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ABSTRACT
We consider an online resource allocation problem where tasks

with specific values, sizes and resource requirements arrive dy-

namically over time, and have to be either serviced or rejected

immediately. Reinforcement learning is a promising approach for

this, but existing work on reinforcement learning has neglected

that task owners may misreport their task requirements or val-

ues strategically when this is to their benefit. To address this, we

apply mechanism design and propose a novel mechanism based

on reinforcement learning that aims to maximise social welfare,

is strategyproof and individually rational (i.e., truthful reporting

and participation are incentivised). In experiments, we show that

our algorithm achieves results that are typically within 90% of the

optimal social welfare, while outperforming approaches that use

fixed pricing (by up to 86% in specific cases).
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1 INTRODUCTION
We consider settings where a mechanism needs to make dynamic

(online) decisions about whether to allocate scarce resources to

a stream of incoming tasks that have varying resource require-

ments and valuations, and that need to be serviced immediately. A

prominent example of such a setting is the allocation of processing

resources to real-time computational tasks in edge clouds [20]. Here,

users (i.e., task owners) wish to offload tasks from mobile devices

to nearby edge resources, in order to save limited battery power or

to run more complex applications than they could run locally [18].

These tasks are often time-sensitive, and so we assume that tasks

need to be either serviced or rejected immediately. This is common

in domains such as virtual/augmented reality [13], autonomous

vehicles [14] or real-time analysis of data from Internet-of-Things

devices [1], including for voice assistants or live video surveillance.

Our overall aim here is to maximise the social welfare, i.e., the sum
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of valuations of all tasks that are completed within a specific time

horizon, e.g., over a day or a week.

There are several key challenges that need to be addressed in

these settings. First, tasks arrive dynamically and the system does

not know the details of future tasks. This means any allocation

mechanism needs to balance the immediate reward of allocating

resources and servicing a task with the potential to earn higher fu-

ture rewards by saving its resources. Second, an accurate statistical

model of task arrivals may not initially be available. This means

the mechanism needs to learn this and adapt over time. Finally, in

many real-world applications, task owners may be self-interested

and behave strategically. Thus, if the mechanism is not carefully

designed, task owners may misreport their task requirements or val-

uations if this results in a better outcome for them (e.g., reporting a

higher valuation or different requirements may lead to a task being

serviced that would otherwise be rejected). Thus, allocation mech-

anisms should be strategyproof, i.e., robust to this type of strategic

behaviour by incentivising truthful reporting.

Existing work has looked at some of these challenges. The liter-

ature on secretary problems and optimal stopping [9, 16] considers

the first challenge, but typically focuses on worst-case analysis and

assumes tasks arrive in random order. Some work investigates strat-

egyproof mechanisms in this context [3, 15] and in similar online

resource allocation settings [6, 23, 24], but does not consider the

impact and opportunity of learning and adaptation over time. This

adaptation is addressed separately by the field of reinforcement

learning (RL) [26], and RL has been applied successfully to online

resource allocation [11, 19, 27]. However, there is little work that

combines these two approaches, i.e., designing strategyproof online

mechanisms that learn adaptively.

As an exception to this, some related work combines machine

learning and mechanism design. Balcan et al. [5] apply machine

learning to the design of strategyproof offline auctions, while Blum

and Hartline [7] consider the online case. There is also work on de-

signing strategyproof multi-armed bandit mechanisms [4]. Within

this literature, Babaioff et al. [2] consider a problem closely related

to ours, where streams of agents are offered items that must be

immediately accepted or rejected. However, none of these machine

learning approaches consider complex state spaces, where current

allocation decisions affect future states and opportunities (some-

thing that is naturally handled by RL). Cai et al. [10] look at the

application of RL to mechanism design, in order to allocate limited

resources (e-commerce impressions) to strategic agents, and Du

et al. [12] apply RL to cloud computing. However, these focus on

revenue maximisation rather than strategyproofness.
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To address these shortcomings, we investigate how to design

strategyproof RL mechanisms for online resource allocations prob-

lems. This is challenging, because RL algorithms can learn very gen-

eral policies that may be open to manipulation. Thus, we propose

a novel way of constraining the learning process, which ensures

that the learnt policies are always strategyproof. More specifically,

we make the following contributions: (1) we formalise a general

online resource allocation problem with strategic task owners and

show that this problem is NP-hard (even if tasks are known in ad-

vance); (2) we show that existing RL approaches are vulnerable to

strategic behaviour and we then propose a set of conditions that are

sufficient for an RL-based mechanism to be strategyproof and indi-

vidually rational in our setting; (3) we propose a new mechanism

called SP-RL (strategyproof RL) that meets these conditions; and

(4) we show experimentally that SP-RL performs close to optimal

(typically within 90%) and is consistently better than price-based

approaches that are commonly used in practice (by up to 86%).

2 ONLINE RESOURCE ALLOCATION
Here we formally describe the online resource allocation problem

we are concerned with. We start with an overview of the system,

followed by a description of how allocation policies are defined. We

then give complexity results and finally describe how we model

strategic task owners, which is a key focus of this paper.

2.1 System Model
We consider a setting with a finite time horizon tmax and discrete

time steps T = {1, 2, . . . , tmax}. A resource provider has different

types of resources that can be used for completing tasks, given

by the set R = {1, 2, . . . , rmax}. For each resource type r ∈ R, the
provider has a limited quantity of resource units, given by ar ∈ N.
In an edge cloud setting, R = {1, 2, 3} could, for example, represent

CPUs, GPUs and GBs of RAM. Here, a1 = 100 would indicate there

are 100 available CPUs.

