
Capturing Oracle Guided Hiders
Akshat Tandon

IIIT-Hyderabad, India

akshat.tandon@research.iiit.ac.in

Kamalakar Karlapalem

IIIT-Hyderabad, India

kamal@iiit.ac.in

ABSTRACT
Consider a closed environment with static obstacles and mobile

agents moving around. There are hider agents that hide from the

seeker agents. The seeker has a limited visibility range, and if a hider

comes into the visibility region of a seeker, it is considered caught.

The practical applications range from gaming to security. In this

work, we focus on deterministic capture of hiders, even if they are

guided by an Oracle which knows the future positions of seekers.

We develop strategies for seekers, having limited visibility ranges,

to catch all hiders and establish minimum bounds on the number

of seekers required to catch the hiders, on a per strategy basis. We

use spatio-temporal graph models and reasoning to formulate and

address the problem.
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1 INTRODUCTION
The game of Hide-and-Seek involves two competing agent teams.

The team of seeker agents is concerned with finding all the hider

agents, and the team of hider agents is concerned with remaining

concealed and hidden from the seeker agents. A pragmatic example

of the problem is a warehouse environment with no drones or

cameras, and some culprit agents are hiding from the police agents.

The hiders may be guided by an external entity (oracle) about the

future positions of the seeker, allowing them to evade easily.

In this work, we introduce hiker graphs, which allows encapsula-

tion of spatial features of a landscape environment (city’s grid-like

arrangement of streets, buildings). Furthermore, we present two

seeker strategies - trap and wave, both of which utilize the hiker

graph to deterministically capture all the hiders, even if the hiders

are informed by oracles about the future positions of seekers. The

hiker graph explicitly represents visibility and connectivity aspects

via separate nodes and edges. It permits abstraction of spatial fea-

tures at a desired level of granularity, in turn allowing strategies to

incorporate visibility and connectivity as primitives in their opti-

mization operations. The agent model used by us assumes a limited

visibility range, which is in contrast to existing work (Gerkey et al.

[9]).

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
, May 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

1.1 Related Work
Hide-and-Seek has been studied in various forms and under dif-

ferent domains. In operations research, it is studied under search

theory. Hide-and-Seek game involving movable hiders was intro-

duced by Isaacs [10] in the form of Princess and Monster game.

This was solved for circular boundaries by Zelikin [20], Alpern [1],

and Foreman [7] and was eventually solved for the general case by

Gal [8]. Search strategies in the case of static hider have also been

well explored by Alpern and Gal [2]. The strategies have regular

and well-defined environments and use proximity and not visibility

as a capture criterion. This is in contrast to our strategies which

involve irregular and obstacle-filled environments (city grids) and

use visibility as a capture criterion. The search theory strategies are

also mostly probabilistic aiming to minimize expected capture time.

Our strategies guarantee capture and have deterministic (fixed)

upper bound on capture times.

Similar to search theory is the domain of pursuit-evasion games

within mobile robotics and multi-agent systems (Chung et al. [5]).

Parsons [13], and Megiddo and Hakimi [11] considered the problem

of figuring out the minimum number of seekers required to guar-

antee the capture of a hider hiding in a discrete graph environment.

This problem was eventually found out to be NP-Hard by Megiddo

et al. [12]. Suzuki and Yamashita [17] extended the above problem

to a continuous polygons based environment having visibility based

agents embedded with K flashlights. Hider is considered caught if

it intercepts one of the flashlights. Gerkey et al. [9] also presented

visibility based, guaranteed capture strategies. The agents consid-

ered by them have a limited field of view (FOV) instead of having

K flashlights. Our strategy is similar to the above pursuit-evasion

strategy in the sense of having visibility based agents exhibiting

limited FOV, and a guaranteed capture criteria. Visibility range is

defined as the maximum distance at which an object can be dis-

cerned. The agents used by Gerky et al have an unlimited visibility

range whereas our agents have a limited visibility range. Using an

unlimited visibility range, a seeker can capture a much larger cov-

erage area, as opposed to a limited range. This impacts how spatial

abstractions, and the eventual strategies, are formulated. Tandon

and Karlapalem [18] described strategic and coverage points as

spatial abstractions for encapsulating a 2-D environment. In our

work, we build upon these to arrive at hiker graphs.

Another related field is that of multi-agent security. These in-

volve modeling a real-world domain as a Stackelberg game (Pita

et al. [16], Fang et al. [6]) and finding an optimal strategy for the

seekers to commit (Paruchuri et al. [15], Paruchuri et al. [14]). The

optimal strategies in these cases are optimal in an expected payoff

sense. Also, unlike our strategies, they do not guarantee the capture

of hiders (or followers).

