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ABSTRACT
We study a two-player stochastic multi-armed bandit (MAB) prob-

lemwith different expected rewards for each player, a generalisation

of two-player general sum repeated games to stochastic rewards.

Our aim is to find the egalitarian bargaining solution (EBS) for the

repeated game, which can lead to much higher rewards than the

maximin value of both players. Our main contribution is the deriva-

tion of an algorithm, UCRG, that achieves simultaneously for both

players, a high-probability regret bound of order
˜O

(
T 2/3

)
after any

T rounds of play. We demonstrate that our upper bound is nearly

optimal by proving a lower bound of Ω
(
T 2/3

)
for any algorithm.

Experiments confirm our theoretical results and the superiority of

UCRG compared to the well-known explore-then-commit heuristic.

KEYWORDS
multi-armed bandits, egalitarian bargaining solution, safety, indi-

vidual rationality
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1 INTRODUCTION
Multi-agent systems are ubiquitous in many real-life applications

such as autonomous drones, games, computer networks, etc. Agents

acting in such systems are usually modeled as self-interested, aim-

ing to maximize their own individual utility. We focus on stochastic

two-player general-sum repeated games, a setting which captures

the key challenges faced when interacting in a multi-agent system.

We consider the case where in each round, the two players (the

agent and its opponent) simultaneously select actions and then each

obtain a numerical reward. The goal of each player is to maximize

its individual accumulated reward over multiple rounds. Thus, the

problem can be seen as an instance of the multi-agent multi-armed

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

bandit problem, where the reward obtained by each agent depends

on all agents’ actions.

An agent in such a game will behave differently depending on

what it assumes about the opponent. Powers et al. [31] propose rig-

orous criteria that characterise behaviours: (1) Safety: against any
opponent, the average reward is close to the maximin; (2) Individual
Rationality: in self-play, the average reward is Pareto efficient

1
and

individually not below the maximin. However, Individual Ratio-

nality is not well defined, since due to various folk theorems [30],
for infinite-horizon undiscounted reward, every outcome that is

feasible and individually not below the maximin can be realized as

a Nash Equilibrium of the repeated game. In short, the set of Indi-

vidually Rational outcomes may be infinite. So the main question

is which outcome should one aim for and why?

For two agents, this question has received a lot of attention in

the Bargaining Problem [29]. This is a game where, if the agents

play without any bargaining, then their baseline utility is achieved

at the so-called disagreement point. However, by bargaining, they

can reach an agreement that will give them higher utility. Many

solutions to the problem have been proposed (Nash [29], Egalitarian

[21], Utilitarian [39], Kalai–Smorodinsky [22]), based on axiomatic

properties of the corresponding solution concept.

In this paper, we strengthen the Individual Rational criterion

proposed by Powers et al. [31] and require the agents to be close

to the unique solution of a Bargaining Problem, with the disagree-

ment point being the maximin of both players. We also pick the

Egalitarian Bargaining Solution (EBS) since, as opposed to the other

solutions, it has been shown [21] to be connected to some fairness
and equality concepts, and in particular to one of the Rawls’ notions

of justice [33]. EBS also enjoys strong mathematical properties. On

top of the individual rationality criterion, it also satisfies indepen-
dence of irrelevant alternatives (i.e. eliminating choices that were

irrelevant does not change the choices of the agents), individual
monotonicity (if a player has better options in one game compared

to another game, then that player should get a weakly-better value

in the game with better options) and (importantly) uniqueness.

Related work. There is a growing interest in the multi-agent

multi-armed bandit problem. Many of the works [3, 9, 16, 23, 35]

have focused on maximizing social welfare, i.e. the sum of rewards

1
i.e., it is impossible for one agent to change to a better policy without making the

other agent worse off.
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over all agents. However, this may not make sense under individual

rationality since it is possible for an agent to obtain lower than

what it could have obtained without cooperation regardless of the

strategies other agents follow [8]. We illustrate this issue in Exam-

ple 1.1.

A second line of research has focused on single-stage equilibria

such as single-stage Nash Equilibrium or single-stage Correlated

Equilibrium [2, 5, 6, 11, 36]. Aiming for single-stage equilibria for

repeated games is problematic [8] since the agents can usually ob-

tain individually much larger rewards by cooperating. Moreover,

unlike this paper, many previous works [8, 26, 28, 31, 38] focus

on deterministic rewards. Therefore their work does not deal with

uncertainty about the rewards. As we show experimentally in this

paper, a well-known heuristic that spends some initial rounds to

explore and learn about the rewards is inferior to our proposed

algorithm.

Other works consider discounted rewards, effectively decreasing

the effect of future actions [12, 15, 17, 18, 24, 25, 27, 32, 41]. In

contrast, we consider the case of infinite-horizon average rewards.

Works such as [2, 5] provide the notion of "no-regret" which is

orthogonal to our setting. Indeed, their notion of regret is not

related to a lack of information about the rewards.

Brafman and Tennenholtz [7], Wei et al. [40] tackle online learn-

ing for a generalization of repeated games called stochastic games.
However, they consider zero-sum games where the sum of the re-

wards of both players for any joint-action is always 0. In our case,

we look at the general sum case where no such restrictions are

placed on the rewards.

