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ABSTRACT
The computational problem of Influence maximization concerns

the selection of an initial set of nodes in a social network such that,

by sending this set a certain message, its exposure through the

network will be the highest. We propose to study this problem from

a utilitarian point of view. That is, we study a model where there are

two types of messages; one that is more likely to be propagated but

gives a lower utility per user obtaining this message, and another

that is less likely to be propagated but gives a higher utility. In our

model the utility from a user that receives both messages is not

necessarily the sum of the two utilities. The goal is to maximize

the overall utility.

Using an analysis based on bisubmodular functions, we show a

greedy algorithm with a tight approximation ratio of
1

2
. We develop

a dynamic programming based algorithm that is more suitable to

our setting and show through extensive simulations that it outper-

forms the greedy algorithm.
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1 INTRODUCTION
In recent years, social networks have surged in popularity, enabling

people to share information easily and interact with each other.

One of the main properties of social networks is the fast spread of

messages; due to the multiple links of the networks, when a user

receives a message, she may transfer it to a subset of her neigh-

bors in the network, which may, in turn, transfer the message to

their neighbors, and so on. This phenomenon was used by several

stakeholders to promote their goods, agendas or ideas. For exam-

ple, marketing companies advertise by social networks [19], social

movements reach the public in order to get their support [6], and

politicians run several social network pages [16, 18]. Naturally, the

research in this field is thriving.

One natural problem that arises is the Influence Maximization

(IM) problem. In this problem one needs to select an initial set of

users (of a given size), to receive a message, such that the message

will reach the largest number of users in the network. Most of the
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research on the IM problem concentrates on measuring a spread

of a messages by counting the number of users that received that

message, and this measure is used even where there are multiple

types of messages. However, in many setting the effect of a message

depends on its type, and thus counting the number of users that

received any message is not the appropriate objective. For example,

suppose there is an association that is promoting anti-smoking by

running a campaign on a social network. Assume that there are two

potential types of anti-smoking advertisements. One advertisement

consists of humorous content
1
, and thus it has a high potential to

become viral and heavily spread throughout the network. However,

this message has a low potential of affecting users to quit smok-

ing. The second type of advertisement consists of harsh content
2
,

and it is thus more effective but less likely to spread. As another

example, consider two advertisements for vaccine promotion. One

advertisement includes graphic pictures of people who refused to

vaccinate, and the other advertisement includes fun facts regarding

the necessity of vaccination.

In this paper we propose to study the IM problem from a utili-

tarian perspective. That is, we study a model where there are two

types of messages; one that is more likely to be propagated but

gives a lower utility per user obtaining this message, and another

that is less likely to be propagated but gives a higher utility. Clearly,

whenever a user receives the same message multiple times it does

not affect the resulting utility. However, when a user receives mes-

sages from different types, it is natural to assume that the resulting

utility should be at least as high as the utility from each one of the

messages. On the other hand, the utility in this case should not be

higher than the sum of utilities. Overall, the Utility Based Influence

Maximization (UBIM) problem is to select two initial sets of users

(with a given total size), one for each type of message that is sent,

such that the sum of the resulting utilities will be maximized.

We first show that a greedy method for UBIM is guaranteed to

reach at least 50% of the optimal solution. The analysis is based on

the maximization of monotone and bisubmodular functions [15],

which is an extension of the traditional approach that maximizes

a submodular function [8]. We also prove that the approximation

ratio is tight. We note that the greedy algorithm has a drawback

in our setting. Specifically, since there are two types of messages,

if the greedy algorithm decides to send one type of message to a

specific user, this commitment may harm its performance later on,

as it may turn out that the other type of message is more valuable at

later stages. We thus introduce our Efficient Table-based Algorithm

for Bisubmodular functions (ETAB), which does not commit to a

specific type of message at early stages.

1
See for example https://www.youtube.com/watch?v=IKbxMIWCto0

2
See for example https://www.youtube.com/watch?v=AIyqcST29wQ
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For the evaluation of our algorithmswe use two graphs, a random

graph and a graph based on a known social network (Digg). We

compared the performance of ETAB with the greedy algorithm, its

more efficient variant (Celf), and with additional baseline heuristics,

in terms of achieved utility. Our results demonstrate that ETAB

outperforms the other alternatives.

The contribution of this paper is threefold:

• We study the influence maximization problem from a utili-

tarian perspective. This is a natural extension, which allows

to study the trade-off between sending viral and effective

messages. To the best of our knowledge, this model has not

been investigated yet.

• We prove that a greedy algorithm achieves a tight approxi-

mation ratio of
1

2
, since the function in our model is bisub-

modular.

• We introduce an Efficient Table-based Algorithm for Bisub-

modular functions (ETAB) and show through simulation that

it outperforms the greedy algorithm, as well as additional

baselines, on two different graphs.

2 RELATEDWORK
The problem of influence maximization was introduced by Domin-

gos and Richardson [7]. Motivated by application of marketing,

they point out that a satisfied customer is likely to recommend

the product to her friends, which raises the probability for them

to buy the product as well. Naturally, a good marketing strategy

will be to filter the users of a certain network in order to find the

most influential users. Domingos and Richardson model the prob-

lem as a Markov random field, and provide heuristics for choosing

costumers with a large overall effect.