At every time step, a single task i is submitted to the system

and is characterised by a type θi = (vi ,di ,qi ), where vi ∈ R
+
is

the value of the task, di ∈ N is the number of time steps the task

will need for completion and qi = [qi,1,qi,2, . . . ,qi,rmax
] ∈ Nrmax

is a vector denoting the quantity of each resource required while

the task is being completed. We assume a task serviced at time

t ∈ T is completed just before the start of time step t + di . Due
to the correspondence between time steps and tasks, we will use

their indices interchangeably, i.e., we will index the type of the

task arriving at time step t ∈ T by θt . Note that time steps could

be arbitrarily granular, e.g., representing seconds or fractions of

a second and the model can easily be extended to settings where

tasks do not arrive at each time step. Since this is an online problem,

at a given time step i , the resource provider will only be aware of

the current task θi and the tasks that arrived before time step i ,
which we denote by θ<i . We will use θ to denote the set of all tasks

that arrive by (and including) time step tmax.

2.2 Allocation Policy
We are interested in deriving an allocation policy π (θi ,θ<i ) ∈ {0, 1},
which decides, for every task θi , whether to reject it (π (θi ,θ<i ) = 0)

or to service it (π (θi ,θ<i ) = 1). We assume this policy can only

make feasible allocations, i.e., allocations that do not exceed the

resources available and that complete before the start of tmax + 1:

t∑
j=1

π (θ j , θ< j )1(j + dj > t ) · qj,r ≤ ar ∀t, r, θ, (1)

t + π (θt , θ<t ) · dt ≤ tmax + 1 ∀t, θ (2)

where 1(·) is the indicator function. We focus on deterministic

allocation policies for now, but, to allow for exploration, we will

extend our results to certain stochastic policies later.

Our objective is to design an allocation policy π∗ that maximises

the expected sum of all values of the allocated tasks (we refer to this

as the social welfare), i.e., π∗ = argmaxπ Eθ

[∑tmax

i=1
π (θi ,θ<i ) · vi

]
.

2.3 Problem Complexity
Theorem 1. Finding an optimal policy for the online resource

allocation problem is NP-hard.

Proof. We prove this via a reduction from the 0-1 knapsack

problem. In this problem, there is a finite set I of items, each with

a weight wi and value ui . The goal is to find a subset I ′ ⊆ I that
maximises

∑
i ∈I ′ ui , subject to the constraint

∑
i ∈I ′ wi ≤W , where

W is the capacity of the knapsack.

To reduce an instance of the 0-1 knapsack problem to our prob-

lem, we set rmax = 1, tmax = |I |, a1 = W . We then assume a

deterministic distribution of tasks, where each task θi corresponds
to one item, with θi = (vi = ui ,di = tmax − i + 1,qi = [wi ]). As one

task is created for each item, this can be done in linear time. Given

an optimal algorithm π∗ to our problem, we now include an item i
in the original knapsack problem if and only if π∗(θi ,θ<i ) = 1.

To conclude the proof, we note that a solution to the origi-

nal knapsack problem is feasible if and only if the corresponding

solution to our problem is also feasible. Specifically, by our con-

struction, Equation 2 is always satisfied. The indicator function

1(j + dj > t) in Equation 1 is always 1, so the LHS of that equation

increases monotonically with t . At tmax, the equation is equiva-

lent to the knapsack constraint (

∑
{j | π ∗(θ j ,θ< j )=1} qj,1 ≤ a1 ⇐⇒∑

{j | π ∗(θ j ,θ< j )=1}w j ≤W ). As π∗ maximises

∑tmax

i=1
π (θi ,θ<i ) · vi

(and vi = ui ), an optimal solution to our constructed resource allo-

cation problem is also optimal for the 0-1 knapsack problem. □

As this proof uses a deterministic version of the online resource

allocation problem, we note that the online resource allocation

problem remains NP-hard, even if all tasks are known in advance.

2.4 Strategic Behaviour
A particular focus of our work is the potential presence of strategic

task owners. Here, we wish to investigate whether self-interested

task owners may have an incentive to misreport their task char-

acteristics in order to increase their individual utility. A system

accommodating such behaviour is undesirable, as it may make

incorrect decisions based on false information, affecting its perfor-

mance. To mitigate this strategic behaviour, we will assume that

the resource allocation mechanism can impose payments on the

task owners and we will use techniques from mechanism design to

incentivise truthful behaviour. We first introduce some definitions.
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Definition 1 (Agent reports). We assume the true type of
a task, θi = (vi ,di ,qi ), is private information of the task owner
(henceforth called agent). The agent reports ˆθi = (v̂i , ˆdi , q̂i ) to the
resource allocation mechanism on arrival. If θi = ˆθi , we say the agent
reports truthfully; if θi , ˆθi , it misreports.

Due to this assumption, the allocation policy needs to operate

on the agents’ reports (we write π ( ˆθi , ˆθ<i ) when we need to em-

phasise this). Note that due to the real-time aspect of our setting,

we assume that agents cannot manipulate the order in which they

are considered by the mechanism. This is realistic in settings where

agents have no advance knowledge of their own tasks and where

tasks have to be serviced immediately. We also assume that agents

interact with the mechanism only once, i.e., no agent has multiple

tasks. This assumption is common in mechanism design [6, 22, 23]

and, concretely, implies that agents do not need to strategise about

how one interaction will affect the outcomes of future interactions.
1

Given this, we will also refer to the owner of task i as agent i .

Definition 2 (Payments). In addition to making an allocation
decision, the resource allocation mechanism imposes payments on
the agents, as given by payment policy p( ˆθi , ˆθ<i ) ≥ 0. We will
make the reasonable assumption that unallocated agents pay 0, i.e.,
π ( ˆθi , ˆθ<i , ) = 0 =⇒ p( ˆθi , ˆθ<i ) = 0.

Hence, a mechanismM is defined by its allocation policy π and

its payment policy p (M = (π ,p)). Given this, we can define the

utility of an agent and then two desirable properties that we wish

our mechanisms to satisfy.