Our work is also related to multi-objective multi-armed bandits

[14] by considering the joint-actions as arms controlled by a single

player. Typical work on multi-objective multi-armed bandits tries

to find any solution that is as close as possible to the Pareto fron-

tier. However, not all Pareto efficient solutions are acceptable as

illustrated by Example 1.1. Instead, our work shows that a specific

Pareto efficient solution (the EBS) is more desirable.

Contributions. In this work,

• We strengthen the Individual Rationality criterion [31] that

agents in a multi-agent system should aim for. We do this by

requiring the agents to be close to the unique solution of a

Bargaining Problem with disagreement the maximin of both

players.

• We propose using the EBS due to its connection to fairness,

justice and equality contrarily to other Bargaining solutions.

• We show that the EBS can be achieved by a stationary policy

that has non-zero probability on at most two joint-actions

(Proposition 4.1). We also show that this EBS policy gives

an equal amount above the maximin (called advantage) of

both players except in degenerate cases where one player is

already receiving its maximum advantage (Proposition 4.2).

• We present a learning algorithm UCRG (Upper Confidence

for Repeated Games) that can achieve the EBS in self-play

for two player multi-armed bandit problems with stochas-

tic rewards from a distribution unknown to both players.

We derived a high probability upper bound of
˜O

(
T 2/3

)
2
for

2
We used

˜O to hide logarithmic factors.

UCRG’s regret (the difference between the value it achieved

and that of an optimal EBS policy) after any number of T
rounds. Importantly, our upper bound holds individually for

both players and for an unknown T . Also, our bound is not

asymptotic and holds for any finite total number of rounds

T (Theorem 4.3).

• We derive a lower bound on the regret for any learning al-

gorithm by giving an example game in which any algorithm

would have to suffer Ω
(
T 2/3

)
regret demonstrating that our

upper bound is optimal up to poly-logarithmic factors (The-

orem 4.5).

• We present an exact polynomial-time algorithm that can

compute an EBS for a game with known deterministic re-

wards in Equation (6).

• We perform experiments that validate our theoretical bounds

and show our approach achieves a smaller regret compared

to a well-know heuristic (Section 6).

Paper organization. The paper is organized as follows: Section
2 presents formally our setting, assumptions, as well as key defini-

tions needed to understand the remainder of the paper. Section 3

shows a description of our algorithm while section 4 contains its

analysis as well as the lower bound. We conclude in section 7 with

an indication about future works.

Example 1.1 (Comparison of the EBS value to other concepts). In
Table 1, we present a game and give the values achieved by the

single-stage NE, and Correlated Equilibrium [15] (Correlated); max-

imizing the sum of rewards (Sum), and a Pareto-efficient solution

(Pareto). In this game, the maximin value is ( 3

10
, 3

10
). Sum plays the

pair (C,D) which leads to
1

10
for the first player, much lower than

its maximin. Pareto is also similarly problematic. Consequently, it

is not enough to converge to any Pareto solution since that does

not necessarily guarantee rationality for both players. Both NE
and Correlated fail to give the players a value higher than their

maximin while the EBS (computed using Equation (6)) shows that a

high value ( 23

25
, 23

25
) is achievable by playing (C,D) and (D,C) with

appropriate probabilities. A conclusion similar to this example can

also be made for all non-trivial zero-sum games.

C D

C
4

5
, 4

5

1

10
, 9

5

D
9

5
, 0 3

10
, 3

10

(a) Game

Maximin EBS NE Sum Correlated Pareto

3

10
, 3

10
≈ 23

25
, 23

25

3

10
, 3

10

1

10
, 9

5

3

10
, 3

10

9

5
, 0

(b) Comparison of solutions

Table 1: Comparison of the EBS to other concepts
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2 BACKGROUND AND PROBLEM
STATEMENT

We focus on two-player multi-armed bandit problems. At round

t , both players select and play a joint action at = (a
i
t ,a
−i
t ) from a

finite set A = Ai × A−i . Then, they receive rewards (r it , r
−i
t ) ∈

[0, 1]2 generated from a fixed but unknown bounded distribution

depending on their joint action. The actions and rewards are then

revealed to both players. We assume the first agent to be under our

control and the second agent to be the opponent. We would like to

design algorithms such that our agent’s cumulative rewards are as

high as possible. The opponent can have one of two types known

to our agent
3
: (1) self-player (another independently run version of

our algorithm) or (2) arbitrary (i.e any possible opponents with no

access to the agent’s internal randomness).

To measure performance, we compare our agent to an oracle

that has full knowledge of the distribution of rewards for all joint-

actions. The oracle then plays like this: (1) in self-play, both agents

compute before the game starts the egalitarian bargaining solution

and play it; (2) against any other arbitrary opponent, the oracle

plays the policy ensuring the maximin value.

Our goal is to design algorithms that have low expected regret

against this oracle after any number of T rounds, where regret

is the difference between the value that the oracle would have

obtained and the value that our algorithm actually obtained. Next,

we formally define the terms that describe our problem setting.

Definition 2.1 (Policy). A policy π i in a repeated game for player

i is a mapping from each possible history to a distribution over

actions. That is: ∀t ≥ 0,π i : Ht → ∆Ai
where t is the current

round andHt is the set of all possible histories of joint-actions up

to round t .
A policy is called stationary if it plays the same distribution in

each round. It is called deterministic stationary if it plays the same

action in each round.

