educational

and developmental psychology subjectively assessed the level of

explicitness of our robot’s actions shown as short video snippets.

The responses for each robot action were gathered on a contin-

uous scale (slider input) from ‘Not explicit at all’ (value of 0) to

‘Completely explicit’ (value of 1). Our sample consisted of 13 pro-

fessionals from the areas of clinical (84.6%), educational (7.7%) and

developmental (7.7%) psychology. Their ages ranged between 25

and 59 years (M=32.9, SD=9.5), and they were all female-gendered.

Two participants completed only the first part of the survey, related

to task JATT, and were included in the analysis. Informed consent

was obtained prior to showing the survey.

4.3 Estimating success probabilities based on
real child-robot interactions

As discussed previously, success probabilities depend on child abil-

ity, and it would therefore be inappropriate to estimate a single set

of probabilities to model any child. We hence contribute a model to

estimate these probabilities given a child profile for a specific task.
The child profile is a categorization of the child into one of the four

following discrete levels: High response (1), Medium response (2),

Low response (3), and Minimal response (4). The child profile was

assessed by the robot as will be explained next.

As part of a larger study involving interactive storytelling [3],

we collected data on 10 ASD children’s responses to the robot’s

actions in both tasks. The ages of our sample ranged between 3

and 7 years; six were male and 4 female. Two had low ASD severity

scores, 6 moderate and 2 severe. Informed consent was obtained

from the parents prior to the sessions.

Prior to the main interaction, the robot assessed the child profile

for both tasks according to the ADOS-2 algorithm typically used by

therapists for assessment, sequentially following the hierarchy of

actions from lowest to highest level, and recording the first action

level at which the success occurred. For each task, the value reported

in the child profile is the rounded average of 4 measurements of

the first successful action level. In case of a tie (average falls exactly

between two levels), the first measurement was discarded.

During the main interaction involving storytelling, the robot

executed the JATT task at regular intervals, directing the child to

a random screen to show a video excerpt related to the story. As

the video repeated, the robot performed the NAME task to call the

child’s attention back to the story. This process was repeated a total

of 4 times throughout the story. Every time the task was repeated,
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Figure 2: Left: Diagram of the scenario considered. Right: Snapshots of actual ASD child-robot interactions in the JATT task
(top) and NAME task (below)

Table 3: Mean estimated cost results and standard errors for
actions in the two tasks based on experts’ responses

JATT NAME

Action level Cost (.102) SE (.102) Cost (.102) SE (.102)

1 57.92 9.71 38.18 8.63

2 62.23 8.51 50.91 10.31

3 65.77 7.56 47.36 11.23

4 74.85 7.46 72.73 9.90

the content of the video was different and the children generally

showed a sustained level of engagement and no clear learning effect.

For each action the robot took, we recorded the action level and the

outcome (success/failure). To reduce any bias, the robot followed a

random plan for each task instance, with a horizon T = 4.

4.4 Results
We now present the results for the estimation of action costs and

success probabilities, as well as resulting optimal sequences gener-

ated by our algorithms based on the estimated action parameters.

4.4.1 Cost results. The resulting estimated costs are summa-

rized in Table 3. The cost function follows an increasing trend

along the hierarchy for both tasks, as expected, with the exception

of action 3 in the NAME task, which records slightly lower cost

than action 2. The only difference between the two actions is the

presence of lights, which may have been hard to notice on the video

version. Given that the standard errors are high, we attribute this

result to noise. However, it does not contradict the assumptions of

our optimization framework, valid for arbitrary costs.

4.4.2 Success probabilities results. To estimate the action success

probabilities as a function each action level and child profile, we use

a logistic regression model, with the action level and child profile

as our predictor variables, and the estimated success probability as

our response variable. We ran a logistic regression on the collected

data with MATLAB’s glmfit function with a logit link function

and binomial distribution of response variable. Figure 3 shows the

regression results. Each data point (blue dots in the two upper plots)

represents the average estimated success probability for a given

child and action level.