Definition 3 (Agent utility). The utility of agent i under
mechanismM is given by ui ( ˆθi ,θi , ˆθ<i ) = π ( ˆθi , ˆθ<i )ϕ( ˆθi ,θi )vi −

p( ˆθi , ˆθ<i ), where ϕ( ˆθi ,θi ) is 1 if agent i has requested at least its
required resources and duration, and 0 otherwise.2

Definition 4 (Strategyproof Mechanism). A mechanismM
is strategyproof if reporting the true type always maximises an agent’s
utility. Formally: ui (θi ,θi , ˆθ<i ) ≥ ui ( ˆθi ,θi , ˆθ<i , ),∀θi , ˆθi , ˆθ<i . This
is also known as dominant strategy incentive compatibility (DSIC).

Definition 5 (Individual Rationality). A mechanismM is
individually rational if an agent always receives a non-negative utility
when reporting truthfully. Formally: ui (θi ,θi , ˆθ<i ) ≥ 0,∀θi , ˆθ<i .

We note that our setting is a specific case of one with single-
minded agents [8], i.e., where agents request a set of items (here

resources) and derive a given value (vi ) if they receive this set or

a superset, and 0 otherwise (that is, the agent gains no utility for

receiving less than the requested set of items). For this setting,

we can adapt an existing result (based closely on Lemma 11.9 by

Blumrosen and Nisan [8], but extended for our setting):

Theorem 2. A mechanismM is strategyproof if it satisfies:
• Monotonicity: If an agent is allocated by the mechanism,
it would remain allocated for any other report with at least

1
In practice, this is also reasonable when the frequency and volume of repeated

interactions from one agent is low compared to the overall volume of tasks.

2
Formally, ϕ( ˆθi , θi ) = 1(( ˆdi ≥ di ) ∧ (q̂i,1 ≥ qi,1) ∧ . . . (q̂i,rmax

≥ qi,rmax
)). This

applies when the agent has strict resource requirements with no utility for partial

allocations, and if the mechanism always allocates the exact resources requested.

the same value and at most the same resource requirements (in-
cluding duration). Formally:π (θi ,θ<i ) = 1 =⇒ π (θ j ,θ<i ) =
1,∀θi ⪯ θ j ,θ<i , where θi ⪯ θ j ⇐⇒ (vi ≤ vj ) ∧ (di ≥
dj ) ∧ (qi,1 ≥ qj,1) ∧ . . . ∧ (qi,rmax ≥ qj,rmax ).
• Critical Payment: An allocated agent pays the minimum
value it could have reported while remaining allocated. For-
mally: p(θi ,θ<i ) = infv̂i v̂i , s.t., π ((v̂i ,di ,qi ),θ<i ) = 1.

Proof. We will show that an agent i with type θi cannot im-

prove its utility by misreporting any other type
ˆθi . First, if the

misreporting agent is unallocated (π ( ˆθi , ˆθ<i ) = 0) or if it holds that

ϕ( ˆθi ,θi ) = 0, the agent clearly cannot benefit from this misreport

(due to Definition 3). Thus, we next consider only cases where the

agent is allocated with
ˆθi and it holds that ϕ( ˆθi ,θi ) = 1.

Given this, agent i cannot be worse off reporting
ˆθ ′i = (v̂i ,di ,qi )

rather than
ˆθi , i.e., switching to its truedi and trueqi . Asϕ( ˆθi ,θi ) =

1 holds, it follows that
ˆθi ⪯ ˆθ ′i . Thus, by monotonicity, reporting

ˆθ ′i also results in i being allocated. Moreover, it must hold that

p( ˆθ ′i ,
ˆθ<i ) ≤ p( ˆθi , ˆθ<i ) (otherwise monotonicity would not hold for

the two types (v ′, ˆdi , q̂i ) ⪯ (v ′,di ,qi ), where v ′ = p( ˆθi , ˆθ<i )).
Finally, we show that the agent cannot be worse off switching

from
ˆθ ′i = (v̂i ,di ,qi ) to its true type θi = (vi ,di ,qi ). Here, there

are two cases: (1) if both θi and ˆθ ′i are allocated (this only happens

when p(θi , ˆθ<i ) ≤ vi ), there is no change in utility, as the payments

are the same; (2) if θi is not allocated (this only happens when

p(θi , ˆθ<i ) > vi ), then the agent avoids a negative utility due to a

payment that is higher than its value, receiving 0 instead.

□

As truthful agents never pay more than their valuation, such a

mechanism is also individually rational. Having defined the core

problem considered in this paper, we next discuss how to solve it

using reinforcement learning (RL).

3 REINFORCEMENT LEARNING
In this section, we first formulate the problem as a Markov Deci-

sion Process (MDP), then describe how we apply linear function

approximation to estimate the action-value function of this MDP,

and finally we outline an RL algorithm based on SARSA [25].

3.1 MDP Formulation
Most RL algorithms assume that the underlying problem can be

formulated as an MDP. We now describe how our problem can be

mapped directly to an MDP, defined here as a tuple (S,A,p, ϱ):
States S : Each state s ∈ S consists of a time step (i), the report of

the current agent (
ˆθi = (v̂i , ˆdi , q̂i,1, . . . , q̂i,rmax

)) and the occupancy

of the resources, or, j , where r ∈ R and j ∈ {1, 2, . . . ,ar }. Here,
or, j indicates the number of time steps until the jth-next unit of
resource type r will become available again. E.g., if o1 = [0, 0, 1, 1, 5],

there are two free units of resource type 1, two more will become

free in the next time step, and one more will become free in five

time steps. Thus:

s =
[
i, v̂i , ˆdi , q̂i,1, . . . , q̂i,rmax

,

o1,1, . . . ,o1,a1
, . . . ,ormax,1, . . . ,ormax,armax

]
(3)
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Note that states with i = tmax + 1 are terminal states: no more

actions are possible and there are no more rewards.