The seminal work of Kempe et al. [8] is the first to analyze the

influence maximization as a discrete optimization problem. They

show that the IM problem is NP-hard, but it can be analyzed as

a maximization of a monotone and submodular set function. This
problem was studied by [14], and shown to admit an approximation

of 1 − 1/e ≈ 63%. Thus, the IM problem has the same approxima-

tion ratio. However, unlike the problem studied by [14], in the IM

problem the underlying set function cannot be evaluated exactly

(in polynomial time) but it can be approximated by sampling, and

thus the approximation ratio is slightly lower. Since the work of

Kempe et al., the IM problem received a high amount of attention,

see the recent surveys [1, 11].

An important generalization of the IM problem, derives from

the observation that many products are being promoted through a

social network simultaneously. Some of them are complementary

to each other and others are competitive. For example, buying a

cellphone increases the probability of buying a cellphone case, but

decreases the probability of buying a different type of cellphone.

Therefore, there are several works that generalizes the IM problem

such that there are multiple messages.

Specifically, Borodin et al. [3] discuss competitive IM. That is,

they analyze several models where the goal is to maximize the

spread of technology A while there is a different competitive tech-

nology B that is also spread in the network. They show that the

greedy approach of [8] is applicable only for a subset of their mod-

els.

Datta et al. model viral marketing of multiple products [5]. They

assume that the products are independent of each other. That is, a

user’s decision to buy a product is independent of her decision to

buy other products. They also assume that multiple messages can

be initially sent to each user, but the number of such messages is

limited. The objective of their work is to maximize the number of
products that the users buy, since all products are equally counted.

Datta et al. show a greedy algorithm for their problem with a

1/3−approximation ratio.

Narayanam and Nanavati study a model where cross-sell among

products is possible [13]. That is, in their model when a user buys

the first product it increases the probability that she will buy a

second product. While they define a utility for the objective, it is a

simple sum over the utilities from buying the products separately.

In addition, they study the IM problem according to the linear

threshold model while we study the IM problem according to the

independent cascade model (see Section 3.1 for details).

In our work we show that a greedy algorithm obtains an ap-

proximation ration of
1

2
. This result is obtained by proving that the

utility function in UBIM is monotone and bisubmodular. Ohsaka

and Yoshida [15] were the first to show that a greedy algorithm on

a k−submodular and monotone set function achieves an approx-

imation ratio of
1

2
. They further show that their solution can be

applied to the IM problem with multiple messages. Their objective

function is to maximize the sum of users receiving these messages.

Overall, none of these works extend the IM problem to the setting

in which every message has its own (different) utility while a user

receiving multiple messages might yield a value that is different

from the sum of utilities.

Another related extension of the IM problem is the topic-aware

influence maximization problem, which was introduced by Barbieri

et al. [2] and Chen et al. [4]. In this model the influence between

a pair of users may differ depending on the topic. Barbieri et al.

introduce the model, and provide methods for learning the diffusion

probabilities from data of past diffusion. Chen et al. study efficient

algorithms for the IM problem in this setting. Note that the objec-

tive function is identical to that of the standard IM problem, and

the existence of multiple topics affects only the probabilities of

influences among the users.

A different perspective is studied by Li et al. [10]. They consider

multiple types of messages, and use an agent-based modelling to

study the diffusion process of the different influences.

3 PRELIMINARIES
3.1 The independent cascade model
The research on the IM problem has considered two main models of

diffusion: the linear threshold model, and the independent cascade

model. We focus on the independent cascade model and generalize

it to our setting. The independent cascade model works as follows.

The social network is represented by a directed graph G = (V ,E),
where each user of the network is represented by a node and every

connection between two users is an edge. The process of diffusion

consists of a message that is propagated thorough the network.

During this process each node can either become active or inactive,

where an active node indicates that the associated user is influenced

by the message. For every edge u → v ∈ E, let puv ∈ [0, 1] be the
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probability of the influence of u on v . That is, puv is the probability

for v to become active after she received the message from u. The
process starts with an initial seed set S ⊆ V , such that all the nodes

of S are initialized with the message, and thus they become active.

The process then unfolds in discrete steps according to the following

rule. Every nodev ∈ V that becomes active, activates each currently

inactive neighbourw with probability pvw . Moreover, if multiple

neighbors of a vertex w try to activate it at the same time, their

attempts are considered in an arbitrary order. v does not attempt

to activate its neighbours again. The process runs until no more

activations occur.

As shown by Kempe et al. [8], the diffusion process is equiv-

alent to first selecting the participating edges according to their

probabilities, (by a series of flipping coins with the corresponding

probability) obtaining a graph of connections G ′ = (V ,E ′). Then,
every node v ∈ V of the graph that has a directed path starting

from one of the nodes of the seed and ending at v is assumed to be

active. We note that in G ′ all edges, E ′, have a fixed probability of

1.0.

3.2 Monotone and submodular set functions
We now provide the basic definitions of a bisubmodular function.

This function is later used to model the utility in our setting. Let

U be a set of n nodes. 3
U

is the set of all possible tuples of two

disjoint subsets of U . That is, X = (X1,X2) ∈ 3
U

if X1,X2 ⊆ U
and X1 ∩ X2 = ∅. Note that every such tuple can be viewed as a

vector of size n over {0, 1, 2}. Let f : 3
U → R+ be a function that

takes two disjoint subsets of U and outputs a non negative real

number. For every tupleX = (X1,X2) ∈ 3
U
and e ∈ U \(X1∪X2), let

∆e,1(X1,X2) = f (X1∪{e},X2)− f (X1,X2). That is, the contribution

of adding e to X1, as measured by f . Similarly, let ∆e,2(X1,X2) =

f (X1,X2 ∪ {e}) − f (X1,X2).