Definition 2.2 (Joint-Policy). A joint policy (π i ,π−i ) is a pair

of policies, one for each player i,−i in the game. In particular,

this means that the probability distributions over the actions of

both players are independent. When each component policy is

stationary, we call the resulting joint policy stationary and similarly

for deterministic stationary.

Definition 2.3 (Correlated-Policy). Any joint-policy where player

actions are not independent is correlated4. A correlated policy π
specifies a probability distribution over joint-actions known by

both players: ∀t ≥ 0,π : Ht → ∆A.

In this paper, when we refer to a policy π without any qualifier,

we will mean a correlated-policy, which is required for the egalitar-

ian solution. When we refer to π i and (π i ,π−i ) we will mean the

components of a non-correlated joint-policy.

3
Our work is trivially extended to unknown type by checking if the opponent is self.

4
For example through a public signal.

2.1 Solution concepts
In this section, we explain the two solution concepts we aim to

address: safety–selected as the maximin value and individual ratio-

nality selected as achieving the value of the EBS. We start from the

definition of value for a policy.

Definition 2.4 (Value of a policy). The value V i (π ) of a policy π
for player i in a repeated gameM is defined as the infinite horizon

undiscounted expected average reward given by:

V i
M (π ) = lim sup

T→∞

1

T
E

( T∑
t=1

r it

����� π ,M
)
.

We useVM = (V
i
M ,V

−i
M ) to denote values for both players and drop

M when clear from the context.

Definition 2.5 (Maximin value). Themaximin policyπ i
SV for player

i and its value SV i
are such that:

π i
SV = argmax

π i
min

π −i
V i (π i ,π−i ), SV i = max

π i
min

π −i
V i (π i ,π−i ).

where V i (π i ,π−i ) is the value for player i playing policy π i while
all other players play π−i .

Definition 2.6 (Advantage game and Advantage value). Consider
a repeated game between two players i and −i defined by the joint-

actions A = Ai × A−i and the random rewards r drawn from a

distribution R : A → ∆R2
. Let SV = (SV i , SV −i ) be the maximin

value of the two players. The advantage game is the game with

(random) rewards r+ obtained by subtracting the maximin value of

the players from r . More precisely, the advantage game is defined

by: r+(a) = r (a) − SV ∀a ∈ A. The value of any policy in this

advantage game is called advantage value.

Definition 2.7 (EBS in repeated games). Consider a repeated game

between two players i and −i with maximin value SV = (SV i , SV −i ).
A policy π

Eg
is an EBS if it satisfies the following two conditions:

(1) it belongs to the set ΠEg of policies maximizing the minimum

of the advantage value for both players. (2) it maximizes the value

of the player with the highest advantage value.

More formally, for any vector x = (x1,x2) ∈ R2
, let L : R2 → R2

be a permutation of x such that L1(x) ≤ L2(x). For any x ∈ R2,y ∈
R2

let’s define a lexicographic maximin ordering ≥ℓ on R
2
as:

x ≥ℓ y ⇐⇒
(
L1(x) > L1(y)

)
∨

(
L1(x) = L1(y) ∧ L2(x) ≥ L2(y)

)
.

A policy πEg is an EBS
5
if: V (πEg) − SV ≥ℓ V (π ) − SV ∀π .

We call EBS value the valueV
Eg
= V (πEg) andV+(πEg) = V (πEg)−

SV will be used to designate the egalitarian advantage.

2.2 Performance criteria
We can now define precisely the two criteria we aim to optimize.

Definition 2.8 (Safety Regret). The safety regret for an algorithm

Λ playing for T rounds as agent i against an arbitrary opponent

π−i with no knowledge of the internal randomness of Λ is defined

by:

RegretT (Λ,π
−i ) =

T∑
t=1

SV i − r it .

5
Also corresponds to the leximin solution to the Bargaining problem [4].
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Definition 2.9 (Individual Rational Regret). The individual ratio-
nal regret for an algorithm Λ playing forT rounds as agent i against
itself Λ′ identified as −i is defined by:

RegretT (Λ,Λ
′) = max

{ T∑
t=1

V i
Eg
− r it ,

T∑
t=1

V −i
Eg
− r−it

}
.

3 METHODS DESCRIPTION
Generic structure. Before we detail the safe and individual ratio-

nal algorithms, we will describe their general structure. The key

challenge is how to deal with uncertainty, the fact that we do not

know the rewards. To deal with this uncertainty, we use the stan-

dard principle of optimism in the face of uncertainty [20]. It works

by a) constructing a set of statistically plausible games containing
the true game with high probability through a confidence region

around estimated mean rewards, a step detailed in section 3.1; b)
finding within that set of plausible games, the one whose EBS policy

(called optimistic) has the highest value, a step detailed in section

3.2; c) playing this optimistic policy until the start of an artificial

epoch where a new epoch starts when the number of times any

joint-action has been played is doubled (also known as the doubling
trick), a step described in Jaksch et al. [20] and summarized by

Algorithm 1.

