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ABSTRACT
Advertising has become a dominant source of revenue generation

on the Internet. Billions of advertisement slots are sold via auctions.

And there are many pricing methods ,e.g., CPM (cost-per-mille),

CPC (cost-per-click), CPA (cost-per-action), OCPM (optimized cost-

per-mille) and so on. In this paper, we study the OCPM method

(i.e., advertisers bid for conversions while pay per mille) under

VCG auction. However, automatically bid in each view to max-

imize advertisers’ conversions while still meet their target cost-

per-conversion in feeds is difficult. To deal with these difficulties,

we propose a reinforcement learning framework, i.e., RSDRL (ROI-

sensitive distributional reinforcement learning). By making full use

of the characteristics of auction rules which are missed by other

methods, we design a reward function to surrogate conversion

events and a bid generation method based on theoretical results.

We also provide some theoretical results to guide hyperparameter

tuning. Last, we validate RSDRL on a large industrial dataset with

millions of auctions. Plenty of experiments (both online and offline)

are used to evaluate the performance of our framework and RSDRL

yields substantially better results than compared algorithms.
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1 INTRODUCTION
Internet advertising has been one of the most important research

fields at the interface of AI and economics. It is a trillion-dollar

market and still rapidly growing. Billions of advertisement slots are

sold via auctions. In industry, the widely used auctions are VCG [5,

12, 21] (e.g., Facebook, Bytedance) and GSP [9] (e.g., Google, Baidu).

And it is proved that GSP has a Nash equilibrium whose outcome is

equivalent to VCG. The platform provides different pricing methods

so advertisers are able to choose any of them according to their

commercial purposes. There are three traditional pricing methods

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

in auction, i.e., CPM, CPC and CPA. To be specific, CPM is more

suitable for brand promotions and maintaining brand awareness,

while CPC and CPA are more suitable for immediate sales growth.

Recently, to better meet different commercial purposes, there are

many more pricing methods proposed like ECPC (enhanced cost-

per-click) in Google
1
, OCPM (optimized cost-per-mille) and OCPC

(optimized cost per click) in Facebook
2
, Alibaba

3
and so on. All

these new pricing methods try to optimize conversions compared

with traditional methods.

CPM, CPC, CPA

ECPC, OCPM, OCPC

Auction

Module1

bid

target bid

Figure 1: Different pricing methods in advertising system

We use Figure 1 to demonstrate how these pricing methods work

in advertising system. Both ‘Module 1’ and ‘Auction’ belong to

advertising system. The CPM, CPC and CPA advertisers need to

manually bid based on their target. While for ECPC, OCPM and

OCPC advertisers, they only need to set a target. Although they

have to pay per click or permille, the platformwill automatically bid

for them to meet their target, i.e., the cost-per-conversion cannot

exceed a certain value. Compared with those traditional methods,

there are many advantages from the perspectives of both sides.

• As for advertisers, these pricing methods make bid optimization

convenient. The platform has to be responsible for their revenue,

i.e., conversions, and achieve finer matching of bid and traffic

quality of page view (PV) request granularity.

• As for platform, these pricing methods can transfer risks for

the uncertainty of conversion to advertisers. In CPA, advertis-

ers have less incentive to provide attractive advertising context

because they only have to pay when the conversion occurs. How-

ever, in these new pricing methods, e.g., OCPM, platform would

automatically decreases the bids for advertisers whose ads have

a low probability of conversions in each auction to meet their

1
https://support.google.com/google-ads/

2
https://www.facebook.com/business/help/494633817315490

3
https://www.alimama.com/index.htm
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cost-per-conversion targets. Thus, these advertisers would win

fewer auctions and get fewer conversions unless they provide

more attractive advertising context to improve their conversion

rate .

Thus, bid optimization is a very important part within Internet

advertising from both the advertiser side and the platform side.

As for advertisers, they want to use less money while win more

auctions; As for platform, there are more objectives, ranging from

revenue maximization [3, 16, 20, 24], to meeting advertisers’ KPI

for a better advertising ecosystem [4]. Some researchers study bid-

ding strategy from the perspective of game theory, e.g., [8, 17–19].

However, they usually rely on knowing each advertisers’ value dis-

tribution and assume that advertisers follow the Nash equilibrium;

Some researchers study bidding strategy from the perspective of

traditional optimization methods, e.g., [10] presents a linear pro-

gramming (LP)-based polynomial time algorithm. However, these

methods have difficulty to deal with new advertisers; Some re-

searchers study bidding strategy from the perspective of learning,

e.g., [14] learns to strategically bid and fools the platform to set

lower reserve; [1] casts this problem as a Markov Decision Process

with censored observations.