Definition 3.1. A function f : 3
U → R+ is monotone if for every

tuple X = (X1,X2) ∈ 3
U

and every e ∈ U \ (X1 ∪ X2), it holds that

∆e,1(X1,X2) ≥ 0, and ∆e,2(X1,X2) ≥ 0. That is, adding nodes does

not reduce the value of f .

For completeness, we first provide the definition of a submodular

function, which receives a single set as their input.

Definition 3.2. A function f : 2
U → R+ is submodular if for

every two subsets X ,Y ⊆ U it holds that:

f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y )

Definition 3.3. A function f : 3
U → R+ is bisubmodular if for

every two tuples X = (X1,X2) ∈ 3
U

and Y = (Y1,Y2) ∈ 3
U

it holds

that:

f (X ) + f (Y ) ≥ f (X ⊔ Y ) + f (X ⊓ Y )

where,

• f (X ⊔ Y ) = f (X1 ∪ Y1 \ (X2 ∪ Y2),X2 ∪ Y2 \ (X1 ∪ Y1)).
• f (X ⊓ Y ) = f (X1 ∩ Y1,X2 ∩ Y2).

An equivalent definition for bisubmodularity (see [17]), is when

both properties of orthant submodularity and pairwise monotonicity
hold.

Definition 3.4. A function f : 3
U → R is orthant submodular if

for every tuples X = (X1,X2) and Y = (Y1,Y2) such that X1 ⊆ Y1

and X2 ⊆ Y2, and every item e ∈ U \ (Y1 ∪ Y2):
∆e,1(X ) ≥ ∆e,1(Y ) and similarly: ∆e,2(X ) ≥ ∆e,2(Y ).

Definition 3.5. A function f : 3
U → R is pairwise monotone if

for every tuple X = (X1,X2) and every e ∈ U \ (X1∪X2), ∆e,1(X )+
∆e,2(X ) ≥ 0.

Note that monotonicity implies pairwise monotonicity.

4 OUR MODEL
In our work we consider the diffusion process of two types of

messages M1 and M2 in a social network. The social network is

represented by a directed graph G = (V ,E), where each v ∈ V
represents a user in the social network, and each edge u → v ∈ E
represents the influence ofu onv . Each user can be activated by each
of the two messages. Thus, there are four possible combinations for

activeness; a user can be active with regard to only M1, only M2,

active with both the messages or inactive. For every edge u → v
we define puv

1
,puv

2
∈ [0, 1] to be the influence probabilities. puv

1

is the probability that user u activates user v with regard to M1.

Similarly, puv
2

is the influence probability with regard toM2.

For the diffusion process we consider a generalization of the

independent cascade model (see Section 3.1). Our process starts

with two initial seed sets S1, S2 ⊆ V , S1 ∩ S2 = ϕ, such that all the

nodes of S1 are initialized with message M1 and all the nodes of

S2 are initialized with message M2. The process then unfolds in

discrete steps according to the following rule. Let i, j ∈ {1, 2}, i , j .
Every node v that became active with message Mi activates each

neighbourw not activated yet with messageMi , with probability

pvwi . In addition, if multiple neighbors of a vertexw try to activate

it at the same time, their attempts are considered in an arbitrary

order. v does not attempt to activate its neighbours with message

mi again. The process runs until no more activations are possible.

As mentioned in Section 3.1, the diffusion process of the ICmodel

is equivalent to first selecting the participating edges according to

their probabilities, then, every node of the graph that can be reached

by a directed path from a node in the seed is considered active. For

our model, we need to bring to consideration the fact that each

edge has two different diffusion parameters. For the selection of

the participating edges we use a series of 2|E | coin flips π , (Two
for each edge), obtaining a multi-graph Gπ = (V ,E1 ∪ E2) such
that the edges of E1 and E2 represents the connections of the nodes
regarding the messagesM1 andM2 respectively. Every node v ∈ V
that can be reached by a directed path from a node in S1 is assumed

to be active with regard to M1. (Note that all the edges of this

directed path should be from E1). Similarly, every node v ∈ V that

can be reached by a directed path from a node in S2 is assumed to

be active with regard to M2. (Again, all the edges of this directed

path are from E2). We note that inGπ all edges e ∈ E1, have a fixed
probability pe

1
= 1.0 and all edges e ∈ E2, have a fixed probability

pe
2
= 1.0.

Given a siries of coinflips π and a graph Gπ , Let A1(S1) be the
set of all nodes that are active with M1 at the end of the process,

when S1 is the seed set forM1. Similarly, Let A2(S2) be the set of all
nodes that are active withM2 at the end of the process, when S2 is
the seed set forM2. Note thatA1(S1) depends only on the set S1 and
A2(S2) depends only on the set S2. Further note thatA1(S1)∩A2(S2)
consist of nodes that are active with both messages,A1(S1) \A2(S2)
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consist of nodes that are active withM1 and are inactive withM2,

and A2(S2) \ A1(S1) consist of nodes that are active with M2 and

are inactive withM1.

We assume that each active node is associated with some utility.

Let u1 ≥ 0 be the utility for nodes that are active only with M1.

Similarly, let u2 ≥ 0 be the utility for each node that is active only

with M2, and let u1,2 be the utility for nodes that are active with

both messages.

We define the utility function σπ (S1, S2) to be the sum of every

active node at the end of the process multiplied with the corre-

sponding utility, i.e,

σπ (S1, S2) = u1 · |A1 \A2 | + u2 · |A2 \A1 | + u1,2 · |A1 ∩A2 |

Where we abbreviate A1(S1) and A2(S2) to A1 and A2 respectively.