3.1 Construction of the plausible set
At epoch k , our construction is based on creating a setMk con-

taining all possible games with expected rewards E r such that,

Mk = {r : |E r i (a) − r̄ ik (a)| ≤ Ck (a) & E r i (a) ≤ 1 ∀i,a} (1)

Ck (a) =

√
ln 1/δk

1.99Ntk (a)
.

where tk is the number of rounds played up to episode k , Ntk (a) is
the number of times action a has been played up to round tk , r̄k (a)
is the empirical mean reward observed up to round tk and δk is an

adjustable probability. The plausible set can be used to define the

following upper and lower bounds on the rewards of the game:

r̂ ik (a) = r̄
i
k (a) +Ck (a), ř ik (a) = r̄

i
k (a) −Ck (a).

We denote M̂ the game with rewards r̂ and M̌ the game with ř .
Values in those two games are resp. denoted V̂ , V̌ . We used Ck (π ),
Ck (π

i ,π−i ) to refer to the bounds obtained by a weighted (using

π ) average of the bounds for individual action. When clear from

context, the subscript k is dropped.

3.2 Optimistic EBS policy
3.2.1 Problem formulation. Our goal is to find a game M̃k and a

policy π̃k whose EBS value is near-optimal simultaneously for both

players. In particular, if we refer to the true but unknown game by

M and assume thatM ∈ Mk we want to find M̃k and π̃k such that:

VM̃k
(π̃k ) ≥ℓ VM ′(π

′)

∀π ′,M ′ ∈ Mk | Pr

{
VM ′(π

′) ≥ VM (πEg) − (ϵk , ϵk )
}
= 1 (2)

where ≥ℓ is defined in Definition 2.7 and ϵk is a small configurable

error.

Note that the condition in (2) is required (contrarily to single-

agent games [20]) since in general, there might not exist a game in

Mk that achieves the highest EBS value simultaneously for both

players. For example, one can construct a case where the plausible

set contains two games with EBS value (resp) ( 1
2
+ ϵ, 1

2
+ ϵ) and

( 1
2
, 1) for any 0 < ϵ < 1 (See Table 2). This makes the optimization

problem (2) significantly more challenging than for single-agent

games since a small ϵ error in the rewards can lead to a large (linear)
regret for one of the players. This is also the root cause for why the

best possible regret becomes Ω(T 2/3) rather than Ω(
√
T ) typical for

single-agent games. We refer to this challenge as the small ϵ-error
large regret issue.

3.2.2 Solution. To solve (2), a) we set the optimistic game M̃k
as the game M̂ inMk with the highest rewards r̂ for both players.

Indeed, for any policy π ′ and game M ′ ∈ Mk , one can always

get a better value for both players by using M̂ ; b) we compute an

advantage game corresponding to M̃k by estimating an optimistic

maximin value for both players, a step detailed in paragraph 3.2.3;

c) we compute in paragraph 3.2.4 an EBS policy π̃k,Eg using the

advantage game; d) we set the policy π̃k to be π̃k,Eg unless one of
three conditions explained in paragraph 3.2.5 happens. Algorithm 2

details the steps to compute π̃k and to correlate the policy, players

play the joint-action minimizing their observed frequency of played

actions compared to π̃k (See function Play() of Algorithm 1).

3.2.3 Optimistic Maximin Computation. Satisfying (2) implies

finding a value SV̌ with:

SV i − ϵk ≤ SV̌ i ≤ SV i + ϵk ∀i (3)

where SV i
is the maximin value of player i in the true gameM . To

do so, we return a lower bound value for the optimistic maximin

policy π̂ i
SVk

of player i . We begin by computing in polynomial

time
6
the (stationary) maximin policy for the game M̂ with the

largest rewards. We then compute the (deterministic, stationary)

best response policy π̌−i
SV̂

using the game M̌ with the lowest rewards.

The detailed steps are available in Algorithm 3. This results in

a lower bound on the maximin value satisfying (3) as proven in

Lemma 5.1.

3.2.4 Computing an EBS policy. Armed with the optimistic

game and the optimistic maximin value, we can now easily com-

pute the corresponding optimistic advantage game whose rewards
are denoted by r̂+. An EBS policy π̃k,Eg is computed using this

advantage game. The key insight to do so is that the EBS involves

playing a single deterministic stationary policy or combining two

deterministic stationary policies (Proposition 4.1). Given that the

number of actions is finite we can then just loop through each pair

of joint-actions and check which one gives the best EBS score. The

score (justified by the proof of Proposition 4.2) to use for any two

joint-actions a and a′ is: score(a,a′) = mini ∈{1,2}w(a,a
′) · r̂ i+(a)+

(1 −w(a,a′)) · r i+(a
′) withw as follows:

w(a,a′) =


0, if r̂ i+(a) ≤ r̂−i+ (a) and r̂

i
+(a
′) ≤ r̂−i+ (a

′)

1, if r̂ i+(a) ≥ r̂−i+ (a) and r̂
i
+(a
′) ≥ r̂−i+ (a

′)

r̂−i+ (a
′)−r̂ i+(a

′)

(r̂ i+(a)−r̂
i
+(a′))+(r̂

−i
+ (a′)−r̂

−i
+ (a))

otherwise .