We study OCPM in feeds from the perspective of learning, via re-

inforcement learning. Although this has been studied in the original

sponsored search auction, there are many related work [23, 26, 27]

and all of them have good performance on real data. However,

there are still two differences. Firstly, advertising in feeds is quite

different:

• The number of advertisement slots in each query is not fixed.

What’s more, the position of advertisement slots in each query

can also be different. Thus, advertising in feeds is a more com-

plicated dynamic environment.

• The allocation structure in feeds differs from that in the original

sponsored search auction. In feeds, if the sponsored messages

are presented in a coherent context, then the interaction rate

(i.e., CTR, CVR) can be different. For example, Nike ads would

get more attention when surrounded by sports news.

These call for a new model for bid optimization of OCPM advertis-

ers in feeds, rather than those already used; Secondly, we further

improve the performance of reinforcement learning by making full

use of the characteristics of auction rules which are missed by these

methods. Our contributions can be summarized as follows.

• We propose a new model, i.e., RSDRL (ROI-sensitive distribu-

tional reinforcement learning ) to deal with this problem and also

design a new reward function and a bid generation method based

on theoretical results. Besides, we also provide some theoretical

results to guide hyperparameter tuning.

• We testify the effectivity of RSDRL on a large industrial dataset

with millions of auctions through many experiments.

1.1 Additional related work
We briefly review two fields related to our work.

• Bid optimization in RTB: In the RTB (real-time bidding) pro-

cess, the advertiser receives the bid request of an ad impression

with its real-time information and the very first thing to do is to

set right bid to maximize key performance indicator (KPI) such

as conversion or profit [22]. There is a growing body of research

that studies this problem [4, 11, 15, 25, 26].

In [26], they propose a functional framework to optimize bid-

ding strategy. However, their results rely on an assumption that

the auction winning function has a consistent concave shape

form; In [28], they propose a bid optimization approach which

is polynomial-time and can achieve the overall optimization

of advertisers’ interests, user experience and platform revenue;

[23] provide a deep reinforcement learning algorithm and they

sample an auction in every 100 auctions interval as the next

state; [27] also propose a deep reinforcement learning frame-

work. They observe that auction sequences of two days share

similar transition patterns at a proper aggregation level. So they

formulate their model at hour-aggregation level of the auction

data.

• Distributional reinforcement learning: Distributional RLmod-

els the distribution of returns from a state instead of only its

expected value. The first distributional RL algorithm, i.e., C51,

makes great improvement on the Atari-57 benchmark when

compared with previous DQN variants [2]. Subsequently, [13]

combined C51 with enhancements such as prioritized experience

replay, n-step updates, and the dueling architecture. [7] and [6]

improve the results of C51 by using quantile regression to ap-

proximate the full quantile function for the state-action return

distribution.

2 PRELIMINARIES
In this section, we will formulate the problem of OCPM bid opti-

mization in feeds.

A sequence of news items is presented to a user as he scrolls

down the screen of a smartphone. Many ad slots are inserted among

them. Those slots are sold via VCG auction and advertisers would

bid for them. These advertisers can select different pricing methods

for different business purposes
4
, e.g., CPC (cost per click), CPM

(cost permille), OCPM (optimized cost permille) and so on. Here, we

only focus on the bid optimization for OCPM advertisers. In OCPM

pricing method, advertisers can bid for conversion and actually

pay per mille. First, advertiser can set a target cost-per-conversion;

Then OCPM pricing method works by automatically bidding for

each view and ensures that advertisers only pay when their ads can

be seen. And most importantly, the average cost-per-conversion is

kept below the target.

Let Ii be the set of auctions which advertiser i participates in.
If l, l ′ ∈ Ii and l < l ′, then i participates in l before l ′. Hence
we can assume Ii = {1, 2, . . . , |Ii |} without loss of generality. For

l ∈ Ii , we use pctr li , j and pcvr li , j to denote the predicted click-

through rate and predicted conversion rate for i if he is allocated

to slot j in auction l . If j < j ′, then pctr li , j ≥ pctr li , j′ and pcvr
l
i , j ≥

pcvr li , j′ . We use bli to denote the bid for advertiser i in auction l . For

OCPM advertiser i , we can mathematically formulate his objective

as Equation (1) where α li ∈ {0, 1} is a binary variable to denote

the conversion number in auction l , pli denotes his cost in l and
vi denotes the target cost-per-conversion. The only constraint in

Equation (1) indicates that the average cost-per-conversion should

4
As far as we known, it’s quite common in industry.
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be no greater than vi .

max

|Ii |∑
l=1

α li (1)

s .t .