Finally, the overall utility function is the weighted average of each

σπ (S1, S2) multiplied by the probability for π to occur, p(π ):

σ (S1, S2) =
∑
π

σπ (S1, S2) · p(π )

Definition 4.1 (UBIM). Given an integer B (the budget), the Utility
Based Influence Maximization problem is to find seed sets X =
(S1, S2) such that |S1 | + |S2 | ≤ B, that maximize the utility σ (S1, S2).

5 ALGORITHMS
5.1 The greedy approach
We extend the greedy algorithm that was presented by Kempe et al.

to the UBIM problem. It runs as follows. First, two sets S1 = ∅, S2 =
∅ are initialized. At any step 1 ≤ i ≤ B the algorithm greedily

chooses a node e ∈ V \ (S1 ∪ S2) and a message type i ∈ {1, 2} such
that adding e to Si gives the largest marginal gain (see Algorithm

1).

Algorithm 1: Greedy
Input: A directed graph G = (V ,E) and an integer B.

Output: Two sets S1, S2 ∈ V , with |S1 | + |S2 | = B.
Initiate S1 ← ∅, S2 ← ∅;

for i = 1 to B do
u ′ ← argmaxu ∈V \(S1∪S2){∆e,1(S1, S2)};

u ′′ ← argmaxu ∈V \(S1∪S2){∆e,2(S1, S2)};

if u ′ ≥ u ′′ then
S1 ← S1 ∪ {u

′};

else
S2 ← S2 ∪ {u

′′};

return (S1, S2).

In this section, we show that if max(u1,u2) ≤ u1,2 ≤ u1 + u2,
then our utility function σ (·, ·), is monotone and bisubmodular,

and therefore the greedy algorithm guarantees at least 50% of the

optimal solution.

Theorem 5.1. If max(u1,u2) ≤ u1,2 ≤ u1 + u2 then the function
σ (·, ·) is monotone and bisubmodular.

Proof. We start with monotonicity. We need to show that for

every tuple X = (X1,X2) ∈ 3
U
, and every node e ∈ U \ (X1 ∪ X2),

σ (X1 ∪ {e},X2) ≥ σ (X1,X2). (1)

B1

A1 A2

Figure 1: Venn’s diagram with 3 sets, such that A1 ⊆ B1

σ (X1,X2 ∪ {e}) ≥ σ (X1,X2). (2)

We will show (1) by:

σ (X1 ∪ {e},X2) − σ (X1,X2) ≥ 0.

For (2) the analysis is symmetric. For given series of coin flip π
and a corresponding graph Gπ , Fix a tuple X = (X1,X2) and a

vertex e ∈ U \ (X1 ∪ X2), Let A1 = A1(X1), A2 = A2(X2) and let

B1 = A1(X1 ∪ {e}). Note that A1 ⊆ B1 (see Figure 1). We get:

σπ (X1,X2) = u1 · |A1 \A2 | + u2 · |A2 \A1 | + u1,2 · |A1 ∩A2 |

After adding e to S1, we have:

σπ (X1 ∪ {e},X2) = u1 · |B1 \A2 | + u2 · |A2 \ B1 | + u1,2 · |B1 ∩A2 |

Let ∆π ,e,1(X ) = σπ (X1 ∪ {e},X2) − σπ (X1,X2). Observe that in

B1 \(A1∪A2) there are nodes that where inactive for both messages

and became active withM1. Furthermore, in (B1 ∩A2) \A1 there

are nodes that where active only withM2 and became active with

both messages. Therefore:

∆π ,e,1(X ) = u1 · |B1 \ (A1 ∪A2)| + (u1,2 −u2) · |(B1 ∩A2) \A1 | ≥ 0

where the inequality is due to the assumption thatu1,2 ≥ max(u1,u2),
and that the sizes of the mentioned sets are non negative. We

showed that the for every π , the function σπ (·, ·) is monotone. Now,

since σ (·, ·) is a convex combination of monotone functions, it is

monotone as well.

For the bisubmodularity; we need to show that the properties

of orthant submodularity and pairwise monotonicity hold (See Defi-

nitions 3.4 and 3.5 in Section 3.2). Since we showed monotonicity,

pairwise monotonicity stems. For the orthant submodularity, Let

π be a set of 2|E | coin flips, and let Gπ = (V ,E1 ∪ E2) be the corre-
sponding multigraph. Let X = (X1,X2) ∈ 3

U
and Y = (Y1,Y2) ∈ 3

U

such that X1 ⊆ Y1 and X2 ⊆ Y2. Let A1 = A1(X1), A2 = A2(X2),

B1 = A1(Y1) and B2 = A2(Y2). note that A1 ⊆ B1 and A2 ⊆ B2. In
addition, Let e ∈ U \ (Y1 ∪Y2). We will prove the claim for the case

of adding e to X1. The corresponding case (of adding e to X2) is

symmetric.