(4)

6
For example by using linear programming [1, 13].
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And the policy π̃k,Eg is such that

π̃k,Eg(aEg) = w(aEg,a
′
Eg
); π̃k,Eg(a

′
Eg
) = 1 −w(aEg,a

′
Eg
); (5)

aEg,a
′
Eg
= argmax

a∈A,a′∈A
score(a,a′). (6)

3.2.5 Policy Execution. We always play the optimistic EBS pol-

icy π̃k,Eg unless one of the following three events happens:

• The probable error on the maximin value of one player is too
large. Indeed, the error on the maximin value can become

too large if the weighted bound on the actions played by the

maximin policies is too large. In that case, we play the action

causing the largest error.

• The small ϵ-error large regret issue is probable: Proposition
4.2 implies that the small ϵ-error large regret issue may only

happen if the player with the lowest ideal advantage value

(the maximum advantage under the condition that the ad-

vantage of the other player is non-negative) is receiving it

when playing an EBS policy. This allows Algorithm 2 to

check for this player and play the action corresponding to its

ideal advantage as long as the other player is still receiving

ϵk -close to its EBS value (Line 6 to 15 in Algorithm 2).

• The probable error on the EBS value of one player is too large
This only happens if we keep not playing the EBS policy due

to the small ϵ-error large regret issue. In that case, the error

on the EBS value used to detect the small ϵ-error large regret
issue might become too large making the check for the small
ϵ-error large regret issue irrelevant. In that case, we play the

action of the EBS policy responsible for the largest error.

4 THEORETICAL ANALYSIS
Before we present theoretical analysis for the learning algorithm,

we discuss the existence and uniqueness of the EBS value, as well

as the type of policies that can achieve it.

Properties of the EBS. Fact 1 implies that any (optimal) value

achievable can be achieved by a stationary (correlated-) policy;

allowing us to restrict our attention to stationary policies. Fact 2

means that the EBS always exists and is unique; providing us with

a good benchmark to compare against.

Fact 1 (Achievable values for both players). Any achievable
value V = (V i ,V −i ) for the players can be achieved by a stationary
correlated-policy.

Sketch. We first show that the value for joint-actions exists and

is unique. Then, similarly to [29], we consider the convex hull of

the set of values for joint-actions and show that this convex hull

corresponds exactly to the set of all achievable values. Since we can

achieve any point of the convex hull with a stationary policy, this

concludes the proof. □

Fact 2 (Existence and Uniqeness of the EBS value for

stationary policies). If we are restricted to the set of stationary
policies, then the EBS value defined in Definition 2.7 exists and is
unique.

Sketch. [19] already proved that the egalitarian value as defined

in Definition 2.7 always exists and is unique for any bargaining

Algorithm 1 UCRG

Definitions: Nk (a) denotes the number of rounds action a has

been played in episode k — Nk the number of rounds episode

k has lasted — tk the number of rounds played up to episode

k — Ntk (a) the number of rounds action a has been played up

to round tk — r̄ ik (a) the empirical average rewards of player

i for action a up to round tk .
Input: For each episode k , we are given two numbers ϵk and δk .
Initialization: Let t ← 1. Set Nk ,Nk (a),Ntk (a) to zero for all

a ∈ A.

for episodes k = 1, 2, . . . do
tk ← t
Ntk+1

(a) ← Ntk (a) ∀a
r̂ ik (a) = r̄

i
k (a)+Ck (a), ř ik (a) = r̄

i
k (a)−Ck (a) ∀a, i with

Ck computed using δk as in (1).

π̃k ← OptimisticEgalitarianPolicy(r̄t , r̂k , řk , ϵk )

Execute policy π̃k :
do

Let at ← Play(π̃k ), play it and observe rt
Nk ← Nk + 1 Nk (at ) ← Nk (at ) + 1

Ntk+1
(at ) ← Ntk+1

(at ) + 1 and Update r̄k (at )
t ← t + 1

while Nk (at ) ≤ max{1,Ntk (a)}
end for

function Play(π )

Let at the action a that minimizes

���π (a) − Nk (a)
Nk

���
Ties are broken in favor of the player with the lowest, then

in favor of the lexicographically smallest action.

return at
end function

problem that is convex, closed, of non-empty Pareto frontier and

non-degenerate. We then proved this fact, by showing that the

repeated game we consider implies a bargaining problem satisfying

those properties. □

The following Proposition 4.1 strengthens the observation in

Fact 1 and establishes that a weighted combination of at most

two joint-actions can achieve the EBS value. This allows for an

efficient algorithm that can just loop through all possible pairs of

joint-actions and check for the best one. However, given any two

joint-actions one still needs to know how to combine them to get

an EBS value. This question is answered by proposition 4.2.

Proposition 4.1 (On the form of an EBS policy). Given any
two-player repeated game, the EBS value can always be achieved by
a stationary policy with non-zero probability on at most two joint-
actions.