We can see that the NAME task was overall identified to be more

difficult since it had lower success probabilities, as well as lower

costs (Table 3). As a result, the total number of observations was

higher in the NAME task (n = 79) as compared to the JATT task (n =
50) because successes occurred less frequently and actual sequences

were longer, resulting in a smoother spread in the response variable.

4.4.3 Personalization results. The results presented above allow

us to generate personalized optimal sequences according to the

profile of each child. The only remaining parameter to determine is

R, which can be tuned. According to the results presented in section

3.2.4, we should choose R > mina ca/pa . Table 4 reports values

of mina ca/pa for the different child profiles. Whether and how

this parameter should be tuned according to child profile or task

importance is an open question that needs further investigation.

For the purpose of illustration, we set R = 1000 for both tasks,

which is greater than all values from Table 4. We ran our planner

with the estimated action parameters, for both JATT and NAME

tasks, and report some resulting optimal sequences in Fig. 4.

We observe that for higher response profiles, the computed se-

quences generally start with lower action levels, and vice versa. As

mentioned previously, the NAME task was determined to be more

challenging, which is reflected by the overall higher action levels

computed for all child profiles.

4.5 Discussion
Throughout this work, we have rigorously analyzed the theoretical

properties of our approach and demonstrated its applicability to a

real-world scenario. However, there are a some limitations to our

approach, which we plan to address in future research.
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Figure 3: Success probability results showing data points and
fitted surfaces (top), cross-section relating pa to a (mid.) and
cross-section relating pa to child profile (bot.). Overlapping
data points are perturbed for better visualization. Continu-
ous surfaces and curves are shown for illustration purposes.

Table 4: Minimum R values for acceptable algorithm perfor-
mance for different child profiles on each task.

Task Child profile mina (ca/pa )

JATT

High resp. (1) 65.68

Medium resp. (2) 70.62

Low resp. (3) 78.687

Minimal resp. (4) 92.64

NAME

High resp. (1) 53.21

Medium resp. (2) 80.81

Low resp. (3) 225.87

Minimal resp. (4) 948.24

First, our problem formulation assumed independence of out-

comes across trials. In practice, it may be the case that previous

actions influence the success probabilities of the current action. In

our application domain, the data collected had too few data points

to accurately test the independence assumption.

Second, even though the study presented in section 4.3 is the

first to collect this type of data with children with ASD with high

Figure 4: Resulting optimal sequences for T=6 and R=1000
for both tasks and different values of child profiles.

attention to methodological considerations to reduce bias, it suffers

from a low number of samples, as in most probabilistic frameworks.

Specifically, because the number of data points for each action

level and individual was low, the resulting response variable in our

regression model showed a high spread. Higher number of samples

per participant may result in better fit of our regression model

but may also induce bias in our data due to potential positive or

negative learning effects. Those questions should be kept in mind

when designing similar data collection scenarios.

5 CONCLUSION
We contributed an optimization framework to solve for optimal

action sequences to be followed by a provider agent in a task with

a human receiver, under certain assumptions. We presented an

optimal linear-time planning algorithm based on dynamic pro-

gramming and prove a number of properties of optimal solutions,

including monotonicity and convergence. Finally, we demonstrated

the validity of our approach with a real-world scenario involving

robot-assisted therapy tasks with 10 ASD children.

The assumptions of our optimization framework are quite gen-

eral, and we expect it to have value in general provider/receiver

interactions with a similar structure, to enable agents to play the

role of such providers, or as a mean to guide and complement

the plans followed by human providers, based on objective data

including assessment and past performance.

In the future, we plan to test the outputs of our algorithm in our

scenario, and evaluate its effectiveness. From a theoretical point of

view, we plan on exploring more general models, such as relaxing

the independence assumption, and evaluate its applicability to more

complex tasks.
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