We label the nine
3
different areas of those four sets as follows

(see Figure 2 for a Venn diagram):

• C1 = U \ (B1 ∪ B2)
• C2 = B1 \ (B2 ∪A1)

• C3 = A1 \ B2
• C4 = (B2 ∩A1) \A2

• C5 = A1 ∩A2

• C6 = (B1 ∩A2) \A1

• C7 = (B1 ∩ B2) \ (A1 ∪

A2)

• C8 = A2 \ B1
• C9 = B2 \ (A2 ∪ B1)

3
Note that a four set Venn diagram has 2

4 = 16 different areas, here since A1 ⊆ B1

and A2 ⊆ B2 seven of thos areas are empty.
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B1 B2

A1 A2

w1

w2 w3 w4 w5 w6

w7

w8 w9

w′
1

w′
2 w′

3 w′
4 w′

5 w′
6

w′
7

w′
8 w′

9

Figure 2: Venn’s diagram with 4 sets such that A1 ⊆ B1 and
A2 ⊆ B2

For every 1 ≤ k ≤ 9, letW ′k be the set of nodes in Ck that are

affected by e with regard to M1. In other words; for every node

w ∈W ′k ,Gπ contains a directed path from e tow . (Note that all the

path edges are from E1). Moreover, letWk be the set of nodes inCk
that are not affected by e . We denote bew ′k andwk the number of

nodes inW ′k andWk respectively.

We need to show that ∆e,1σ (X ) − ∆e,1σ (Y ) ≥ 0. Since we focus

on the graph Gπ , let ∆π ,e,1(X ) = σπ (X1 ∪ {e},X2) − σπ (X1,X2)

and Let ∆π ,e,1(Y ) = σπ (Y1 ∪ {e},Y2) − σπ (Y1,Y2). We first note

that:

σπ (X1,X2) = u1 · (w3 +w
′
3
+w4 +w

′
4
)+u2 · (w6 +w

′
6
+w8 +w

′
8
)

+ u1,2 · (w5 +w
′
5
)

After adding e toX1, the nodes ofW
′
1
,W ′

2
,W ′

7
andW ′

9
, which where

inactive, became active withM1, the nodes ofW
′
3
,W ′

4
andW ′

5
did

not change, and the nodes ofW ′
6
andW ′

8
, which where active only

withM2, became active with both messages. Thus:

σπ (X1∪{e},X2) = u1 · (w3+w
′
3
+w4+w

′
4
+w ′

1
+w ′

2
+w ′

7
+w ′

9
)+

u2 · (w6 +w8) + u1,2 · (w5 +w
′
5
+w ′

8
+w ′

6
)

We get,

∆π ,e,1σ (X ) = u1 · (w
′
1
+w ′

2
+w ′

7
+w ′

9
) − u2 · (w

′
6
+w ′

8
)

+ u1,2 · (w
′
6
+w ′

8
) (3)

Similarly, the analysis for ∆π ,e,1σ (Y ) gives:

σπ (Y1,Y2) = u1 · (w2 +w
′
2
+w3 +w

′
3
)+u2 · (w8 +w

′
8
+w9 +w

′
9
)

+ u1,2 · (w4 +w
′
4
+w5 +w

′
5
+w6 +w

′
6
+w7 +w

′
7
)

After adding e toY1, all nodes inW
′
1
, whichwere inactive, became

active with M1. the nodes inW
′
8
andW ′

6
, which were active only

withM2, became active with both messages. This gives us:

σπ (Y1 ∪ {e},Y2) = u1 · (w3 +w
′
3
+w2 +w

′
2
+w ′

1
)+u2 · (w8 +w9)

+ u1,2 · (w4 +w
′
4
+w5 +w

′
5
+w6 +w

′
6
+w7 +w

′
7
+w ′

8
+w ′

9
)

Therefore:

∆π ,e,1σ (Y ) = u1 · (w
′
1
) − u2 · (w

′
8
+w ′

9
) + u1,2 · (w

′
8
+w ′

9
) (4)

Finally, let us now show that (3)−(4)≥ 0:

∆π ,e,1σ (X ) − ∆π ,e,1σ (Y ) =

u1 · (w
′
2
+w ′

7
+w ′

9
) −u2 · (w

′
6
) +u2(w

′
9
) +u1,2 · (w

′
6
) −u1,2 · (w

′
9
) =

u1 · (w
′
2
+w ′

7
) + (−u2 + u1,2) · (w

′
6
) + (u1 + u2 − u1,2) · (w

′
9
) ≥ 0

where the inequality is due to assumption thatmax(u1,u2) ≤ u1,2 ≤
u1 + u2, and that all thew ’s are non negative integers. We get that

σπ (·, ·) is bisubmodular. Finally, σ (·, ·) is a convex combination of

bisubmodular functions, thus it is also a bisubmodular function. □

An important improvement to the time complexity of the greedy

algorithm is the Celf algorithm, which is an extension of the algo-

rithm introduced by [12] and [9] to UBIM. For each node the algo-

rithm calculates a tuple T = (n,a1,a2,valid), such that T [n] is the
node name,T (a1),T (a2) ∈ R are the expected addition to the overall
utility when adding n to S1 or S2 respectively, and T (valid) ∈ N is

the index of the iteration of the last evaluation of a1 and a2. The al-
gorithm uses a queue that sorts the tuples by the value max(a1,a2)
of each tuple. At every iteration, a tupleT is pulled from the queue;

if its valid value is equal to the current iteration, thenT (n) is added
to S1 or S2 (according to max(a1,a2)). Otherwise, u’s utility is sam-

pled again, T (a1), T (a2) and T (valid) are updated and T is inserted

back into the queue.