∑ |Ii |

l=1
pli∑ |Ii |

l=1
α li

≤ vi

The representation of ROI roili is derived as Equation (2), which

denotes the ratio of average cost-per-conversion to vi for the first l
auctions.

roili =

∑l
l ′=1

pl
′

i

vi
∑l
l ′=1

α l
′

i

(2)

2.1 VCG auction
It consists of two functionsM = (σ ,p), where the allocation rule is

a function σ : Rn → Rn , which takes advertisers’ bids as input and

outputs an n-dimensional vector indicating the slot allocated to

each advertiser (i.e., σi = j ≤ m denotes advertiser i is allocated to

slot j and σi =m+1 denotes advertiser i does not win any slot). The
payment rule is a function p : Rn → Rn that maps advertisers’ bids

to an n-dimensional non-negative vector specifying the payment

of each advertiser (i.e., advertiser i has to pay pi if he wins slot σi ).
To simplify notations, we also use σ and p to denote the allocation

and payment, respectively.

In auction l , there are 4 (i.e., CPC, CPM, CPA, OCPM) kinds of

advertisers. The allocation σ l
is determined by solving Equation (3).

The βl
i ,σ li

is different for different pricing method, that is, βl
i ,σ li
=

pctr l
i ,σ li

· pcvr l
i ,σ li

if i is an OCPM advertiser or a CPA advertiser;

βl
i ,σ li
= pctr l

i ,σ li
if i is a CPC advertiser; βl

i ,σ li
= 1 if i is a CPM

advertiser. Thus, βl
i ,σ li

· bi denotes the expected bid based on the

corresponding pricing method. It’s worth noting that βl
i ,σ li

≥ βl
i ,σ̄ li

holds if σ li ≤ σ̄ li .

σ l ∈ arg max

σ̄ l

n∑
i=1

βl
i ,σ̄ li

· bli (3)

The payment pl is determined by Equation (4).

pli′ = max

σ̄ l

n∑
i=1,i,i′

βl
i ,σ̄ li

· bli −
n∑

i=1,i,i′
βl
i ,σ li

· bli . (4)

In a word, VCG finds an allocation to maximize the expected

reported bids (i.e., social welfare) and charges each advertiser for

the cost his presence imposes on the other advertisers.

Lemma 2.1. The objective of CPC, CPM, CPA advertisers in each
auction can be mathematically formulate as Equation (5). And they
have a dominant bid strategy in VCG auction [5, 12, 21].

uli = βl
i ,σ li

bli − pli (5)

Lemma 2.1 denotes that for advertisers with other pricing meth-

ods, there is a dominant bid strategy for them in VCG auction. Here,

a dominant strategy is better than another strategies for one ad-

vertiser, no matter how his opponents may bid. Thus during the

optimization, we do not need to worry about that these advertisers
would change their bids.

2.2 Model
Based on the before mentioned OCPM bid optimization problem,

we now formulate it into a reinforcement learning model. In auction

l ,

• State sli : For advertiser i , the state is represented as sli =<

vi , t, roi
l
i ,
−−−→
auct >, where t denotes the current time, and

−−−→
auct

is the feature vector related to the auction that we can get from

the advertising environment.

• Action ali : The bid.

• Reward ri (s
l
i ,a

l
i ): The income gained according to a specific

action ali under state s
l
i .

• Policy π (sli ): Action π (sli ) should be taken under state sli .
• Episode ep: In this paper, we treat one day as an episode.

Finally, our goal is to find a policy π (·) which determines the action

ali under state s
l
i to maximize the expected accumulated rewards:∑ |Ii |

l=1
γ l−1ri (s

l
i ,a

l
i ), where γ is the discount rate used in a standard

RL model.

3 REWARD FUNCTION DESIGN
In this section, we will first discuss the difficulties of designing

reward function; Then a specific reward function will be proposed

according to some theoretical results.

In our problem, the goal of OCPM advertiser is to maximize his

conversions with the cost-per-conversion constraint (Equation (1)).

However, using conversions to design an appropriate reward function
has the following difficulties.

• Conversion only provides limited information for train-
ing since it is an event with low probability: As for adver-
tiser i in auction l , the probability of conversion equals pctr l

i ,σ li
·

pcvr l
i ,σ li

. It’s not difficult to imagine that different actions (i.e.,

bids) may lead to the same result (i.e., zero conversion) since it

is an event with low probability in industry.