Hide-and-Seek has also been explored in the domain of multi-

agent deep reinforcement learning (Baker et al. [3]). The environ-

ment used in their setting had movable obstacles in the form of
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blocks and ramps. Using repeated self plays, the hider and seeker

agents were able to learn various strategies, such as hiders using

blocks to prevent a seeker from entering a region, and seekers us-

ing ramps to jump over obstacles to enter the blocked regions. Our

work only involves immovable obstacles. Also, our agents follow a

fixed strategy and do not learn via repeated trails (Baker et al. [3]).

1.2 Players, Environment, and Obstacles
The game is played in a 2D bounded, continuous, rectangular envi-

ronment E (figure 1). The environment contains many obstacles

O = {o1,o2, ...,ok }. For simulation purposes, we consider square

and rectangles as basic obstacle blocks and construct any arbitrary

polygonal shape as a combination of them. The game comprises of

a team of hider agents H = {h1,h2, ...,hn } and a team of seeker

agents S = {s1, s2, ..., sm }. The game simulation occurs in discrete

time steps. At each step, the agents chose an action from one of the

sixteen compass directions A = {d1,d2, ...d16}, each oriented at an

angle of multiples of 22.5
◦
from its base axis.

Figure 1: Green agents are seekers and red ones are hiders.
Visibility cones emanate from each agent.

The state of an agent is defined by its current position (x,y) ∈ E

as well as the compass direction d ∈ A which the agent is facing.

The agent changes the state by taking an action. The speed of all

the agents is assumed to be a fixed constant. Thus, at each game

step, the agents can only move rectilinearly by a fixed distance in

direction d .

1.3 Visibility and Elimination
To approximate the notion of visibility in simulation, we associate

a visibility cone with each agent. A hider is visible to a seeker if

the hider (associated point (x,y)) lies inside the seeker’s visibility
cone. The visibility cone depends on the current state of an agent,

changes as the agent moves and is constructed by tracing the path

of uniformly spaced rays emitted from the agent’s current position,

spread along some angle to the left and right of the agent’s head

facing direction. Each agents visibility cone has a limited field of

view (viewing angle) and a limited range (maximum distance at

which objects are visible).

1.4 Spatial Abstractions
We use graph-based abstractions to encapsulate the spatial features

of the 2D landscape environment, such as obstruction, visibility,

coverage and, connectivity. Our strategies use these abstractions.

1.4.1 Strategic and Coverage Points. A strategic point is used as

an abstraction for a hiding location. It is the midpoint of an edge of

an obstacle. Each obstacle yields a set of strategic points and the

union of these sets constitute the strategic points set SP, of the

environment.

Coverage point is used as an abstraction for a seeking location. It

is a point from which one or more strategic points are visible when

scanned in all the directions. A coverage point is said to cover the

strategic points visible from it. An optimal set of coverage points

CP must satisfy the following criteria

• All the strategic points of the environment must be visible

to at least one coverage point in the set.

• Maximal number of strategic points (if possible) must be

visible from each coverage point in the set.

We derived an algorithm that finds such a set of optimal coverage

points by utilizing an intermediary visibility graphVG, built upon

strategic points. The nodes of this graph consist of strategic points

of the environment E. There is an edge between any two nodes if

there exists a point in E fromwhich the strategic points correspond-

ing to nodes are visible (figure 2). To reduce the computational cost

of constructing VG, a discretized grid cell version G of environ-

ment E is considered. Discretization of the environment is done

by partitioning the continuous 2-D space into contiguous cells via

uniformly spaced horizontal and vertical lines. Each cell c ∈ G is

indexed by its row and column values [i, j] and is represented by

its center point coordinate (cx , cy ) ∈ E. To compute edges of VG,

associate each strategic point with the set of grid cells visible to it

if scanned in all the directions. If the intersection of the visible cell

set associated with two strategic points is not null, then there exists

a point in E which is visible to both of these. Thus, there exists an

edge between those two strategic points in VG. An optimal set of

coverage points can be obtained by

(1) Enumerating over all the maximal cliques (Bron and Ker-

bosch [4]) of the visibility graph VG.

(2) Finding the smallest set of coverage points required for cov-

ering the strategic points corresponding to the nodes of

enumerated clique.

(3) Taking the union of these coverage point sets.

Maximal cliques of the visibility graph are considered because a

maximal clique of VG encapsulates the set of strategic points that

are visible to each other. If strategic points belonging to a set are

visible to each other, fewer number of coverage points are required

to cover them. It should also be noted that a single coverage point

is not always sufficient for covering all the strategic points of a

clique.

Lemma 1.1. A single coverage point is not always sufficient for
covering all the strategic points of a visibility graph clique

Proof. We prove this via a counterexample. Consider an envi-

ronment in which there are only three strategic points. An obstacle

can be present inside the circular perimeter formed by the three
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(a) Visibility graph. There must be
common point from which 1 and 2
are visible. Similar is the case with
(1,3) and (2,3).

(b) There might exist a common
coverage point from which all
three strategic points are visible.