5.2 The dynamic programming approach
One major drawback of the greedy algorithm (and Celf) is that,

since there are two types of messages, if it decides to send one

type of message to a specific user, this commitment may harm its

performance later on, as it may turn out that the other type of

message is more valuable at later stages. For example, consider

Figure 3. The red arrows correspond to message 1, and the blue

arrows correspond to message 2. Note that the influence probability

is 1.0. For this example assume that u1 = 1, u2 = 1.5, and u1,2 = 1.5,

and that B = 2. Clearly, at the first stage the greedy algorithm will

select node A and add it to S1; this will result in a utility of 5. In the

second step, the greedy algorithm will select node B and add it to

S2; this will result in an additional utility of 1.5, thus resulting in a

total utility of 6.5. However, an algorithm that would not commit to

using the message 1 in the first step, could add nodes B and C to S2
and yield a utility of 7.5. To overcome this problem, we introduce

A

C

E

B

D

1.0

1.0
1.0

1.0 1.0

1.0 1.0

Figure 3: A graph demonstrating the problem with the
greedy algorithm committing to a specific message type at
early stages.
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(ETAB), which does not commit to a specific type of message at early

stages. We first describe a dynamic programming based algorithm

(TAB), and then describe a method for using insights from Celf

to create the Efficient version of TAB (i.e. ETAB). In order not to

commit to a specific type of message TAB builds its solution in two

dimensions.

TAB uses the upper triangle of a table Mat of size (B + 1) ×

(B + 1). Each cell ofMat consists of a tuple T = (S1, S2), such that

T (S1),T (S2) ⊆ V are disjoint seed sets. In each (i, j) cell of the
table, it holds that |S1 | = i and |S2 | = j. TAB starts with the tuple

T = (∅, ∅) in cell (0, 0). The algorithm then fills in the first row; for

every 1 ≤ i ≤ B, let Ri−1 = (R1, ∅) be the tuple in cell (i − 1, 0). The
node n ∈ V \ R1, that maximizes the value of the marginal gain

to σ (R1, ∅), (i.e. the output of maxn∈V \R1
(∆n,1(R1, ∅))) is selected.

Next the tuple Ri = (R1 ∪ {n}, 0) is stored in cell (i, 0). Similarly,

TAB fills in the first column; for every 1 ≤ i ≤ B, let Ci−1 = (∅,C2)

be the tuple in cell (0, i − 1). The node n ∈ V \C2, that maximizes

the value of the marginal gain to σ (∅,C2) is selected, and the tuple

Ci = (0,C2 ∪ {n}) is stored in cell (0, i). The next phase is to fill in

the cells of the middle; For each cell (k, l) TAB builds two optional

tuples; T ′ is created by greedily adding an unselected node to seed

1 of the tuple in cell (k − 1, l). Similarly, T ′′ is created by greedily

adding an unselected node to seed 2 of the tuple in cell (k, l − 1).
TAB Then picks the tuple with the higher expected utility and store

it in the cell (k, l).
After filling up all the cells of the table with indexes (i, j) such

that i + j ≤ B, TAB outputs the tuple with the maximal expected

utility over the diagonal cells of the table (where i + j = B). see
Algorithm 2.

Reconsidering the example of the graph in Figure 3. We show

in Table 1 the outcome of applying TAB on those settings. TAB

will output the maximum utility of the tuples in the diagonal (light

blue) cells. Thus, the output utility of TAB is 7.5.

We believe that the approximation ratio of the TAB algorithm is

very close to 50%. Moreover, this algorithm cannot guarantee an

approximation ratio that is higher than 50%.

Lemma 5.2. The approximation ratio of the TAB algorithm is at
most 50% + ε . In other words, there is a case in which the value of
the solution of TAB is less than 50% + ε of the optimal solution. I.e.:
f (STAB ) ≤ f (O) + ε .

Proof. We present an example where TAB outputs a solution

that is just slightly higher then 50% of the optimal value. Let f be

a monotone and bisubmodular set function. Let U = {1, 2}, the
function values are represented in Table 2. Since we assume that f
is monotone and bisubmodular we get the following inequalities:

• max(x1,x2) ≤ z1 ≤ x1 + x2,
• max(x1,y2) ≤ z2 ≤ x1 + y2,
• max(x2,y1) ≤ z3 ≤ x2 + y1, and
• max(y1,y2) ≤ z4 ≤ y1 + y2.

Note that the lower bounds are due to the monotonicity of f and

the upper bounds are due to the bisubmodularity of f .
Let p ∈ R+ and let ε > 0. We further assume that x1 = p + ε ,

x2 = p + 2ε/3, y1 = p and y2 = p − ε/3. In addition, z3 = 2p + 2ε/3,
z1 = z2 = p + ε and z4 = p + ε/3. Note that z3 ≥ max(z1, z2, z4), i.e.

Algorithm 2: TAB

Mat ← a (B + 1) × (B + 1) matrix of tuples;

Mat[0][0] ← (∅, ∅);

for i = 1 to B do
S1 ← Mat[i − 1][0](S1);

n ← argmaxn∈V \S1 (∆n,1(S1, ∅));

Mat[i][0] ← (S1 ∪ {n}, ∅);

for i = 1 to B do
S2 ← Mat[0][i − 1](S2);

n ← argmaxn∈V \S2 (∆n,2(∅, S2));

Mat[0][i] ← (∅, S2 ∪ {n});

for i = 1 to B do
for j = 1 to (B − i) do

L1 ← Mat[i − 1][j](S1);

L2 ← Mat[i − 1][j](S2);

l ← argmaxn∈V \(L1∪L2)(∆n,1(L1,L2));

U1 ← Mat[i][j − 1](S1);

U2 ← Mat[i][j − 1](S2);

u ← argmaxn∈V \(U1∪U2)(∆n,2(U1,U2));

if σ (L1 ∪ {l},L2) > σ (U1,U2 ∪ {u}) then
Mat[i][j] ← (L1 ∪ {l},L2);

else
Mat[i][j] ← (U1,U2 ∪ {u});

(i, j) ← argmaxi+j=B (σ (Mat[i][j]));

returnMat[i][j];

|S1 |
|S2 |

0 1 2

0 5 5

0 (∅, ∅) ({A}, ∅) ({A,C}, ∅)

4.5 6.5 _

1 (∅, {B}) ({A}, {B})

7.5 _ _

2 (∅, {B,C})

Table 1: The table that TAB builds when running on the set-
tings of Figure 3. TAB’s output is (∅, {B,C}), and the corre-
sponding utility value is 7.5.