• The cost-per-conversion constraint: This constraint is criti-
cal in theOCPMpricingmethod.Without the cost-per-conversion

constraint, the bid optimization would be trivial (i.e., bid high

enough to win the first slot in each auction). However in Equa-

tion (1), we need to balance the conversion number against the

corresponding cost, which contributes to the difficulty in reward

function design. Using conversion number as reward function

cannot provide this information.

3.1 A reward design methodology
It becomes crucial to design a new reward function that is sim-

ple enough and can handle difficulties mentioned before. And we

handle them as:

• The reward function is designed in terms of advertiser’s payment

instead of his conversions based on Theorem 3.1.

• Wedeal with the cost-per-conversion constraint by adding penalty

in terms of advertiser’s payment. This penalty has theoretical

guarantee as we mentioned in Section 6.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1361



Theorem 3.1 implies that higher payment means more expected

conversions. And it provides the design implication that the reward
function can be formulated in terms of advertiser’s payment.

Theorem 3.1. In VCG auction l , for OCPM advertiser i , the fol-
lowing three statements are equivalent.

(1)E[α li ] ≥ E[α̂ li ], (2)bli ≥
ˆbli , (3)pli ≥ p̂li

where if advertiser i bids bi (or ˆbi ), then he would get E[α li ] (or E[α̂
l
i ])

conversion and has to pay pli (or p̂
l
i ).

Due to limited space, we omit the proof here. Thus, we formulate

the reward function as Equation (6) where pli denotes the payment

of i when he uses ali to generate bid.

ri (s
l
i ,a

l
i ) = p

l
i − max{λ(pli − βl

i ,σ li
· vi ), 0} (6)

where λ is a positive constant. Equation (6) can be maximized

when pli is equal to βl
i ,σ li

· vi . We use βl
i ,σ li

(i.e., the predicted

value of E[α li ]) instead of α
l
i because α

l
i is 0 with a high probability

(i.e., conversion happens rarely). So using α li only provides limited

information for training as we mentioned before. Actually, with a

carefully selected λ, this reward would be negative in each auction

if the cost-per-conversion constraint is broken. There will be more

details on the choice of λ in Section 6.

4 BID GENERATION
In this section, firstly, the bid generation method in RSDRL will

be introduced; Then we show how the relaxation ( i.e., using βl
i ,σ li

instead of α li in Equation (6)) can violate the cost-per-conversion

constraint; Finally, we provide an algorithm to deal with this viola-

tion.

Given action ali , the bid takes the form of Equation (7). Instead of

generating bid directly, the bid is the product of two parts, the base-

bid part ( i.e., vi ) and the adjustment part (i.e., ali ). The main reason
is that the value of bid is not instructive. It’s not hard to imagine

that advertiser i who sells notebooks needs a small bid to win an

auction while advertiser î who sells cars needs a huge bid to win

an auction. What counts is the ratio of bid to cost-per-conversion

target (i.e., vi ) in the complicated dynamic environment.

bli = vi · (1 + a
l
i ) (7)

4.1 Cost-per-conversion constraint violation
Using βl

i ,σ li
instead of α li could violate the cost-per-conversion con-

straint . The reason is that the predicted conversion number can be
overvalued. We mathematically formulate this violation as Equa-

tion (8). 
∑ |Ii |

l=1
pli ≤ vi

∑ |Ii |

l=1
βl
i ,σ li∑ |Ii |

l=1
pli > vi

∑ |Ii |

l=1
α li

(8)

The first equation in Equation (8) implies that the cost per conver-

sion is less thanvi if conversion number equals the predicted value.

However, the second equation implies that the cost per conversion

is greater than vi actually.

We also use real data to demonstrate this phenomenon. Let

pcvr_diff be Equation (9). The value of pcvr_diff is less than 1 if
the predicted conversion number is overvalued. We illustrate the

pcvr_diff of 320363 advertisers in Table 1. There is a gap between

predicted conversions and real conversions. The pcvr_diff of 71%

advertisers is less than 0.8; The pcvr_diff of 12% advertisers is more

than 1.2; And the pcvr_diff of 18% advertisers is between 0.8 and

1.2.

pcvr_diff =

∑ |Ii |

l=1
α li∑ |Ii |

l=1
βl
i ,σ li

(9)

Table 1: The proportion of different pcvr_diff

The pcvr_diff range Proportion

[1.2,+∞) 12%

(0.8, 1.2) 18%

[0, 0.8] 71%

There are two reasons for this difference.