Figure 2: Visibility Graph and Coverage Points

points in a manner that prevents the three points from being seen

by a common point. However, any two of them can be seen by a

common point. The resulting visibility graph VG is a complete

graph, comprising of three nodes, each having an edge with the

other two (figure 2(a)). Since all three cannot be seen by a common

point, there must be at least two coverage points to cover all the

nodes of this clique. □

To find the smallest set of coverage points corresponding to a

clique CQ, iterate over all grid cells of G, visible from some node

(i.e. strategic point) of that clique, and find the cell whose center

covers the maximum number of nodes (i.e. strategic point) of that

clique. If the found cell’s center covers all the strategic points of

the clique, return the center as the sole member of the coverage

points set, else remove the strategic points covered by the found

cell from the clique CQ and feed the modified clique back to the

algorithm to recursively find remaining coverage points.

This coverage point set CP satisfies our two optimal criteria.

Lemma 1.2. Each strategic point of the environment is visible to
at-least one coverage point in the set CP

Proof. Assume there exists a strategic point (sx , sy ) ∈ E which

is not visible to any coverage point. Since each coverage point is

associated with a maximal clique of VG, this implies that (sx , sy )
does not belong to any maximal clique. Since any node inVG must

belong to one of the maximal cliques, it implies that (sx , sy ) does
not belong to VG i.e. there is no node in VG corresponding to

(sx , sy ). This is a contradiction since for each strategic point, there

exists a node inVG (by definition). Thus, our assumption is wrong,

and there does not exist any strategic point which is not visible to

any coverage point. □

A maximal clique of strategic points can be covered by either

a single coverage point or a set of coverage points (refer lemma

1.1). In case of coverage by a single coverage point, each such

point generated by the above algorithm is associated with as many

strategic points as is possible (maximal). In other words, such a

coverage point can’t cover more strategic points, than the ones

which the algorithm for finding the coverage points has currently

associated it with.

Lemma 1.3. Maximal number of strategic points are visible from
each coverage point which covers a maximal clique CQ ⊆ VG

Proof. Assume a coverage point (cx , cy ) is generated by the

algorithm corresponding to a maximal clique q ⊆ VG. (cx , cy )
covers all nodes of q. In addition to these nodes, (cx , cy ) also covers
a strategic point (sx , sy ) < q. Since q is a maximal clique, there

exists some (s̄x , s̄y ) ∈ q which does not have an edge with (sx , sy )
in visibility graph VG. Two strategic points not having an edge in

VG implies that there does not exist a common point from which

both of the points are visible. This contradicts the assumption that

a coverage point covering a maximal clique covers an additional

strategic point (sx , sy ). □

1.4.2 Hiker Graph. A hiker (hider-seeker) graphHG is used as

an abstraction of the 2D landscape environment. It consists of two

types of nodes - strategic nodes and coverage nodes, and two types

of edges - traversal edges and visibility edges. Corresponding to

each strategic point in SP, there exists a strategic node inHG, and

corresponding to each coverage point in CP there exists a coverage

node.

Traversal edges connect either two strategic nodes or two cover-

age nodes. These edges represent the notion that a hider agent can

traverse from one strategic point to another, and a seeker agent can

traverse from one coverage point to another. Two strategic nodes

are connected via a traversal edge if their corresponding strategic

points are near to each other, by some metric. In our empirical anal-

ysis, we used a proximity-based metric. Any two coverage nodes

are always connected by a traversal edge. Traversal connectivity

of strategic nodes encapsulate the fact that the hider agents do

not move freely in the environment. They always move from one

obstacle to another one, or from one side of the obstacle to another

side. If they moved freely, they would expose themselves for a sig-

nificant duration leading to capture by seekers. On the other hand,

traversal connectivity of coverage nodes encapsulate the fact that

the seekers are free to move anywhere. Two strategic nodes, or

two coverage nodes, are said to be traversal adjacent if they are

connected via a traversal edge.

Figure 3: Hiker Graph

Visibility edges connect a strategic node with a coverage node.

These represent the notion that a strategic point is visible from a

coverage point. A strategic node is connected to a coverage node

via a visibility edge if the associated strategic point is visible to the

associated coverage point, in the 2D environment E. A coverage

and strategic node connected via a visibility edge are said to be

visibility adjacent.
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Consider figure 3. The red nodes are the strategic nodes and the

blue ones are the coverage nodes. The black edges are the traversal

edges and the red ones are the visibility edges.

A Hide-and-Seek game can be represented in a hiker graph. Be-

fore the start of the game, the hiders occupy some strategic nodes.

At the start, seekers occupy some strategic nodes. The game pro-

ceeds in turns and at each turn, the agents may choose to move to

their traversal adjacent nodes. The hider agents move to traversal
adjacent strategic nodes and seeker agents move to traversal adjacent
coverage nodes. If a hider occupies a strategic node that is visible adja-
cent to coverage node occupied by a seeker, then the hider is considered
caught and is eliminated from the game. The game continues until

all the hiders are caught.