B = 0 f (∅, ∅) = 0

B = 1 f ({1}, ∅) = x1 f (∅, {1}) = y1
f ({2}, ∅) = x2 f (∅, {2}) = y2

B = 2 f ({1, 2}, ∅) = z1 f ({2}, {1}) = z3
f ({1}, {2}) = z2 f (∅, {1, 2}) = z4

Table 2: A monotone and bisubmodular function for the
proof of Lemma 5.2.

z3 is the optimal solution when B = 2. Table 3 shows the outcome

of running TAB on the settings of f with B = 2:

As we described the algorithm, TAB will output the tuple that

corresponds tomax(z1, z2, z4), Thus the output will be z1 = p+ε . On
the other hand, 50% of the optimal solution is

1

2
z3 =

1

2
(2p + 2ε/3) =
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p + ε/3. Indeed, if we add ε to half the optimal solution we get

p + 4ε/3, which is greater than z1. □

|S1 |
|S2 |

0 1 2

0 x1 = p + ε z1 = p + ε
0 (∅, ∅) ({1}, ∅) ({1, 2}, ∅)

y2 = p + ε/3 z2 = p + ε _

1 (∅, {2}) ({1}, {2})

z4 = p + ε/3 _ _

2 (∅, {1, 2})

Table 3: The table that TAB builds when running on the set-
tings of the function given in Table 2.

Corollary 5.3. The approximation ratio of the greedy algorithm
is at most 50%+ε . I.e. the approximation ratio of the greedy algorithm
is tight.

Proof. Observe that if the greedy algorithm is applied to the

settings of the function in the proof of Lemma 5.2, the greedy

algorithm will output the value of z1 or z2 which is p + ε , while the
optimum value is 2p + 2ε/3. □

Unfortunately, TAB is computationally expensive; However, as

in the greedy algorithm, we may use the queue method to order

the nodes and reduce the amount of evaluations. This brings us

to our final algorithm, the Efficient version of TAB (i.e. ETAB).

The general idea is similar to that of TAB except that every tuple

contains additional two queues Q1 and Q2. Each queue take the

unselected nodes of each cell and sorts them in decreasing order of

the expected contribution they might add to the overall utility (see

Algorithm 3).

Like in TAB, ETAB uses the upper triangle of a table Mat of
size (B + 1) × (B + 1). Each cell of Mat consists of a tuple T =
(S1, S2,u,Q1,Q2), such that T (S1),T (S2) ⊆ V are disjoint seed sets.

T (u) ∈ R+ is the expected utility σ (T (S1),T (S2)). Moreover, T (Q1)

and T (Q2) are two priority queues that sort all the nodes in V \
(T (S1) ∪T (S2)) in decreasing order of their expected contributions

∆T (n),1(T (S2),T (S2)) and ∆T (n),2(T (S2),T (S2)), respectively. In ad-

dition, for each (i, j) cell of the table, it holds that |S1 | = i and
|S2 | = j. ETAB runs similarly to TAB, except that when ever it

needs to select a node in order to add it to a certain seed of a certain

cell, it uses the cell’s priority queue. Thus reducing the amount of

the function evaluations (see Algorithm 3).

We note that the space complexity of ETAB is very high since

we store many queues (each queue has space complexity of O(n)).
Each cell has two queues and we use (B + 1)2/2 = O(B2) cells. To
slightly reduce space complexity, after calculating the tuplesT ′ and
T ′′ of the last loop, we can free the queues of the above cell, as we
do not use them again. Thus, the number of queues we store during

the running of the algorithm is at most 2(2B + 1) = O(B), therefore
the overall space complexity of ETAB is O(Bn).

Algorithm3: ETAB (Efficient Table-based Algorithm for Bisub-

modular functions)

Mat ← a (B + 1) × (B + 1) matrix of queue tuples.

Q1 ← a priority order queue of nodes, sorted by ∆n,1(∅, ∅)
Q2 ← a priority order queue of nodes, sorted by ∆n,2(∅, ∅)
Mat[0][0] ← (∅, ∅, 0,Q1,Q2)

for i = 1 to B do
Mat[i][0] ← copyMat[i − 1][0]
Add a node toMat[i][0](S1) by using the queue

Mat[i][0](Q1)

UpdateMat[i][0](Q1),Mat[i][0](Q2) andMat[i][0](u)
for i = 1 to B do

Mat[0][i] ← copyMat[0][i − 1]
Add a node toMat[0][i](S2) by using the queue

Mat[0][i](Q2)

UpdateMat[0][i](Q1),Mat[0][i](Q2) andMat[0][i](u)
for i = 1 to B do

for j = 1 to B − i do
T ′ ← copyMat[i − 1][j]
Add a node to T ′(S1) by using the queue T ′(Q1)