ActionsA: There are two possible actions,A = {0, 1}, indicating
whether a task should be rejected or serviced, respectively (thus

corresponding to the outputs of the allocation policy π ). In states

where allocation is infeasible, as given by Equations 1 and 2, we

assume only the 0 action is available.

Transition Function p: The transition function p(s ′ |s,a) ∈
[0, 1] defines the probability of transitioning to state s ′ when taking

action a in state s . In our problem, all uncertainty in this transition

function concerns the new reported task
ˆθt+1, which depends on a

(usually unknown) distribution of task arrivals. The other parts of

the new state s ′ are deterministic: time increases (t ′ = t + 1) and

most occupancy values decrease by 1 (never below 0). If task i was
scheduled, some of the occupancy values will be set to di − 1.

Reward function ϱ: The reward when taking an action a in a

particular state s is ϱ(s,a) = v̂i when a = 1 and 0 otherwise.

In reinforcement learning, we are typically interested in estimat-

ing the expected sum of future rewards (i.e., return) when taking a

given action a in a given state s and then following policy
3 π , as

given by the action-value function Q(s,a):

Q(s,a) = ϱ(s,a) + Σs ′p(s
′ |s,a)Q(s ′,π (s ′)) (4)

Many widely-used reinforcement learning algorithms estimate

this action-value function using temporal-difference learning, i.e.,

they improve estimates of a given state-action pair with immediate

observed rewards and action-value estimates for successor states,

based on Equation 4 [26]. They then couple this with a policy

that picks actions greedily with respect to this estimate, iteratively

improving both the policy and the estimated Q-function.
Given this, we note that an optimal policy can be derived when

the distribution of tasks is known and discrete, using backwards

induction from the terminal states and dynamic programming. How-

ever, the distributions of tasks are often initially unknown in realis-

tic settings, where the mechanismmay have limited experience, and

valuations may be from continuous intervals. More importantly,

such an approach would scale with O(|S |), which is impractical for

larger settings (e.g., with hundreds of resources and fine-grained

time steps). For the same reason, tabular RL approaches that store

an estimated Q-value for each state-action pair are not suitable

here. We address this in the following section.

3.2 Linear Function Approximation
Due to the potentially large state space, we use an approximator to

estimate the value of taking a particular action in a given state (i.e.,

to estimate the Q(s,a) function). While it is possible to apply deep

reinforcement learning approaches, we choose a linear function

approximator, because it will help us achieve monotonicity and

allows us to easily derive appropriate payment policies.

Specifically, we use a d-dimensional feature vector f (s) to repre-

sent the current state s , and two d-dimensional weight vectors,w0

andw1 that we use to estimate theQ-values for each possible action

in the current state s , Q(s,a,w) = wa f (s)⊺ =
∑d
i=1

wa,i fi (s).

3
To align our notation with the RL literature, we here parameterise the allocation

policy π (s) with the state s , noting that the state can be derived directly from the

current task θi and the sequence of preceding tasks θ<i .

While there are many ways of choosing appropriate feature

vectors, we outline two possible ways below that work well in

practice, and that we will use later in our evaluation.

Definition 6 (Full Features). A full feature vector is a direct
mapping from our state representation (Equation 3) to a feature vector,
with a bias term (1) added, i.e., f (s) = [1, t , v̂i , ˆdi , q̂i,1, . . . , q̂i,rmax ,o1,1,

. . . , o1,a1
, . . . ,ormax,1, . . . , ormax,armax ]

Since this representation can become large when there are many

resource types and ar is large, we also use a simpler representation:

Definition 7 (Simple Features). A simple feature vector sum-
marises the current occupancy of the system using simple aggre-
gate statistics as follows: f (s) = [1, t , v̂i , ˆdi , q̂i,1, . . . , q̂i,rmax , ō, ō

2, õ],
where ō is the average occupancy across all resource units (i.e., all or, j
values) and õ is the standard deviation of those values.

However, as we show in the next section, a key problem with

this approach arises when agents are strategic.

3.3 Strategic Manipulation
As discussed above, it is common for RL algorithms to follow a

policy that is greedy with respect to the estimated Q(s,a) function,
i.e., π (s) = arg maxa Q(s,a,w).

4
Assuming a state representation

as given in Definitions 6 and 7 above, agents can clearly directly

manipulate the outcome of the policy. Since the reported type is part

of the state representation, an agent could strategically misreport

parts of its type to ensure that π (s) = 1 (i.e., the task is allocated),

as highlighted in the following example.

Example 1. Assume that the linear function approximator has
learntw1,3 = a > 0 (the weight of v̂i ) andw1,4 = b > 0 (the weight
of ˆdi ), as well as w0,3 = 0 and w0,4 = 0. These are not unreason-
able weights, especially if larger tasks tend to be significantly more
valuable than smaller tasks.5 It is clear that by sufficiently increasing
either v̂i or ˆdi , agent i can ensure that π (s) = 1. Specifically, increas-
ing ˆdi to ensure allocation directly violates the monotonicity condition
in Theorem 2, indicating that naïve linear function approximation
cannot be strategyproof.

In the next section, we discuss how to introduce appropriate

constraints for the weights to ensure that RL with linear function

approximation is strategyproof.

4 STRATEGYPROOF RL
In this section, we first discuss how to achieve monotonicity (the

first condition in Theorem 2) for RL with a linear function approx-

imator and greedy action selection. Then we outline how critical

payments can be computed (the second condition). We conclude by

detailing a specific strategyproof reinforcement learning algorithm.