Note, a step in simulation of the hide-and-seek game in 2D envi-

ronment E (section 1.2), is different from a turn in the abstracted out
version of the game played on the hiker graphHG. At a discrete-

time step in the simulation, each agent moves by the same fixed

Euclidean distance in E, whereas at a turn in the hiker graph, the

agents move to adjacent nodes. Performing a 2D traversal in E,

across points that correspond to traversal adjacent nodes, requires

multiple steps by an agent.

1.4.3 Gaps, Oracles, and Oscillatory Behavior. The hiders which
remain, at some turn t of the game, are those that occupy the

strategic nodes which are not visible adjacent to any currently

occupied coverage node. We classify such strategic nodes as gap

nodes. At each turn, depending on the occupancy of coverage nodes,

the gap nodes change. The hiders which have continued to evade

the seeker till turn t have continued to be on gap nodes at each

turn. A hider can continue to evade seekers as long as it manages to

occupy gap nodes. The hiders do not know before a turn, which of the
nodes are going to be gap nodes since these are decided by the actions
of seekers. However, if they are guided by an oracle agent, who can
predict the future movements of seekers, they may continue evading
the seekers. For example, suppose the game is played between a

single seeker and a single hider. At the start of the game (refer

figure 3), assume that a hider is at node 1 and a seeker is at node

B. The hider is guided by an oracle and hence knows the future

positions of seeker. When the seeker traverses to node A, the hider
traverses to node 2 and when the seeker goes back to node B, the
hider also goes back to node 1. The oscillatory behavior, induced by
the presence of an oracle agent prevents the hider from ever getting
caught. In the presence of an oracle, a single seeker can never capture
such a hider. However, if there are two seekers and one hider, then
even if the hider is guided by the oracles, it will be caught. Assume

the hider is at node 1. If both the seekers simultaneously occupy

nodes A and B, then irrespective of any oracle, the hider will be

caught. The focus of our paper is on strategies, which capture oracle
guided hiders, using minimum possible number of seekers. Another
way of looking at strategies, which aid in capturing oracle guided

hiders, is regarding them as deterministic capture strategies. The

probability of capturing hiders by such a strategy is always one.

2 STRATEGIES
We start by describing trivial strategies and building upon them

to arrive at our final one. All of the strategies which we describe

guarantee the capture of all the hiders present in the game played on

a hiker graph. Also, each strategy is associated with the minimum

number of seekers, required for it to work.

2.1 Trivial Capture
At the start of the game, position a seeker agent at each coverage

node. The number of seekers required to do so is equal to the

number of coverage nodes in the hiker graph. All the hiders are

caught and the game ends at the very start.

Theorem 2.1. Trivial capture strategy deterministically captures
all the hiders

Proof. Assume that the seeker team plays the trivial capture

strategy and there exists a hider that is not caught. This implies

that there must be a gap node, further implying that there must

be a coverage node which is not occupied by a seeker. This is a

contradiction since each coverage node is occupied by a seeker. □

Although this strategy deterministically captures all the hiders,

it becomes impractical in larger environments due to its high mini-

mum number of seeker requirements.

2.2 Trap
An oracle guided hider can stay hidden at turn t + 1 if there exists

a gap node, which is traversal adjacent to the strategic point which

the hider currently occupies. If there exists no traversal adjacent

gap nodes, then the hider cannot evade and will be caught. The

trap strategy works on this principle.

Before going into details, we introduce a new type of relation-

ship (or edge) between two coverage nodes in HG, to simplify

explanation and analysis. If a coverage node A is visibility adjacent

to strategic node 1, the strategic node 1 is traversal adjacent to node

2, and strategic node 2 is visibility adjacent to coverage node B,
then coverage nodes A and B are said to be capture adjacent (or

joined by a capture edge). As shown in figure 3, the coverage nodes

A and B follow the above-described criteria and hence are capture

adjacent.

The trap strategy comprises two steps, initial arrangement of

seekers and subsequent traversal. At the start of the trap strategy,

each coverage point of a hiker graph must follow either of the two

trap conditions

• Be occupied by a seeker.

• Not be occupied, but have all of its capture adjacent coverage

nodes, occupied by seekers.

As the game proceeds, a seeker, in addition to the ones which al-

ready occupy coverage points, goes to each non-occupied coverage

point. When this seeker would have traversed to each non-occupied

coverage point, all the hiders would have been caught.

The number of seekers required for this algorithm is equal to the

number of seekers required to satisfy the above two trap conditions,

as well as an additional seeker required for traversal. The problem

of finding the minimum number of seekers and the coverage nodes

which they need to occupy, for satisfying the trap conditions, is

formulated in terms of an integer program.