• Although CTR (or CVR) predication has been widely studied,

it’s still a central problem in the computational advertising do-

main. There are too many influence factors, i.e., user behaviors,

ads features and so on. In feeds, this predication can be more

complicated because the externalities feed items shown in other

positions may impose on the probability that an ad in a particular

position receives a click.

• In auction l , for OCPM advertiser i , α li can be regarded as a

sample drawn from a binomial distribution where the probability

of success equals βl
i ,σ li

. Even the predication is accurate, there

still exists variance.

Of course, we do not provide an algorithm that can make an accurate
predication. In what follows, we propose a method to prevent the

cost-per-conversion constraint violation and use experiments to

verify its effectivity.

4.2 ROI-sensitive agent
Distributional reinforcement learning provides an effective way to

learn the state-action return distribution. By re-parameterizing a

distribution over the sample space, this gives rise to a large class of

risk-sensitive policies. Here, ‘risk’ refers to the uncertainty over pos-

sible outcomes, and risk-sensitive policies are those which depend

on more than the expectation of the state-action return distribution.

Here, we build our algorithm based on IQN [6], a well-known

distributional reinforcement learning which learns an implicit rep-

resentation of the return distribution by using quantile values. Let

Qτ (s,a) be the quantile function at τ ∼ U ([0, 1]) for the random

variable Q(s,a). Let ρ : [0, 1] → [0, 1] be a distortion risk measure.

Then, the expectation ofQ(s,a) under ρ(·) is given by Equation (10).

Qρ (s,a) = Eτ∼U ([0,1])[Qρ(τ )(s,a)] (10)

Denote by πρ the policy under ρ(·) as Equation (11).

πρ (s) = arg max

a
Qρ (s,a) (11)
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This provides an algorithmic implication. With the change of

roili (Equation (2)), we can use different ρ(·). For example, if roili is
high, ρ(·) can give more weights to small quantiles of Q(s,a). ρ(·)
takes the form of Equation (12).

ρ(τ ) =

{
τ if roili ≤ θ

min{τ , τ̂ ∼ U ([0, 1])} otherwise

(12)

where θ is a pre-defined constant. When roili is higher than θ , this
is a risk-avoiding attitude which emphasizes low returns. Thus,

the agent is willing to take a loss relative to the expected return

in exchange for certainty. Based on Theorem 3.1 and the reward

function (Equation (6)), agent would bid small if roili is higher than
θ . We use this method to model the ROI-sensitive agent in RSDRL

framework.

5 ALGORITHM
Now we present our algorithm. It is built based on IQN actually.

The process an agent interacting with the auction system within

RSDRL can be illustrated in Figure 2. Comparing with the inter-

acting process of traditional reinforcement learning, there are two

differences.

• ROI update process: Before the ROI-sensitive agent makes his

decision in auction l , roili will be updated (Equation (2)). Then

based on roili , his attitude to risk will be determined.

• Bid generation process: The action is an adjustment factor and

the bid is generated according to Equation (7).

The complete ROI-sensitive distributional reinforcement learning

framework is designed for OCPM advertiser i and presented in

Algorithm 1.

Algorithm 1 RSDRL

Randomly initialize weights µ for network Q

Randomly initialize weights µ ′ = µ for target network Q ′

Initialize replay memory D

Initialize roili = 0

1: for episode = 1 to K do
2: for l=1 to |Ii | do
3: Get ρ based on Equation (12)

4: With probability ϵ select a random action ali
5: Otherwise get action ali according to Equation (11)

6: Bid with vi · (1 + a
l
i )

7: Get reward r li
8: Observe next state sl+1

i
9: Store transition (sli , s

l+1

i ,a
l
i , r

l
i ) in D

10: Update roili
11: Sample random mini-batch of transitions from D

12: Perform a gradient descent step on IQN loss with respect

to the µ
13: Every C steps reset Q ′ = Q
14: end for
15: end for

During the inner loop of the algorithm, the ROI-sensitive agent

selects and executes actions according to an ϵ-greedy policy based

on Qρ (·). Then, bids are produced for the OCPM advertiser to com-

pete with other bidders. Based on the allocation rule and payment

rule of VCG auction, reward and the next state can be obtained.

When the ad is presented to a user, α li can also be obtained. Thus

we can update the value of roili . Finally, the network is updated

by performing a gradient descent according to the IQN loss [6]

calculated based on a mini-batch of (s,a, s ′, r (s,a)) sampled from

experience.