Sketch. We follow the same line of reasoning used in [26] by

showing that the EBS value lies on the outer boundary of the convex

hull introduced in the proof of Fact 1. □
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Algorithm 2 Optimistic EBS Policy Computation

1: function OptimisticEgalitarianPolicy(r̄ , r̂ , ř , ϵk )
2: π̂ i

SVk
, π̌−i

SV̂k
, SV̌ i

k = OptMaximin(r̄ , r̂ , ř , i)

3: Let r̂ i+(a) = r̂
i (a) − SV̌ i

k ∀(i,a)
4: Compute the EBS policy π̂k,Eg using (6) and r̂ i+
5: Let π̂k ← π̂k,Eg

6: (∀i , from the set of actions with positive advantage, ϵk -close
to the EBS advantage of −i , find the one maximizing i
advantage)

Ãi = {a | r̂
i
+(a) + ϵk ≥ V̂

i
+(π̂k,Eg) ∧ r̂

i
+(a) ≥ 0} ∀i ∈ {1, 2}

âi = argmax

a∈Ã−i

r̂ i+(a) ∀i ∈ {1, 2}

7: (Look for the player i whose advantage for action âi is

larger than the EBS advantage of i )

˜P = {i ∈ {1, 2} | r̂ i+(âi ) > V̂
i
+(π̂k,Eg)}

8: (If there is a player i whose advantage for âi is better than

the EBS advantage, play âi )

9: if ˜P , ∅ then
10: p̃ = argmaxi ∈ ˜P

r̂ i+(âi ) , π̂k ← âp̃
11: end if

12: (If potential error on the EBS value is too large, play the

responsible action.)

13: if 2Ck (π̂k,Eg) > ϵk then
14: Let âk,Eg = argmaxa∈A |2Ck (a)>ϵk π̂k,Eg(a)

π̂k ← âk,Eg
15: end if

16: (If potential error on the maximin value is too large, play

the responsible action.)

17: for each i ∈ {1, 2} where 2Ck (π̂
i
SVk
, π̌−i

SV̂k
) > ϵk do

18: Let âSVk = argmaxa∈A |2Ck (a)>ϵk π̂
i
SVk
(a) · π̌−i

SV̂k
(a)

π̂k ← âSVk
19: end for
20: return π̂k
21: end function

Proposition 4.2 (Finding an EBS policy). Let us call the ideal
advantage value V i

+I of a player i , the maximum advantage that
this player can achieve under the restriction that the advantage
value of the other player is non-negative. More formally: V i

+I =

maxπ |V −i+ (π )≥0
V i
+(π ). The egalitarian advantage value for the two

players is exactly the same unless there exists an EBS policy that is
deterministic stationary where at least one player (necessarily includ-
ing the player with the lowest ideal advantage value) is receiving its
ideal advantage value.

Proof. From proposition 4.1 we can achieve the EBS value by

combining at most two deterministic stationary policies. We will

Algorithm 3 Optimistic Maximin Policy Computation

1: function OptMaximin(r̄ , r̂ , ř , i)
2: Calculate i’s optimistic maximin policy: π̂ i

SVk
=

argmaxπ i minπ −i V̂
i (π i ,π−i )

3: Find the best response: π̌−i
SV̂k
= argminπ −i V̌

i (π̂ i
SVk
,π−i )

4: Get a lower bound on the maximin value: SV̌ i
k =

minπ −i V̌
i (π̂ i

SVk
,π−i ) = V̌ i (π̂ i

SVk
, π̌−i

SV̂k
)

5: return π̂ i
SVk

, π̌−i
SV̂k

, SV̌ i
k

6: end function

prove this proposition (4.2) for any two possible deterministic sta-

tionary policies (by considering a repeated game with only the

corresponding joint-actions available), which immediately means

that Proposition 4.2 is also true for the EBS value in the full repeated

game.

Consider any two deterministic stationary policy of advantage

values ((x1

1
,x2

1
), (x1

2
,x2

2
)). We will now show how to compute the

weightw = argmaxw mini ∈{1,2}w ∗ x
i
1
+ (1 −w)x i

2
.

Case 1: x1

1
≤ x2

1
and x1

2
≤ x2

2
. This basically means that the

advantage value of player 2 is always higher or equal than that of

the player 1. So the minimum is maximized by playing the policy

maximizing the value of player 1. So,w = 0 and we have a single

deterministic stationary policy where the player with the lowest

ideal advantage receives it.

Case 2: x1

1
≥ x2

1
and x1

2
≥ x2

2
. This is essentially Case 1 with the

role of players 1 and 2 exchanged. Herew = 1.

If both Case 1 and Case 2 do not hold, it means that for the first

policy, one player receives an advantage value strictly greater than

that of the other player while the situation is reversed for the second

policy. Without loss of generality, we can assume this player is 1

(if this is not the case, we can simply switch the id of the policy)

which leads to Case 3.

Case 3: x1

1
> x2

1
and x1

2
< x2

2
In this case, the optimalw is such

that w =
x 2

2
−x 1

2

(x 1

1
−x 1

2
)+(x 2

2
−x 2

1
)
. This weight w is clearly between the

open interval ]0, 1[. This means that we have exactly two distinct

policies. Plugging in the weight shows that the advantage value of

both players is the same, which completes the proof. □

Regret Analysis. The following theorem 4.3 gives us a high

probability upper bound on the regret in self-play against the EBS

value, a result achieved without the knowledge of T .

Theorem 4.3 (Individual Rational Regret for Algorithm

1 in self-play). After running Algorithm 1 in self play with δk =

δ/Btk and ϵk = (2|A| ln(1/δk )/(1.99tk ))
1/3 whereBt = 16|A| ln t+

2|A| + 1 for any rounds T ≥ |A|, with probability at least 1 − δ ,
δ > 0, the individual rational regret (definition 2.9 ) for each player

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1400



is upper bounded as:

RegretT ≤ 5
3

√
|A| ln(BT /δ ) ·T

2/3 + 2|A| log
2
(8T /|A|)

+
√
T ln(BT /δ ) ·

(√
1/2 +

√
12|A|

)
+
√
T

= O

(
5

3

√
|A| ln(ln(T )/δ ) ·T 2/3

)
.