4.1 Achieving Monotonicity of the Mechanism
As discussed, we note that a given state depends directly on the

report
ˆθi of the agent i that arrives in that state. To emphasise this

dependency, we denote by si ( ˆθi , s−i ) the state at time i when agent

4
We assume ties are broken in favour of allocation, a = 1.

5
We have verified experimentally that such examples occur in practice, especially

early on during learning.
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i reports ˆθi (directly affecting v̂i , ˆdi , q̂i,1, . . . , q̂i,rmax
in Equation 3)

and the rest of the state is s−i (i.e., the current time and resource

occupancy). We can now define some important characteristics of

the function f (s) used to derive a feature vector for state s:

Definition 8 (Monotonic Features). A feature fk (s) is type-
dependent if there exist reports ˆθi , ˆθ ′i and state s−i , such that
fk (si ( ˆθi , s−i )) , fk (si ( ˆθ

′
i , s−i )), i.e., it is possible for an agent to ma-

nipulate the feature via its report. Given this, we say a feature is
monotonically increasing in agent reports if it is type-dependent and
fk (si ( ˆθi , s−i )) ≤ fk (si ( ˆθ

′
i , s−i )),∀ ˆθi ⪯ ˆθ ′i , s−i . It ismonotonically de-

creasing in agent reports if it is type-dependent and fk (si ( ˆθi , s−i )) ≥

fk (si ( ˆθ
′
i , s−i )),∀ ˆθi ⪯ ˆθ ′i , s−i .

Definition 9 (Monotonic Feature Vector). Let T(f ) = {k |
fk (s) is type-dependent} be the set of type-dependent feature indices
in a feature vector f , I(f ) the set of monotonically increasing feature
indices and D(f ) the set of monotonically decreasing feature indices.
We now say f is amonotonic feature vector if all type-dependent fea-
tures are either monotonically increasing or monotonically decreasing
in agent reports, i.e., T(f ) = I(f ) ∪ D(f ).

As an example, the feature fk (s) = t is not type-dependent,
because it cannot be influenced by an agent’s report. The feature

fk (s) = v̂i is type-dependent and also monotonically increasing (as

reporting a higher value leads to a higher value for this feature).

However, the feature fk (s) = v̂i ˆdi is type-dependent, but neither

monotonically increasing nor decreasing (as for two reports
ˆθi ⪯ ˆθ ′i

it could either increase or decrease, depending on the specific values

for v̂i , v̂
′
i ,

ˆdi and ˆd ′i ).

Lemma 1. Both the full and the simple feature vectors described in
Definitions 6 and 7 are monotonic feature vectors.

Proof. All type-dependent features are direct representations of

the agent’s reported type (i.e., f3(s) = v̂i , f4(s) = ˆdi and fr=5...4+rmax
(s)

= q̂i,r ). Clearly, these are either monotonically increasing or de-

creasing in agent reports. □

Given this, we can now restrict the set of possible weights to

achieve monotonicity of the allocation policy π :

Lemma 2. An allocation policy π that is greedy with respect to a
linear function approximatorwa f (s)⊺ is monotonic if the following
two conditions are satisfied:
• f is a monotonic feature vector.
• ∀j ∈ I(f ),w1, j ≥ w0, j ∧ ∀j ∈ D(f ),w1, j ≤ w0, j , i.e., if a
feature is monotonically increasing in agent reports, then its
weight for the allocation action (a = 1) must be at least as high
as that for the reject action (a = 0); and the converse needs to
be true for features that are monotonically decreasing.

Proof. We will show this by assuming two arbitrary types θi ⪯
θ ′i and that θi is allocated. We will then show that θ ′i must also be

allocated, thus proving that monotonicity holds.

Let s−i be the remaining state, with π (si (θi , s−i )) = 1 (for brevity,

we will write s(θi ) = si (θi , s−i ) in the following). First, we note that

if condition 1 in Lemma 2 holds, we can break the action-value esti-

mate into three parts:

∑d
j=1

wa, j fj (s(θi )) =
∑
j<T(f )wa, j fj (s(θi ))+∑

j ∈I(f )wa, j fj (s(θi )) +
∑
j ∈D(f )wa, j fj (s(θi )).

Due to the definition of type-dependence, we also have fi (s(θi )) =

fi (s(θ
′
i )),∀j < T(f ) and therefore:

∑d
j=1

wa, j fj (s(θ
′
i )) =∑d

j=1
wa, j fj (s(θi )) +

∑
j ∈I(f )wa, j (fj (s(θ

′
i )) − fj (s(θi )))+∑

j ∈D(f )wa, j (fj (s(θ
′
i )) − fj (s(θi ))).

To prove monotonicity, we need to show that:

d∑
j=1

w1, j fj (s(θ ′i )) ≥
d∑
j=1

w0, j fj (s(θ ′i )) (5)

By using the equalities above, we can re-arrange this to:

d∑
j=1

w1, j fj (s(θi )) +
∑

j∈I(f )

(w1, j −w0, j )(fj (s(θ ′i )) − fj (s(θi ))

≥

d∑
j=1

w0, j fj (s(θi )) +
∑

j∈D(f )

(w0, j −w1, j )(fj (s(θ ′i )) − fj (s(θi )) (6)

By definition of the greedy allocation and our assumption that

π (si (θi , s−i )) = 1, we know

∑d
j=1

w1, j fj (s(θi )) ≥
∑d
j=1

w0, j fj (s(θi )),

so we can re-write Equation 6 to

∑
j ∈I(f )(w1, j −w0, j )(fj (s(θ

′
i )) −

fj (s(θi )) ≥
∑
j ∈D(f )(w0, j −w1, j )(fj (s(θ

′
i )) − fj (s(θi )). By condition

2 in Lemma 2, and the definitions of I(f ) and D(f ), we can see

that the LHS of this inequality must be zero or positive and the RHS

must be zero or negative, thus proving Equation 5 holds. Therefore,

π (s(θ ′i )) = 1 must hold, confirming monotonicity.