𝑟𝑖𝑙+1

𝑠𝑖𝑙+1

𝜌𝑖𝑙
𝑟𝑖𝑙

𝑠𝑖𝑙

𝑟𝑖𝑙

𝑠𝑖𝑙
Auction environment

ROI update

ROI-sensitive agent

𝑣𝑖 ∙ (1 + 𝑎𝑖𝑙)

𝑎𝑖𝑙

Figure 2: Illustration of bid process based on RSDRL

6 IMPLEMENTATION DETAILS
In this section, we will describe some implementation details for the

range of penalty in reward (i.e., λ in Equation (6)), the range of action

(i.e., ali in Equation (7)) and the computation of roili (Equation (2)).

Lemma 6.1. In auction l , if λ ≥
pli

pli −β
l
i ,σ li

·vi
, then any violation of

cost-per-conversion constraint would receive a negative reward.

Lemma 6.1 denotes that the value of λ should be greater than

some threshold . Otherwise, the reward function can not decode

the cost-per-conversion constraint as follows:

ri (s
l
i ,a

l
i ) = p

l
i − max{λ(pli − βl

i ,σ li
· vi ), 0}

≥ (1 − λ)pli + λβ
l
i ,σ li

· vi

The inequality holds if pli ≥ βl
i ,σ li

· vi . For example, if λ is less

than 1, reward would always be positive, which may lead to the

violation of cost-per-conversion constraint. So with a carefully

selected λ, this reward would be negative in each auction if the

cost-per-conversion constraint is broken. One concern might be

that the cost-per-conversion constraint is used to guarantee that

the average cost-per-conversion is no greater than vi , so we do

not need to meet this constraint in each auction. A mild penalty

method may be better. However, the data (Table 1 in Section 4) told

us that βl
i ,σ li

is always overvalued so we may not meet this cost-per-

conversion constraint actually even reward is always positive in

each auction. What’s more, even if βl
i ,σ li

is accurate, we can boost

its value so this form of penalty still works.

Lemma 6.2. In RSDRL, ali < 0 is strictly dominated by ali = 0.

Lemma 6.2 provides the intuition that ali is at least 0 in experi-

ments. To meet the cost-per-conversion constraint, auctions can be

divided into two categories: auctions where pli ≤ βl
i ,σ li

·vi and auc-

tions wherepli > βl
i ,σ li

·vi . As for those auctions in the first category,
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the payments of those auctions satisfy the cost-per-conversion con-

straint naturally; While for those auctions in the second category,

it is still reasonable to win a part of them depending on roili . Based
on the allocation rule and payment rule of VCG (Equation (3) and

4), the payment is always less than βl
i ,σ li

· bli . Hence a
l
i < 0 only

decreases the number of winning auctions that belong to the first

category.

As for roili , it is not hard to imagine that:

• It is not well-defined at the very beginning: Suppose that the

first conversion event happens in auction l , then
∑l−1

ˆl=1

α
ˆl
i equals

0 which makes roil−1

i meaningless.

• It is not sensitive to some cost-per-conversion cases: Suppose

that there is a case where roili equals 1 and

∑l
ˆl=1

α
ˆl
i → ∞, then

the denominator of roili is huge. Therefore for the next few

conversions which cost a little, the ROI would always equal to

about 1 even the average cost of these conversions is small.

To overcome those difficulties, we use the k-ROI sensitive agent

during implementation. To simplify notations, we still use roili to
denote this as Equation (13) shows.

roili =

∑l
ˆl=t lk

p
ˆl
i

k · vi
(13)

Here t lk = min{¯l | ⌊

∑¯l
ˆl=1

α ˆl
i

k ⌋ + k > ⌊

∑l
ˆl=1

α ˆl
i

k ⌋}. In a word, we divide

the auction stream into intervals. Each interval may have different

length while contains the same number (i.e., k) of conversions.

7 EXPERIMENTS
Our methods are tested by both offline evaluation and online eval-

uation on a large e-commerce platform with real advertisers and

auctions. The dataset will be introduced at first. Then for the offline

evaluation, the reproduction of VCG will be introduced and we

also quantitatively compare our methods with two state-of-the-art

methods and a baseline. Finally, we will present the results of on-

line evaluation when several OCPM advertisers uses RSDRL with a

standard AA/BB test configuration.