Variables
xv v ∈ CN (set of all xv denotes seeker’s occupancy

coverage nodes) at node v
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Objective

min

∑
v ∈CN

xv (1)

Constraints∑
v ′∈Adjcap (v)

xv ′ ≥ (1 − xv )|Adjcap (v)| ∀v ∈ CN (2)

xv ∈ {0, 1} ∀v ∈ CN (3)

Adjcap (v) is the set of all the nodes which are capture adjacent

to node v , and |Adjcap (v)| is the cardinality of this set. Variable xv
is a binary variable, denoting whether the coverage node v should

be occupied by a seeker or not. The optimal solution to the above

linear program gives the minimum number of seekers required, as

well as the coverage nodes which need to be occupied, for satisfying

the above two trap conditions.

The second constraint of the integer program enforces both the

trap conditions. If a coverage nodev is occupied by a seeker, xv = 1

and the constraint becomes∑
v ′∈Adjcap (v)

xv ′ ≥ 0

The constraint implies that the number of coverage nodes which are

capture adjacent to v and are occupied by seekers must be greater

than or equal to 0. This is a trivial inequality which will always be

satisfied.

If a coverage nodev is not occupied by a seeker, xv = 0 and then

the constraint becomes∑
v ′∈Adjcap (v)

xv ′ ≥ |Adjcap (v)|

The constraint implies that the number of coverage nodes which are

capture adjacent to v and are occupied by seekers must be greater

than or equal to the number of all capture adjacent nodes ofv . Since
LHS cannot be greater than RHS, the only valid solution occurs

when both are equal. Therefore, the constraint can be reduced to

an equality. ∑
v ′∈Adjcap (v)

xv ′ = |Adjcap (v)|

This is the exact requirement of the second trap condition.

To further reduce the number of seekers required, instead of

operating (or analyzing) the entire hiker graph, we operate on its

components. The idea is to obtain smaller hiker graphs from the

main hiker graph which can be treated as individual games of hide

and seek since a hider belonging to one component cannot move

to some other component.

To find such smaller hiker components, consider a subgraph of a

hiker graph consisting solely of all strategic nodes and their traver-

sal edges. Consider each connected component of this subgraph.

For each such connected component, consider all the coverage

nodes which are visible adjacent, and the corresponding visibility

edges, and add it into the subgraph. This results in a smaller (or

equal in size) hiker graph derived from the original hiker graph.

The property of this smaller hiker graph is that any hider which

occupies a strategic node of this graph cannot leave this graph since

all the nodes which this hider can reach are present in the same

graph, and all the nodes which are not connected to the occupied

node, are not present in the smaller hiker graph. Having obtained

these connected strategic node hiker components, we treat each

component as a separate Hide-and-Seek game and apply the trap

strategy on them, one by one.

Theorem 2.2. Trap strategy deterministically captures all the
hiders

Proof. Assume that the seeker team plays the trap strategy and

there exists a hider that is not captured. Suppose the trap strategy

takes few turns to complete. Since the hider remained uncaught,

at each turn of the game, the hider would have remained at a gap

node. This trivially implies that a hider would have been at a gap

node si at the very start of the game.

State at turn t = 0: The coverage nodes which are visible adjacent

to si , are unoccupied by seekers since it is a gap node. Let these

coverage nodes be represented by Csi = {c1, c2, ..., cn }. Due to

the second trap condition, the coverage nodes which are capture

adjacent to nodes Csi , are occupied by seekers. This means that

any strategic node, traversal adjacent to si , is visible adjacent to a

coverage node occupied by a seeker. All seekers who occupy such

coverage nodes remain static i.e. occupy the same node, throughout

the game. This also means that at any turn t , there will be no

traversal adjacent strategic nodes which are also gap nodes. If at

any turn t , the hider tries to move to its traversal adjacent strategic

node, it will be caught. Under the trap strategy, an additional seekers

job is to traverse each non-occupied coverage node. At some time

T , this seeker will come to a coverage node ∈ Csi .
State at some turn 0 < t < T : As proved in the previous paragraph,

the hider has to keep on staying at strategic node si to stay hidden

from seekers.

State at turn t = T : Since a seeker occupies one of the coverage
points ∈ Csi , if the hider does not leave the node si , it will be caught
by this seeker. Thus, to stay hidden, the hider moves to a gap node

which is traversal adjacent to si . This is a contradiction since such

a node does not exist.

□

2.3 Wave
The traversal of hider and seeker agents across the hiker graph

can be perceived as flows. The hiders keep occupying gap nodes at

each turn, guided by oracles. These gap nodes are created by the

non-occupancy of seekers at certain coverage nodes. Thus, seekers

influence the flows of hiders. The seekers can force the hiders to

traverse to certain gap nodes, eventually capturing them at some

point. The wave strategy works on this principle.