□

As discussed earlier, condition 1 in Lemma 2 is fulfilled by both

feature vectors proposed in Definitions 6 and 7. To ensure condition

2, appropriate constraints have to be imposed on the weights. We do

this by projecting the weights into the feasible space that meets the

condition after every update. Specifically, if the new unconstrained

weight vector after an update is w ′a (we assume that weights for

only one action a are updated at a time), we set:

wa,i =


w ′a,i if i < T(f )

min(w ′a,i , w
′
1−a,i ) if (a = 1 ∧ i ∈ D(f ))

∨(a = 0 ∧ i ∈ I(f ))

max(w ′a,i , w
′
1−a,i ) otherwise

(7)

Finally, we note that RL policies often employ some randomisa-

tion to encourage exploration. A prominent example are ϵ-greedy
policies, which choose a random action with some small probability

ϵ (that is independent of the current state, including the current

agent’s report) and follow the greedy policy otherwise.

Corollary 1. Lemma 2 continues to hold for ϵ-greedy policies.

We omit a formal discussion for brevity, but we need to consider

two cases: (1) π explores with probability ϵ and chooses a random

action — here, the agent’s reported type has no impact, so mono-

tonicity holds trivially; (2) π exploits with probability 1 − ϵ and

chooses a greedy action, where monotonicity holds due to Lemma 2.

Having shown how to achieve monotonicity of the allocation

function (condition 1 in Theorem 2), we next discuss the payments.

4.2 Calculating Critical Payments
To ensure our mechanism is strategyproof, we need to define an

appropriate payment function p(θi ,θ<i ), which charges the agent

i the minimum value it could have reported to be allocated. This
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corresponds exactly to the value of v̂i where the action-value of
the allocate action is equal to the value of the reject action, i.e.,∑d
j=1

w1, j fj (s(θ )) =
∑d
j=1

w0, j fj (s(θ )).

Let us assume that v̂i appears only once as a simple linear feature

in the feature vector, at index l , i.e., fl (s) = v̂i (in both features

vectors discussed earlier in Definitions 6 and 7, this is the case).

Then we can re-arrange the above to obtain the critical payment:

v̂i =
1

w
1,l −w0,l

d∑
j=1, j,l

(w0, j −w1, j )fj (s(θ )) (8)

Note in the special case thatw
1,l = w0,l , the reported value does

not affect the allocation decision. In this case, we set v̂i = 0 if the

agent was allocated and v̂i = ∞ if it was not allocated. If v̂i < 0, we

also set the payment to 0 (the mechanism remains strategyproof,

as task valuations are non-negative).

Theorem 3. A mechanism that uses an allocation policy π as
described in Lemma 2, whose feature vector contains v̂i exactly once
as a feature at index l (i.e., fl (s) = v̂i ) and that uses Equation 8 as its
payment function for allocated agents (and 0 for unallocated agents)
is strategyproof and individually rational.

Proof. Strategyproofness follows from Lemma 2 and Theorem 2.

The mechanism is individually rational, because unallocated agents

pay 0 (thus their utility is 0) and allocated agents pay the critical

value, which, by definition, is less than or equal to the value reported

by the agent (thus their utility is non-negative). □

A similar approach can be used for feature vectors that contain

functions of v̂i , but we focus on the simple case here for brevity and

because the proposed feature vectors already work well in practice.

Again, the theorem applies if an ϵ-greedy policy is used, as long as

agents that are serviced due to exploration pay 0.

4.3 Strategyproof Mechanism
We now propose a novel RL mechanism for the resource allocation

problem called SP-RL (strategyproof RL). This is based on semi-

gradient SARSA, using linear function approximation [26], but with

several extensions that ensure monotonicity.

Algorithm 1 gives the full pseudocode for the SP-RL mechanism.

This algorithm takes as input a monotonic feature vector f (with v̂
appearing exactly once as feature fl (s) = v̂i ), a learning rate α ∈
[0, 1], an exploration probability ϵ ∈ [0, 1] and a history size ζ ≥ 1,

which is the number of recent state transitions that the algorithm

keeps in memory for learning (similar to an experience replay

buffer in deep reinforcement learning [21], we found that sampling

from a history of previous transitions improves performance). The

algorithm first initialises the weight vectors and history (Lines 2–4).

The algorithm then starts each episode, which is one run of

the algorithm, from time step 1 to tmax. For each time step i , the

algorithm receives the next task report
ˆθi , constructs a new state

based on this, si , and generates a random number n for the ϵ-greedy
decision (Lines 8–10). If there are insufficient resources or with

probability
ϵ
2
(for exploration), the task is rejected (Line 12). If not,

with a further probability
ϵ
2
(also exploration), the task is accepted

(Line 14). In both cases, the payment for agent i is zero, as these
decisions are unaffected by the report.

Algorithm 1 Strategyproof RL Algorithm (SP-RL)

1: procedure SP-RL(f , α, ϵ, ζ )
Inputs: f (monotonic feature vector), α (learning rate), ϵ (exploration

probability), ζ (history size)

2: w0 ← [0, . . . , 0] ▷ Weights for reject action

3: w1 ← [0, . . . , 0] ▷ Weights for allocate action

4: history← [ ] ▷ Transition history

5: for each episode do
6: oj,r ← 0 ∀r ∈ R, i ≤ ar ▷ Occupancy

7: for i = 1 . . . tmax do
8:

ˆθi ← Next task report

9: si ← si ( ˆθi , s−i ) ▷ Construct state

10: n ∈ [0, 1] ▷ Random number

11: if ¬CanSchedule( ˆθi , o) ∨ n ≤ ϵ
2
then

12: πi , pi , ϱi ← 0, 0, 0 ▷ Reject

13: else if n ≤ ϵ then
14: πi , pi , ϱi ← 1, 0, v̂i ▷ Allocate

15: else
16: q0, q1 ← w0f (si )⊺, w1f (si )⊺

17: if q1 ≥ q0 then
18: πi , ϱi ← 1, v̂i ▷ Allocate

19: if w
1,l = w0,l then

20: pi ← 0

21: else
22: pi ← max(0, 1

w
1,l −w0,l

·∑d
j=1, j,l (w0, j −w1, j )fj (si ))