7.1 Dataset
We randomly select 1000OCPM advertisers in the large e-commerce

platform as training set. Each advertiser participates in over 10 mil-

lion auctions per day. All auction instances which these advertisers

participate in are extracted from the log for seven days of late June,

2019. Each auction instance contains the following information

(Table 2).

Table 2: The information contained within each instance

Number Name Description

1 predicted features i.e., pctr, pcvr

2 ad features i.e., pricing method, content

In order to evaluate the effectiveness of RSDRL, we also select

another 10 OCPM advertisers and their involved auctions as test

set.

7.2 The Reproduction of VCG
We obtained the simulated CTR and CVR at hour-aggregation level

from the auction log, i.e., clicks within an hour is divided by views

in that hour to get the simulated CTR in that hour. Then using

the simulated CTR and CVR, we simulate the click and conversion

events in our experiments.

We also extract the necessary ingredients of their competitors

to simulate the auction environment in each auction instance, e.g.,

the competitors’ bids. These ingredients would NOT be used as

features in our training. Then based on Equation (3) and 4, we can

reproduce the VCG auction for our experiments.

7.3 Compared methods
The compared methods in our experiments include:

• Truthful bidding: In each auction, OCPM advertiser i always
truthfully bid (i.e., vi ). We treat this algorithms as the fundamen-

tal baseline of the experiments.

• LADDER [23]: LADDER is a deep reinforcement learning algo-

rithm that can successfully learn bidding policies on real data.

They aim at increasing the revenue of platform while also de-

creasing the cost-per-click of advertisers at the same time. In

order to do so, they sample an auction in every 100 auctions in-

terval as the next state. And they use net profits of every auction

as rewards (i.e., βli ,σ (i)vi − pli in auction l ).

• SS-RTB [27]: SS-RTB is also a deep reinforcement learning al-

gorithm for bidding optimization in sponsored search auction.

They try to minimize the cost-per-conversion while guarantee a

certain amount conversions. As in [27], they observe that auc-

tion sequences of two days share similar transition patterns at a

proper aggregation level. Thus, they formulate the model at hour-

aggregation level of the auction data. And the reward function

is designed in terms of conversions.

In our experiment, there are 178 features, including advertiser-

related features, auction-related features, network flow predication

and so on. The continuous features are normalized and the discrete

features are embedded with one-hot encoding. We use a deep model

with 3 fully connected layers. The value of λ is 5.7 and the maximum

value of ali is 2, i.e., the generated bids are less than 3 times of their

target cost-per-conversion. All algorithms share the same network

architectures and the same provided features.

7.4 The offline evaluation
Figure 3 denotes the payment results of these 4 methods. The x-

axis represents the training epochs and the y-axis represents the

payment of OCPM advertisers in testing data. We use the payment

as a critical metric because of Theorem 3.1. As Figure 3 reveals, our

algorithm is better than the others in terms of payment. This experi-

ment verifies the effectivity of our algorithm. It is worth noting that

all RL methods is better than the baseline (i.e., always truthfully

bid). The reason is that OCPM advertiser wins more auction if he

overbids appropriately. Since the payment is always less than his
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bid based on the VCG auction, overbidding is a good strategy for

OCPM advertiser. Besides, our algorithm is significantly better than

the other two RL based algorithms from the very beginning. The

reason is that for OCPM advertiser i , the bid in our algorithm is the

product of two parts (Equation (7)), i.e., the base-bid partvi and the

adjustment part 1 + ali . As a result, the bid is more than vi . While

in the other RL based algorithms, they generate bid directly which

can be far less than vi . Thus, our algorithm can get better results at

the very beginning. We verify the effectivity of this bid generation

method by experiments, as shown in Figure 5.

Figure 3: The payment comparisons of four algorithms

Figure 4 implies the conversion results of these four methods.

The x-axis represents the training epochs and the y-axis represents

the conversion number of OCPM advertisers in testing data. Based

on this figure, all reinforcement learning method is better than the

baseline. And these results is in accordance with those in Figure 3

which implies the effectivity of our reward function. We think this

improvement is significant actually. It doubles the CONVERSIONS

of OCPM advertisers on industry real testing data, in other words,

it helps those OCPM advertisers double their revenue. Therefore,

we conclude reinforcement learning is useful in this optimization

and RSDRL has a good performance on real industry data.

In Figure 5, we compare the payment results of the following

algorithms.

• Baseline:Truthful bidding.

• Base_bid: This is exactly our algorithm.

• Non-base_bid: This is also our algorithm except that the bid

is generated directly, that is, directly learning bid bli instead of

learning ali to generate bid vi (1 + a
l
i ).