Update T ′(Q1), T
′(Q2) and T

′(u)
T ′′ ← copyMat[i][j − 1]
Add a node to T ′′(S2) by using the queue T ′′(Q2)

Update T ′′(Q1), T
′′(Q2) and T

′′(u)
if T ′(u) > T ′′(u) then

Mat[i][j] ← T ′

else
Mat[i][j] ← T ′′

(i, j) ← argmaxi+j=B (Mat[i][j](u))
return (Mat[i][j](S1),Mat[i][j](S2))

6 EXPERIMENTS
For evaluating the performance of ETAB and comparing it to the

greedy algorithm, Celf and additional baselines, we built two graphs

that include diffusion parameters on their edges. Our first graph

is a randomly induced graph, with 1, 000 nodes and a density of

0.001. That is, each directed edge was inserted to the graph with

a probability of 0.001. Then, for every edge u → v , we assigned
puv
1
= 0.5/deдreein (v) and puv

2
= 1/deдreein (v). The average

values of p1 and p2 were 0.3184 and 0.6367, respectively.

Our second graph is based on the Digg2009 data-set
4
, a publicly

available data-set that was obtained from the Digg website. Digg is

a social news website, that allows people to vote on web content.

The data-set contains friendship connections between the users,

and a list of votes for various stories; each vote contains a story id,

a vote date and user id. In order to extract the diffusion parameters

we considered that a vote of userv is influenced by her friendu, ifv
voted for a story after u has voted for it. For every edge u → v , we
calculated a parameter x , which is the number of stories thatv voted

for as an influence of u, divided by the overall number of stories

that u voted for. We then assigned puv
2
= x , and puv

1
= 0.5 · x . The

average values of p1 and p2 were 0.05832 and 0.11664, respectively.

We deleted edges with both p1 = 0 and p2 = 0 and removed all

4
https://www.isi.edu/~lerman/downloads/digg2009.html

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1175

https://www.isi.edu/~lerman/downloads/digg2009.html


isolated nodes. At the end of this process we randomly selected

1, 000 nodes, resulting with 51, 398 edges.

In addition to ETAB, TAB, Greedy and Celf, we also ran the

following baseline heuristics:

• Degreecount : The nodes are selected in descending order ac-
cording to their degrees, and each selected node is randomly

assigned either to S1 or to S2.
• Degreeexpected : The nodes and the message types are se-

lected in descending order according to the sums of their

diffusion parameters. That is, for each node x , and for each

type i , let dxi =
∑
xu ∈E(д) p

xu
i ; the nodes are selected accord-

ing to max(dx
1
,dx

2
) and are added to the seed corresponding

to the message type with the higher dxi .
• Degreesampled Every noden is assigned two values SD1(n) :=
σ ({n}, ∅) and SD2(n) := σ (∅, {n}). The nodes are selected in

descending order of max(SD1, SD2), and each selected node

is assign to S1 if SD1 ≥ SD2, or to S2 if SD1 < SD2.

• Random: A random selection of nodes, which are randomly

assigned to one of the seeds.

We assigned the following utilities u1 = 2, u2 = 1 and u1,2 = 2.5.

The evaluations of the utility functionwas sampled 100 times during

execution of each of the algorithms, and was sampled 10, 000 times

for final evaluation of the algorithm output. In order for our results

to be less biased, we ran separate simulations for each Budget level;

therefore, there may be a slight drop in the utility achieved by

an algorithm when running it with some budget compared to the

same algorithm when using a lower budget. The budget was set

to multiplies of 10, up-to a budget of 200 initial nodes. Our results

are presented in Figures 4 and 5. Note that some values are missing

from the plot due to the extensive time required for computing

them.
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Figure 4: The utility of all the evaluatedmethods on the ran-
dom graph.

As can be seen in Figures 4 and 5, ETAB achieves the highest

utility (after TAB), outperforming all other methods at all budget

levels. An interesting aspect, that has not been fully studied before,

is that the greedy algorithm gives a better solution than Celf. We
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Figure 5: The utility of all the evaluatedmethods on theDigg
based graph.

believe that this is because the stochastic nature of Celf, as it relies

on samples to estimate the addition of each node to the overall

utility. Since those samples are stochastic, there is an error rate

that is accumulated during Celf’s execution. Similar behavior is

observed when comparing TAB with ETAB.

7 CONCLUSION & FUTUREWORK
In this paper we introduce the utility based influence maximization

problem, which is a natural extension of the common influence

maximization problem. We show that our utility function is mono-

tone and bisubmodular and thus we provide a greedy algorithm

that achieves an approximation ratio of
1

2
. We develop ETAB, which

is a dynamic programming based algorithm suitable to our setting,

and show that it outperforms the greedy algorithm.

We note that ETAB is a general solution, as it is applicable for any

problem of maximization a monotone and bisubmodular function.

For example, in the antennas placement problem one needs to

decide where to place antennas such that the overall reception

will be maximized. Similar to our setting, it is possible that there

are two types of antennas: one that has a strong signal but a small

bandwidth, and the other has aweaker signal but a larger bandwidth.

In this setting the reception where there is an overlap between the

antennas is assumed to be at least as high as the reception from

each type of antenna, but no more than their sum. Therefore, ETAB

can be used to efficiently place the two types of antennas.

For future work there are several interesting directions. First, we

would like to apply ETAB to known problems in additional domains

such as the antennas placement problem. In addition, we would

like to extend our analysis to the setting where the utility function

is not bisubmodular or non-monotone. Finally, our model can be

extended to the case where different users yield different utilities

form the same message.
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