The wave strategy comprises two steps, preparation of a plan

and subsequent traversal. For plan preparation, a subgraph of hiker

graph HG, consisting of only coverage nodes and capture edges

(refer trap strategies), is considered. Call this subgraph HCG. A

Breadth-first search (BFS) is performed on this subgraph, from some

arbitrary node. Performing a BFS partitions the coverage nodes

into layers. The nodes which were explored in the first iteration

belong to layer 1, those that were explored in the second belong to

layer 2, and so on. Each coverage node belongs to a unique layer,

c ∈ layer (K). In other words, layer (K) is a set comprising of all

the coverage nodes explored by the BFS traversal algorithm at Kth
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iteration. For simpler explanation and analysis, we also associate

each strategic node ∈ HG, with one of the layers. A strategic

node s ∈ layer (K), if it is visible adjacent to any coverage node

c ∈ layer (K), and is not visible adjacent to any coverage node

c ∈ layer (K − 1) or layer (K − 2) ... or layer (1). In other words, the

strategic node belongs to the smallest layer (in terms of labeling K)

whose coverage node is visible adjacent to it.

At the start of the game, the seekers occupy all the coverage

nodes of layer (1) and layer (2). At the next turn, the seekers in

layer (1) rearrange to occupy coverage nodes of layer (3), whereas
the seekers in layer (2) continue occupying their current nodes. At

the next turn, the seekers in layer (2) rearrange to occupy layer (4)
and the seekers occupying layer (3) retain their positions. This goes

on till the seekers occupy the last two layers.

Before proceeding with the proof of correctness for the strategy,

we prove a few lemmas.

Lemma 2.3. A hider occupying strategic node s ∈ layer (K) is not
traversal adjacent to any strategic node s ′ ∈ layer (K − 2).

Proof. Assume there exists a node s ′ ∈ layer (K − 2) which

is traversal adjacent to a node s ∈ layer (K). Since s ∈ layer (K),
by definition, there must be a coverage node c ∈ layer (K) which
is visible adjacent to s . Similarly, there must be a coverage node

c ′ ∈ layer (K − 2) which must be visible adjacent to s ′. By defini-

tion, the coverage nodes c and c ′ must be capture adjacent. Since

BFS traversal is performed by considering coverage nodes and cap-

ture edges, c and c ′ must belong to the same layer, or adjacent

layers (layer (K), layer (K − 1)). This is a contradiction since the

layers which c and c ′ belong to (layer (K), layer (K − 2)) are neither

adjacent, nor same. Thus, such a node s ′ cannot exist. □

Lemma 2.4. A hider occupying strategic node s ∈ layer (K) is
not traversal adjacent to any strategic node s ′ ∈ layer (K − 2), or
layer (K − 3), ..., or layer (1).

Proof. We have proved the statement for layer (K − 2). We can

easily prove it for layer (j), j < K − 2 by replacing K − 2 with j in
the above proof. □

Lemma 2.5. A hider occupying strategic node s ∈ layer (K) is
not traversal adjacent to any strategic node s ′ ∈ layer (K + 2), or
layer (K + 3), ..., or layer (N ).

Proof. We have proved the statement for layer (K − 2). We can

easily prove it for layer (j), j ≥ K + 2 by replacing K − 2 with j in
that proof. □

Similar to the trap scenario, the number of required seekers can

be further reduced by operating, one by one, on the components of

the hiker graph having connected strategic node subgraphs.

Theorem 2.6. Wave strategy deterministically captures all the
hiders

Proof. Before each turn K , the seekers are already occupying

all the coverage nodes ∈ layer (K − 1) and layer (K − 2). At the start

of the turn, the seekers occupying layer (K − 2) leave their current

nodes and occupy all the nodes of layer (K). For now, assume there

exists a sufficient number of seekers for doing this at each turn.

We will prove an invariant which will be used to prove the capture

criteria.

Invariant: At the start of each turn K of the wave strategy, no

hider will occupy any strategic nodes ∈ layer (K − 1), layer (K − 2),

layer (K − 3), ..., layer (1)
We will prove this invariant using induction.

Initialization (Base Case): The first turn starts at K = 3. The in-

variant trivially holds for K = 3 since all coverage nodes ∈ layer (1)
and layer (2) are already occupied by seekers. Any hider occupying

a strategic node ∈ layer (1) or layer (2) will be caught.
Maintenance (Inductive Step): Assume the invariant holds true

for K . As the turn proceeds, the seekers occupying coverage nodes

∈ layer (K − 2) will leave their current nodes and occupy coverage

nodes ∈ layer (K). This traversal is possible since, by definition, any
two coverage nodes are traversal adjacent. Now hiders occupying

strategic nodes ∈ layer (K) can either occupy their current nodes

or move to a different node. If a hider does not leave its node, it will

be captured by some incoming seeker and will be eliminated from

the game. If a hider decides to traverse to some different strategic

node, it has various choices.

• Can move to another strategic node ∈ layer (K), in which

case it will be caught.

• Can move to a node ∈ layer (K − 1). Since all coverage nodes

of this layer are occupied by seekers, the hider will be caught.

• Can move to a node ∈ layer (K − 2), or layer (K − 3), ... or

layer (1). However, this is impossible by lemma 2.4.