Sketch. The structure of the proof follows that of [20]. More

precisely, as the algorithm is divided into epochs, we first show that

the regret bound within an epoch is sub-linear. We then combine

those per-epoch regret terms to get a regret for the whole horizon

simultaneously. Both of these regrets are computed with the as-

sumption that the true game M is within our plausible set. We then

conclude by showing that this is indeed true with high probability.

To prove the regret within an epoch, the key step is to prove that

the value of policy π̃k returned by Algorithm 2 in our plausible set

is ϵ-close to the EBS value in the true model (optimism). In our case,

we cannot always guarantee this optimism. Our proof identifies

the concerned cases and shows that they cannot happen too often.

Then for the remaining cases, we show that we can guarantee the

optimism with an error of 4ϵtk : the combination of Lemma 5.2 and

Lemma 5.1 is crucial for this. □

By definition of EBS, Theorem 4.3 also applies to the safety regret.

However, in Theorem 4.4, we show that the optimistic maximin

policy enjoys near-optimal safety regret of O

(√
|Ai |T ln(ln(T )/δ )

)
.

Theorem 4.4 (Safety Regret of policy π̂ i
SVk

from Algorithm

3). Assume that in Algorithm 1, player i executes policy π̂ iSVk (as com-

puted by Algorithm 3) instead of π̃k with δk =
δ

16 |Ai | ln tk+2 |Ai |+1

while replacing any computation on joint-action a by an equivalent
computation on single-action ai . After any rounds T ≥ |Ai | against
any opponent, then with probability at least 1 − δ , δ > 0, the safety
regret (definition 2.8) of this policy is upper-bounded by:

RegretT ≤

√
T

2

ln

(
16|Ai | ln(1.3T )

δ

)
·

(
4 +

√
24|Ai |

)
+
√
T .

Sketch. The proof works similarly to that of Theorem 4.3 by

observing that here we can always guarantee optimism when the

true game M is within our plausible set. Indeed, for any opponent

policy π−io , we have: π̂ i
SVk
= argmaxπ i minπ −i V̂

i (π i ,π−i ) and

V̂ (π̂ i
SVk
,π−io ) ≥ max

π i
min

π −i
V̂ i (π i ,π−i ) ≥ max

π i
min

π −i
V i (π i ,π−i ) = SV i .

□

Lower bounds for the individual rational regret. Here we

establish a lower bound of Ω
(
T 2/3

)
for any algorithm trying to

learn the EBS value. This shows that our upper bound is optimal

up to logarithm-factors. The key idea in proving this lower bound

is the example illustrated in Table 2. In that example, the rewards

of the first player are all
1

2
and the second player has an ideal value

of 1. However, 50% of the time, a player cannot realize its ideal

value due to an ϵ-increase in a single joint-action for both players.

The main intuition behind the proof of the lower bound is that any

algorithm that wants to minimize regret can only try two things (a)
detect whether there exists a joint-action with an ϵ or if all rewards

a2

1
a2

2
· · · a2

|A2 |

a1

1
(0.5, 1) (0.5, 0.5) · · · (0.5, 0.5)

a1

2
(0.5[+ϵ], 0.5[+ϵ]) (0.5, 0.5) · · · (0.5, 0.5)

...
...

... · · · (0.5, 0.5)

a1

|A1 |
(0.5, 0.5) (0.5, 0.5) · · · (0.5, 0.5)

Table 2: Lower bounds example. The rewards are generated
from a Bernoulli distribution whose parameter is specified
in the table. The first value in parentheses is the one for the
first player while the other is for the second player. Here, ϵ
is a small constant defined in the proof.

of the first player are equal, or (b) always ensure the ideal value of
the second player. To achieve (a) any algorithm needs to play all

joint-actions for
1

ϵ 2
times. Picking ϵ = T−1/3

ensures the desired

lower bound. The same ϵ would also ensure the same lower bound

for an algorithm targeting only (b).

Theorem 4.5 (Lower bounds). For any algorithm Λ, any natural
numbers |A1 | ≥ 2, |A2 | ≥ 2,T ≥ |A1 |× |A2 |, there is a general sum
game with |A| = |A1 | × |A2 | joint-actions such that the expected

individual rational regret of Λ afterT steps is at least Ω
(
T 2/3 |A |

1/3

4

)
.

Proof Sketch. The proof is inspired by the one for bandits

in Theorem 6.11 of [10]. We used our game in Table 1 and then

compute the optimal egalitarian solution for this game based on

the possible values of ϵ . □

5 TECHNICAL LEMMAS
Lemma 5.1 (Pessimism and Optimism of the maximin value).

For any player i and epoch k for which the true model M is within
our plausible setMk , the maximin value computed satisfies:

SV i − 2Ck (π̂
i
SVk
, π̌−i

SV̂k
) ≤ SV̌ i

k ≤ SV i .