23: else
24: πi , pi , ϱi ← 0, 0, 0 ▷ Reject

25: Take allocation action πi
26: if i > 1 then
27: Add (si−1, πi−1, ϱi−1, si , πi ) to history

28: UpdateWeights(history, w , α, ζ )
29: Update all oj,r
30: Add (stmax

, πtmax
, ϱtmax

, 0, 0) to history

31: UpdateWeights(history, w , α, ζ )

32: procedure UpdateWeights(history, w , α, ζ )
33: while |history | > ζ do
34: Remove oldest element from history

35: (sj , πj , ϱj , sj+1, πj+1) ∈ history ▷ Random

36: if sj+1 = 0 then ▷ Terminal state

37: ∆Q ← ϱj −wπj f (sj )
⊺

38: else
39: ∆Q ← ϱj +wπj+1

f (sj+1)
⊺ −wπj f (sj )

⊺

40: wπj ← wπj + α∆Q f (sj )
41: for i ∈ T(f ) do ▷ Monotonicity Correction

42: if πj = 1 ∧ i ∈ D(f ) ∨ πj = 0 ∧ i ∈ I(f ) then
43: wπj ,i ← min(wπj ,i , w1−πj ,i )

44: else
45: wπj ,i ← max(wπj ,i , w1−πj ,i )

If no exploration takes place and there are sufficient resources,

the algorithm switches to a greedy action with respect to the esti-

mated action values. If allocation is chosen (Line 18), the payment

for agent i is calculated using Equation 8. Otherwise, the task is

rejected and the payment is 0. At every time step after i = 1, the pre-

vious state transition and reward are stored in the transition history

(Line 27) and the weights are updated using the UpdateWeights
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procedure. This also happens again after the final time step of every

episode, to capture the last terminal state (Line 27).

The UpdateWeights procedure picks a random transition from

the history and performs a single stochastic gradient descent step

to update the weights (Lines 35–40). Lines 41–45 implement the

monotonicity corrections, as given in Equation 7.

In practice, this algorithm could run and learn continuously dur-

ing deployment (each run, or episode, from time step 1 to tmax

might represent a single day). Alternatively, there could be a sep-

arate training phase, where task arrivals are simulated based on

historical traces for a certain number of episodes, after which the

weights are frozen and learning stops. Or it could be a mixture,

where the policy is trained on simulated data initially, but then

continues to be improved during execution.

Finally, as we will show in the next section, SP-RL tends to con-

verge to good solutions. However, we leave a thorough investigation

of how the monotonicity correction affects the known theoretical

convergence properties [26] of semi-gradient SARSA with linear

function approximation to future work. To conclude, we note that

the SP-RL algorithm meets all conditions in Theorem 3. Thus:

Corollary 2. The SP-RL algorithm is strategyproof and individ-
ually rational.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate our proposed algorithm

in a range of settings.

5.1 Experimental Setup
Unless specified otherwise, we use the following parameters for

SP-RL: ϵ = 0.1, α = 0.1, ζ = tmax, as these worked well in practice

for a range of settings. We train our algorithm for 10,000 training

episodes to ensure convergence to a good policy, and we linearly

decrease both ϵ and α to 0 by the end of training. We test SP-RL

using the simple and full feature vectors, as well as with andwithout

monotonicity correction. We will refer to these variants as Simple

(SP-)RL and Full (SP-)RL (omitting SP without the correction). We

also compare performance to the following benchmarks:

• Optimal: This is the optimal policy, obtained using back-

wards induction and dynamic programming.

• Offline Greedy: In large settings where the optimal is in-

feasible to compute, this is used as a substitute benchmark.

The algorithm assumes full knowledge of future tasks (which

is clearly unrealistic in practice). It greedily considers each

task i in order of decreasing value density (vi/(diΣrqi,r )),
servicing i if there are still sufficient remaining resources.

• First-Come-First-Served (FCFS): This algorithm services

tasks as long as there are still sufficient resources available.

• Optimal Pricing: This algorithm sets a price per resource

unit (ψ ) and services tasks if vi ≥ ψdiΣrqi,r . This mirrors

approaches where resources are sold for fixed prices, as is

common in existing cloud settings [17]. We chooseψ opti-

mally from a discretised range of prices (in steps of 0.01).

For all algorithms, we average performance over 1,000 episodes

and report 95% confidence intervals. For SP-RL we retrain the algo-

rithm from scratch every 20 episodes, by resetting all weights to 0

and re-running it for 10,000 training episodes (without recording

performance during training). This ensures that noise due to the

learning process is reduced and that the results are representative

of the algorithm’s average performance, as SP-RL will learn slightly

different policies after each training run.

5.2 Results
In the following, we consider three increasingly complex settings.

5.2.1 Small discrete setting. We start by considering a particu-

larly challenging setting for the Optimal Pricing and FCFS bench-

marks. We assume tmax = 20, there is only one resource type

(rmax = 1) and the system has ten units available (a1 = 10). There

are only two task types (a and b): θa = (va = 1,da = 11,qa,1 = 1)

and θb = (vb ≥ va ,db = 1,qb,1 = 1) (where we vary vb in the

experiments). Tasks of type a arrive at all time steps, except for

t = 11, at which a task of type b arrives (note that no more tasks

can be started after t = 11, as they would not complete by tmax).

This is challenging for FCFS, because all resources will be occu-

pied by the time θb arrives (thus, it will lose out on the potentially

higher-valued task). It is challenging for Optimal Pricing, because

ψ can only be set to service either all tasks or only θb . Optimal
schedules all but one of the θa tasks, leaving one resource for θb .