• Can move to a node ∈ layer (K + 2), or layer (K + 3), ... or

layer (N ). However, this is impossible by lemma 2.5.

Thus, a hider occupying a strategic node ∈ layer (K) can only

move to another strategic node ∈ layer (K + 1). In the case of other

layers, it is either impossible to occupy their strategic node or the

hider will be caught if the hider tries to go there.

Consider a hider occupying a strategic node ∈ layer (K + 1), at

the start of turn K . This hider can move to layer (K), but it will be
caught. It cannot move to layer (K − 1), layer (K − 2), ..., layer (1)
(lemma 2.4). Similarly, a hider occupying layer (K + 2) cannot move

to layer (K), layer (K − 1), ..., layer (1). The case for hiders occu-

pying layer (K + 3), layer (K + 4), ...layer (N ) is also similar. Thus,

hiders occupying layer (K) and beyond, will not be able to occupy

layer (K), layer (K − 1), layer (K − 2), ...layer (1), at turn K .
We had assumed that the invariant is true for K , i.e. no hider

occupies a strategic node s ∈ layer (K − 1), layer (K − 2), ...layer (1),
and we have shown that any hider occupying a strategic node s ∈
layer (K), layer (K+1), ...layer (N ) cannot occupy any strategic node

s ′ ∈ layer (K), layer (K − 1), ..., layer (1). This proves the invariant
for K + 1. Since the base and inductive steps both are true, by

mathematical induction, the invariant holds true.

Termination At the end of the last turn of the strategy, the

seekers would be occupying all the coverage nodes belonging to

the last two layers (layer (N ), layer (N − 1)). In the end, no hider

will be occupying any strategic node ∈ layer (N ), layer (N − 1),

..., layer (1), or in other words, all of the hiders would have been

eliminated.

□

The minimum number of seekers required by this strategy, for a

particular BFS ordering from some arbitrary node, can be denoted
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by the below expression.

max

j=2:N

(
|layer (j − 1)| + |layer (j)|

)
This expression denotes the maximum number of coverage nodes

belonging to two consecutive layers. To find the minimum possible

number under this strategy, the minimum number under all the

possible BFS orderings needs to be considered.

min

i

(
max

j=2:N

(
|layeri (j − 1)| + |layeri (j)|

) )
Here i denotes the coverage node from which BFS exploration was

started ,and layeri (j) denotes the set of all nodes explored at the

jth iteration when BFS was started from node i .

3 SIMULATION
3.1 Setup
We created a simulator capable of simulating and visualizing 2-D

Hide-and-Seek games (Tandon and Karlapalem [19]). It provides

a 2-D bounded and continuous playing area, polygonal obstacles

and agents embedded with visibility cones. An agent can perceive

an opponent agent only if it lies inside its visibility cone. The sim-

ulator allows easy interfacing of these game primitives with the

spatial abstractions and strategies described in previous sections.

The simulator plays the game in discrete time steps. At each step,

each agent is supposed to take an action after considering its per-

cepts (visibility cone) and internal state. The simulator accepts the

actions and moves the agent in the chosen direction by a fixed

distance. In other words, both the hider and seeker agents move

with a fixed speed. If a hider agent lies in the visibility cone of

the seeker, it is eliminated. The game completion time is the time

step at which the last hider is eliminated. The simulator also al-

lows agents of the same type to form teams and coordinate with

each other, which is necessary for our trap and wave strategies. We

have released the simulator and strategy related code on GitHub

(https://github.com/droftware/Medusa).

For empirical analysis and simulations of the spatial abstractions

and strategies, we consider four game-maps. Each of these maps

has a different arrangement and number of obstacles. We label the

maps as 1, 2, 3, 4, in increasing order of number of obstacles, i.e. map

1 has the minimum (figure 1), and map 4 has the maximum number

of obstacles (figure 6). Using these maps we empirically evaluate

the characteristics of our strategies and spatial abstractions, such

as the number of coverage nodes and minimum number of seekers

required to play a strategy in a particular map. Furthermore, we

also contrast the game completion times across the strategies.

3.2 Resolution and Parameters
Rectangular environments used for simulations have dimensions

ranging from 400 × 300 pixels (map 1) to 1200 × 700 pixels (map

4). The agents are represented as a single pixel associated with a

directiond ∈ A (section 1.2). Theymove at a fixed speed of about 10

pixels/step. Each agent is also embeddedwith a visibility conewhich

is constructed by emitting 10 rays in direction d , spread across 90
◦

followed by tracing over the points of obstruction. Limited visibility

is enforced by preventing these rays from going outside a bounding

square of length 250 pixels, formed around the agent.