Proof. By definition (See Algorithm 3), we have:

π̂ i
SVk
= argmax

π i
min

π −i
V̂ i (π i ,π−i ), (7)

π̌−i
SV̂k
= argmin

π −i
V̌ i (π̂ i

SVk
,π−i ), (8)

SV̌ i
k = min

π −i
V̌ i (π̂ i

SVk
,π−i ) = V̌ i (π̂ i

SVk
, π̌−i

SV̂k
). (9)

Pessimism of the maximin value. We have:

SV i = max

π i
min

π −i
V i (π i ,π−i ) ≥ min

π −i
V i (π̂ i

SVk
,π−i ) (10)

≥ min

π −i
V̌ i (π̂ i

SVk
,π−i ) = SV̌ i

k . (11)

Optimism of the maximin value. We have:

SV̌ i
k = V̌

i (π̂ i
SVk
, π̌−i

SV̂k
) (12)

= V̂ i (π̂ i
SVk
, π̌−i

SV̂k
) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (13)

≥ min

π −i
V̂ i (π̂ i

SVk
,π−i ) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (14)

= V̂ i (π̂ i
SVk
, π̂−i

SVk
) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (15)

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1401



= max

π i
V̂ i (π i , π̂−i

SVk
) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (16)

≥ max

π i
V i (π i , π̂−i

SVk
) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (17)

≥ max

π i
min

π −i
V i (π i ,π−i ) − 2Ck (π̂

i
SVk
, π̌−i

SV̂k
) (18)

= SV i − 2Ck (π̂
i
SVk
, π̌−i

SV̂k
). (19)

□

Lemma 5.2 (Optimism of the advantage game). This lemma
proves that the advantage value for any policy π in our optimistic
model is greater than in the true model. For any policy π , player i
and epoch k for which the true modelM is within our plausible set
Mk : Ṽ i

+(π ) ≥ V
i
+(π ).

Proof. We have:

Ṽ i
+(π ) = Ṽ

i (π ) − SV̌ i
k ≥ V

i (π ) − SV̌ i
k ≥ V

i (π ) − SV i = V i
+(π ).

where the second inequality comes from Lemma 5.1. □

6 EXPERIMENTS
We compared our solution UCRG to a heuristic well-known as

Explore-Then-Commit (ETC). ETC plays each action form′ rounds.
After that, ETC uses the estimated empirical game to compute an

EBS policy (as in (6)) which is subsequently played for the remain-

ing rounds. The doubling trick (Algorithm 1) is used to deal with

unknown T . Since single-player multi-armed bandits (MAB) are a

special case of our setting, we pick the exploration parameterm′

of ETC as the minimax optimal value for ETC-like policies in MAB

[37]. In particular, we pickm′ = (A log 1/δk )
1/3(2tk )

2/3
with δk as

in Theorem 4.3. In the experiments, we also compared our regret

with the theoretical lower bound derived in Theorem 4.5 (LB in

Figure 1) and the theoretical upper bound derived in Theorem 4.3

(UB in Figure 1). In Figure 1a, we use the worst-case game shown

in Table 2 with two actions. In Figure 1b, we use the generalized

rock-paper-scissors [34] scaled in [ 1
4
, 3

4
]. The probability of error δ

is set to 0.01 and the horizonT to 10
5
. Figures 1a and 1b confirm the

validity of our theoretical bounds. Figure 1a shows that the naive

ETC heuristic can obtain a linear-regret. And Figure 1b shows that

even in simpler games, our algorithm UCRG still outperforms ETC.

7 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we illustrated a situation in which typical solutions for

self-play in repeated games, such as single-stage equilibria or sum

of rewards, are not appropriate.We propose the use of an egalitarian

bargaining solution (EBS) which guarantees each player to receive

no less than their maximin value. We analyze the properties of EBS

for repeated games with stochastic rewards and derive an algorithm

that achieves a near-optimal finite-time regret of
˜O(T 2/3)with high

probability. We are able to conclude that the proposed algorithm

is near-optimal, since we prove a matching lower bound up to

logarithmic-factors. Although our results imply a
˜O(T 2/3) safety

regret (i.e. compared to the maximin value), we also show that a

component of our algorithm guarantees the near-optimal
˜O(
√
T )

safety regret against arbitrary opponents.

Our work illustrates an interesting property of the EBS which is:

it can be achievedwith sub-linear regret by two individually rational

(a) M (ϵ ) =
[

0.5 0.5

0.5 + ϵ 0.5

]
M i = M (0);M−i = M (0.5)

(b) M i = M−i =

5/8 1/4 3/4

3/4 5/8 1/4

1/4 3/4 5/8


Figure 1: Average Individual Rational Regret with standard
error using 50 trials in self-play for UCRG, ETC, our lower
and upper bound (LB & UB resp). Rewards are drawn from
Bernoulli distributions with means as shown by the matri-
cesM .

agents who are uncertain about their utility. We wonder if other

solutions to the Bargaining Problem such as the Nash Bargaining

Solution or the Kalai–Smorodinsky Solution also admit the same

property. Since the EBS can be realised as an equilibrium, another

intriguing question is whether one can design an algorithm that

converges naturally to the EBS against some well-defined class of

opponents. Finally, a natural and interesting future direction for

our work is its extension to stateful games such as Markov games.
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