In Figure 1, we show the average social welfare of SP-RL and

other benchmarks as we varyvb from 1 to 20. FCFS performs worst,

as expected. Whenvb > 10,Optimal Pricing increasesψ to ensure

that task b is serviced, but always achieves 9 utility points less than

Optimal. In terms of the SP-RL variants, we note that using a full

feature vector here leads to an average utility that is always close

to optimal (between 97-98% of the optimal), showing the RL can

outperform both Optimal Pricing and FCFS by up to 86%. The

simple feature vector achieves close to optimal when vb ≥ 10

(between 92-99% of the optimal), but does not learn a better policy

than the benchmarks when vb = 5 (due to the limited features and

the smaller difference between the action values that are estimated

by those features).We note that in cases where RL is close to optimal

on average, the policy typically converges to the optimal, but in

rare cases diverges slightly (due to randomness in exploration).

Importantly, we note that there is no significant difference be-

tween the monotonic and non-monotonic versions of SP-RL. In-

tuitively, this is because monotonicity should hold in the optimal

action-value function in any case. Nevertheless, it is important

to constrain the weights, especially during early learning, where

monotonicity may otherwise be violated. As these trends hold gen-

erally, we focus only on the monotonic versions of SP-RL next.

5.2.2 Large discrete setting. Next, to investigate whether similar

trends hold in more realistic settings, we now assume tmax = 100,

rmax = 1 and a1 = 5. There are two task types, θa = (va = 20,da =
25,qa,1 = 1) and θb = (vb = 100,db = 1,qb,1 = 1), i.e., long low-

value tasks and short high-value tasks. At each time, a random type

arrives, and we vary the probability of the high-value tasks, pb .
Figure 2 shows the performance of the algorithms. Here, when

the probability of a high value task is non-zero, FCFS performs

worst, as it cannot keep resources free for the high-value tasks.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1302



1 5 10 15 20
Value of Final Task

0

5

10

15

20

25

30

So
cia

l W
el

fa
re

FCFS

Optimal Pricing

Simple SP-RL

Simple RL

Full SP-RL

Full RL

Optimal

Figure 1: Performance in small discrete setting.

0.00 0.05 0.10 0.15 0.20 0.25
High-Value Task Probability

0.5

0.6

0.7

0.8

0.9

1.0

So
cia

l W
el

fa
re

 (P
ro

po
rti

on
 o

f O
pt

im
al

)

FCFS
Optimal Pricing
Simple SP-RL
Full SP-RL
Optimal

Figure 2: Performance in large discrete setting.

0.05 0.10 0.15 0.20 0.25 0.30
High-Value Task Probability

0.75

0.80

0.85

0.90

0.95

1.00

So
cia

l W
el

fa
re

(P
ro

po
rti

on
 o

f O
ffl

in
e 

Gr
ee

dy
)

Offline Greedy
Full SP-RL
Simple SP-RL
Optimal Pricing
FCFS

Figure 3: Performance in large continuous setting.

Optimal Pricing initially follows this trend, but for higher prob-

abilities switches completely to the high-value tasks. In contrast,

both SP-RL algorithms learn to keep at least one resource free for

the high-value tasks. Here, the simple feature vector performs better

than the full feature vector, highlighting that the choice of feature

vector matters and may be dependent on the specific environment

(although both outperform FCFS and Optimal Pricing in most

settings). Overall, Simple SP-RL typically achieves 90% or more of

the optimal, while Full SP-RL achieves over 80% in most settings.

In the best case, Simple SP-RL outperforms Optimal Pricing by

39% and FCFS by 87%.

5.2.3 Large continuous setting. We now consider a larger set-

ting with many resources and continuous values. Here, tmax = 200,

rmax = 1, a1 = 400, a2 = 200, a3 = 40. We again assume lower-

value tasks and higher-value tasks. Lower-value tasks (θa ) have
a duration da drawn uniformly at random from {1, . . . , 30}, and

require between {1, . . . , 10} resource units for two of the resources

and between {1, . . . , 100} units of the remaining resource (this re-

source is chosen uniformly at random). The value of the task is

va = N
+(1, 1)daΣrqa,r , where N

+(µ,σ ) is a random value sam-

pled from a normal distribution with mean µ and standard deviation
σ that is truncated below 0. Higher-value tasks (θb ) have a dura-
tion chosen between {1, . . . , 30}, and have one of three different

resource requirements: {1, . . . , 10} units of either resource 2 or 3

(and none of the others), or {1, . . . , 10} units of all three resource

types. Their value is chosen asvb = N
+(100, 10)daΣrqa,r . This sce-

nario was chosen to represent highly heterogeneous tasks, where

resource requirements and value are generally correlated.

Figure 3 shows the results for this setting, as we vary the prob-

ability of high value tasks (pb ). Here, Optimal Pricing generally

performs better than in previous settings. Due to the large number

of resources and the continuous valuation distributions, it can set

good prices to admit a mixture of low and high-value tasks (achiev-

ing around 90% of Offline Greedy). Nevertheless, both SP-RL

approaches achieve a higher utility. Here, the full feature vector

performs better than the simple feature vector, as it allows policies

that depend more specifically on resource availability. Overall, Full

SP-RL consistently achieves 93–95% of Offline Greedy.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have considered how to design strategyproof rein-

forcement learning mechanisms for online resource allocation. We

first showed that the allocation problemwe consider is NP-hard and

then we proposed a set of sufficient conditions for ensuring that a

mechanism based on linear function approximation is both strate-

gyproof and individually rational. We developed a novel algorithm,

SP-RL, that fulfils these conditions and showed experimentally that

it performs close to the optimal (or an offline benchmark), while

outperforming all benchmarks. However, there are clearly limita-

tions of linear function approximation (e.g., it is difficult to encode

complex time dependencies without adding new features). Thus, in

future work, we will consider other function approximation tech-

niques. We will also investigate settings where agents have multiple

tasks and thus interact several times with the mechanism. Finally,

for settings where financial payments are impractical, we will look

at the use of alternative virtual currencies.
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