Map Nodes Trap

|SP| |CP| Occupied NonOccupied MinmSeeks

1 22 17 13 4 14

2 41 39 32 7 33

3 58 50 39 11 40

4 121 108 59 49 60

Table 1: Trap strategy’s spatial features and minimum
seeker requirements

To reduce the computational cost of finding an optimal coverage

points set CP of an environment E, the environment is discretized

into grid cells (section 1.4). In all our simulations, we used dis-

cretized cells having a resolution of 10 × 10 pixels. During compu-

tation of CP, using a smaller discretization resolution may reduce

the number of number of coverage points required for covering the

nodes corresponding to a maximal clique of VG (section 1.4).

3.3 Spatial Features and Minimum Seeker
Requirements

We analyze the spatial features on a per strategy basis. Under trap

strategy (table 1), for each of the maps, we compute the coverage

nodes which ought to be occupied, coverage nodes that do not

need to be occupied and the minimum seekers required to play

the strategy. Under wave strategy (table 2), we compute the total

number of layers, the maximum number of nodes belonging to a

layer, and the minimum number of required seekers.

Since the hiker graph depends only on the map and is indepen-

dent of the strategy used, the number of strategic and coverage

nodes is the same for each map, under both the strategies.

Two points are worth noting.

(1) Features such as strategic nodes, coverage nodes, minimum

required seekers, occupied nodes (table 1), layers (table 2),

increase as the number of obstacles increase (Recall that

maps were ordered in increasing order of number of ob-

stacles). However, this is not always true. Map 4 has the

maximum number of obstacles, but under wave strategy,

features -MaxNodes (maximum number of nodes in a layer)

andMinSeeks (minimum number of seekers required), have

smaller values when compared to corresponding features of

map 2 and 3.

(2) Minimum number of seekers required to play wave strategy

is always less than the number required to play trap strategy.

The difference is especially noticeable inmap 4. Trap requires

60 seekers whereas wave requires only 22.

3.4 Game Completion Times
We analyze game completion times by simulating both the strategies

on maps 1 and 4. Trap and wave strategies assume that a hider

would always occupy strategic points. In a simulation, the hiders

cannot be forced to occupy only strategic points. In some games,

a hider may occupy some non-strategic points and stay hidden

for a very long time (or even forever). These situations can be

eliminated (or reduced) by increasing the granularity of strategic

points, i.e. instead of just mid-points of obstacles, consider an even
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Map Nodes Wave

|SP| |CP| Layers MaxNodes MinmSeeks

1 22 17 4 8 13

2 41 39 4 19 29

3 58 50 5 20 33

4 121 108 13 11 22

Table 2: Wave strategy’s spatial features and minimum
seeker requirements

greater number of points which surround obstacles, to eliminate the

existence of a point which is not covered by a coverage point. We

tackle this, not by increasing the granularity of strategic points, but

by restarting the strategy if some hiders exist after the strategy has

completed all its steps. The hider agent used in simulation follows

a random action strategy. At the start of a game, they occupy a

random point which is not necessarily a strategic point. At each

step of the game, they take a random action.

For eachmap (1 and 4), and strategy (trap andwave) combination,

we simulated ten Hide-and-Seek games. Consider figure 4, which

shows the results for simulations done using Map 1. For both the

strategies, the minimum possible number of seekers were used in all

the simulations. In the case of wave strategy, the simulations were

done using 13 seekers, and in the case of trap they were done using

14. 20 hiders were used in both the scenarios. Both the strategies

perform similarly, giving a median game completion time in the

range of 200-300 steps. In case of wave strategy, there were two

simulations (out of 10) which had much higher game completion

times (569, 776). This may be attributed to some hiders not getting

captured after the first run of the wave strategy, leading to delay

because of subsequent runs of the wave strategy.

Figure 4: Game completion times for Map 1

Consider figure 5, which denotes the results for simulations done

using Map 4. Similar to above, here also we use minimum possible

number of seekers, in each simulation (50 when playing trap, and

22 when playing wave). The number of hiders used is 50 in all the

simulations. Compared to Map 1, the game completion times are

not similar. In the case of wave, the median is 2626.3 game steps,

whereas in the case of trap it is 962.4. This can be directly attributed

to the greater number of seekers used in the case of trap strategy.

The variance exhibited by the wave strategy is greater than that of

trap. When compared to Map 1, there is a magnitude of difference

in game completion times.

Figure 5: Game completion times for Map 4

Figure 6: Environment corresponding to Map 4

4 CONCLUSION
We have presented two seeker strategies - trap and wave, which

guarantee the capture of all hiders, in a Spatio-temporal graph

abstraction, under a minimum seeker requirement criteria. The

agent model, upon which we have built our strategies, has a limited

visibility range. Limited visibility allows an agent to see the envi-

ronment only till a certain maximum distance. This is in contrast

to many guaranteed capture pursuit-evasion methods that assume

unlimited visibility range. We proved that both the strategies deter-

ministically capture all the hiders, even in the presence of an oracle.

We also formulated the minimum number of seekers required for

each of the strategies, to guarantee the capture of all hiders. Lastly,

we introduced abstractions for encapsulating the spatial features of

a 2-D landscape environment such as obstruction, coverage, and

connectivity.
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