The x-axis represents the training epochs and the y-axis represents

the payment of OCPM advertisers in testing data. Based on the ex-

periment results, Base_bid is better than Non-base_bid, especially

at the very beginning. This verifies our assumption that the value

of bid is not instructive. What counts is the ratio of bid to cost-

per-conversion target in the complicated dynamic environment.

Therefore, decomposing bid generation into two parts like Equa-

tion (7) can have better performance than generating bid directly.

What’s more, this proposed bid generation methods also provides

a good start point. With a carefully selected range of ali (based on

Lemma 6.2), it can outperform baseline from the very beginning.

Figure 4: The conversion comparisons of four algorithms

Figure 5: The payment comparisons of different action spaces

In Figure 6, the effectivity of ROI-sensitive agent is also verified.

The x-axis represents the training epochs and the y-axis represents

the ratio of total payment to total value, i.e., Equation (14).

ratio =

∑ |Ii |

l=1
pli

vi
∑ |Ii |

l=1
α li

(14)

Tomeet the cost-per-conversion constraint in Equation (1), the ratio

should be less than 1. The orange line denotes the result for the

ROI-neutral agent, i.e., ρ : x → x . While the blue line denotes the

result for the ROI-sensitive agent. As Figure 6 shows, our algorithm

can meet the cost-per-conversion constraint by using ROI-sensitive

agent.

Figure 7 denotes the increased revenue of platform compared

with baseline. The x-axis represents the training epochs and the

y-axis represents the increased revenue of platform. It shows that

maximizing the objective of OCPM advertiser is a win-win methods

for both advertisers and platform, that is, it can increase the number

of conversions for advertisers and increase the revenue of platform

simultaneously. The intuition of the increased revenue comes from

two aspects:

• OCPM advertisers can win more auctions, and for these auctions,

they have to pay more compared to the original winner by using

RSDRL.
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• OCPM advertisers bids higher in those auctions where they still

lose. For these auctions, the winner has to pay more based on

the payment rule of VCG (Equation (4)).

Figure 6: The ratio of total payment to total value

Figure 7: The increased revenue of platform comparedwith baseline

Figure 8 denotes the part of increased revenue of platform com-

pared with baseline where OCPM advertisers force the winner to

pay more. The x-axis represents the training epochs and the y-axis

represents the corresponding increased revenue of platform. This

part consumes a SMALL proportion of increased revenue when

compared with Figure 7. It only takes less than 10 percent share of

the total. We think this is a POSITIVE result actually since advertis-

ers with other pricing method would not feel like they have to pay

more when the platform tries to maximize the objective of OCPM

advertiser.

7.5 The online evaluation
This section presents the results of online evaluation in the real-

world auction environment where multiple OCPM advertisers have

adopted RSDRL. We use the AA/BB-test to testify the effectiveness,

as Table 3 shows. There are 4 columns denoting 4 groups. GroupsA1

and A2 are the results of method which is adopted by the platform.

Groups B1 and B2 are the results of RSDRL.

Figure 8: The part of increased revenue of platform compared with
baseline caused by the highest lost bid is bidden up

By using AA/BB-test instead of A/B-test, we can reduce the risk

that B would win just by chance. We sum up the results of 3 days

in October, 2019, thus we can also reduce the risk of fluctuation

in different days. The value of ali is less than 2, i.e., we cannot

bid over 3 times as many as the cost-per-conversion target. As for

conversions, both B1 and B2 outperform A1 and A2, they improve

the conversions for about 5%; As for payment, both B1 and B2 also

outperform A1 and A2, they improve the payment more than 12%;

As for ROI, all of them is less than 1, hence the cost-per-conversion

constraint is satisfied.

Table 3: The results of online evaluation when multi OCPM adver-
tisers use RSDRL

A1 A2 B1 B2

conversions 3058 3026 3213 3189

payment 162329 160176 180875 192263

ROI 0.80 0.81 0.87 0.93

In a word, it is convincing to say that RSDRL can handle the

multiple OCPM advertisers.

8 CONCLUSION
In this paper, we study the bid optimization for OCPM advertiser

in feeds and provide a distributional reinforcement learning frame-

work, named RSDRL. By making full use of the characteristics of

VCG auction, we design a reward function to surrogate conversion

events and a bid generation method based on theoretical results.

We also provide some theoretical results to guide hyperparameter

tuning. Plenty of experiments are used to evaluate the performance

of our framework and RSDRL yields substantially better results

than compared algorithms.
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