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ABSTRACT
Peer grading systems make large courses more scalable, provide

students with faster and more detailed feedback, and help students

to learn by thinking critically about the work of others. A key obsta-

cle to the broader adoption of peer grading systems is motivating

students to provide accurate grades. The literature has explored

many different approaches to incentivizing accurate grading (which

we survey in detail), but the strongest incentive guarantees have

been offered by mechanisms that compare peer grades to trusted TA

grades with a fixed probability. In this work, we show that less TA

work is required when these probabilities are allowed to depend on

the grades that students report. We prove this result in a model with

two possible grades, arbitrary numbers of agents, no requirement

that students grade multiple assignments, arbitrary but homoge-

neous noisy observation of the ground truth which students can

pay a fixed cost to observe, and the possibility of misreporting

grades before or after observing this signal. We give necessary and

sufficient conditions for our new mechanism’s feasibility, prove

its optimality under these assumptions, and characterize its im-

provement over the previous state of the art both analytically and

empirically. Finally, we relax our homogeneity assumption, allow-

ing each student and TA to observe the ground truth according to

a different noise model.
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1 INTRODUCTION
Peer grading has the potential to improve educational outcomes

in three main ways: (i) making classes more scalable by offloading

some grading work to students, (ii) providing students with faster

and more detailed feedback, and (iii) improving student learning

by providing opportunities to think critically about the work of

others. Various recent implementations of peer gradingmechanisms

make such systems relatively easy to deploy in practice [2, 13, 24].

The broader adoption of such systems faces a common, critical

obstacle: motivating students to provide accurate grades. A natural

solution is asking multiple students to grade the same assignment

∗
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and rewarding them based on their behavior (e.g., based on the

extent to which their grades agree with the grades given by other

students). Such solutions have been explored in detail in a large

literature on peer prediction, which considers how to incentivize

agents to truthfully disclose unverifiable private information [4, 8–

11, 15–19, 22, 23]. Miller et al. [14] were the first to introduce peer

prediction mechanisms in which truthful declarations constitute a

Nash equilibrium. Unfortunately, these mechanisms (and, indeed,

many others that were subsequently proposed) also give rise to

uninformative equilibria in which agents do not reveal their private

information; e.g., all students grading an assignment favorably

regardless of its quality [1, 9, 11, 19, 22]. Human experiments show

that such strategic behavior does arise in practice [5].

Much subsequent work has attempted to identify peer prediction

mechanisms in which either no uninformative equilibrium exists or

the truthful equilibrium is always preferred by agents [9, 11, 19, 22].

Two examples are particularly notable. First, Dasgupta and Ghosh

[1] considered a model in which agents make a binary decision

about whether or not to invest costly effort, in the former case

observing a noisy signal about the assignment’s true value. Agents

are paid according to a function that rewards agreement between

graders on the same assignment and penalizes correlations in the

grades assigned across different assignments. Under this mecha-

nism, truthful reporting yields payoffs that exceed those of any

other equilibrium for every agent. Furthermore, if the system con-

tains a small fraction of agents (e.g., TAs) who are always truthful,

the truthful equilibrium becomes unique. Second, De Alfaro et al.

[3] showed how to achieve unique, truthful equilibria by combining

peer prediction with trusted reports in a hierarchical mechanism.

One drawback of all such approaches is that they only achieve Nash

equilibrium implementations, because agents’ payoffs depend on

other agents’ actions, and so agents must reason about each other’s

behavior. In a classroom setting, where some students will almost

surely fail to invest effort, stronger incentives may be required.

Liu and Chen [12] showed that stronger incentives can be guar-

anteed by a peer prediction mechanism based on surrogate scoring

rules, achieving “uniform dominant strategy incentive compatibil-

ity” in a setting where students make noisy observations about

two possible grades. This result relies on there existing sufficiently

many tasks per student; more critically, it also requires that students

follow the same strategy for all tasks (and be entirely sure that all

other students also do so), rather than making the more standard

assumption that students make a separate strategic decision every

time they are faced with a grading task.

Another approach for strengthening incentive guarantees relies

on incorporating trusted graders (TAs) more fundamentally into

the mechanism. For example, Goel and Faltings [7] proposed a

second uniform dominant strategy mechanism that uses a set of

“golden tasks” (for which the ground truth is known via an oracle)

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1593



to incentivize high quality evaluation for a small set of agents. Then

they use the reports provided on non-golden tasks by the agents

in this set to incentivize high quality grading among other agents.

Like the mechanism of Liu and Chen [12], this mechanism relies

on (1) the existence of multiple tasks and (2) agents following the

same strategy for all tasks; it further requires (3) the determination

of ground truth for golden tasks before agents begin grading.

In this work, we follow a different thread of past work [6–

8, 21, 24], obtaining (fully) dominant strategy mechanisms by guar-

anteeing that, with sufficiently high probability, each student report

is compared to a trusted but noisy observation of ground truth (a

TA grade). Because such “spot checking” is expensive (e.g., TAs

need to be paid in proportion to the amount of work they do), it is

natural to seek to minimize the amount of spot checking required

to obtain dominant strategies. This minimization problem was first

attacked by Gao et al. [6], who proposed a very simple mechanism

that makes truthfulness a dominant strategy by unconditionally

rewarding students when they are not spot checked and otherwise

penalizing them to the extent that they disagree with the TA. They

compared this mechanism with various alternatives based on peer

prediction, showing that the latter require strictly more spot check-

ing than the former, even despite the fact that peer-prediction-based

mechanisms do not offer dominant strategies.

Gao et al’s model always performs spot checks with some fixed

probability. It is intuitive to think that report-sensitive spot check-
ing—that is, varying the spot-checking probability based on the

students’ reports—could lower the expected amount of spot check-

ing required overall. For example, imagine that an instructor already

knows that a given problem set is extremely difficult. If the reported

grades for a given submission are all very high, the instructor might

believe that there is an increased likelihood that students have re-

ported dishonestly, and so might want to spot check with a higher

probability. It turns out to be nontrivial to confirm or refute this

intuition, for two key reasons. First, more complex ways of com-

puting spot check probabilities opens the door to new ways for

students to manipulate a mechanism. Second, students’ interests

become intertwined in a new way, since spot-checking probabilities

now depend on other agents’ strategies.

Despite these obstacles, this paper (1) identifies the optimal

dominant-strategy incentive-compatible (DSIC) report-sensitive

spot-checking mechanism; (2) identifies necessary and sufficient

conditions for such a mechanism’s existence; (3) shows that the

new mechanism requires less TA work on expectation than the

mechanism of Gao et al; and that (4) the newmechanism exists for a

broader range of parameter values. One interesting property of our

new mechanism is that it sometimes chooses not to spot check stu-

dents even when TA assessments are available for the assignments

they graded: we show that making full use of TA assessments has

the perverse effect of increasing expected workload overall.

Like much other work in the literature [e.g., 1, 12, 21], our anal-

ysis is limited to the case where students are asked to report only

binary (positive or negative) grades about each assignment. Our

new mechanism is general in several other, important senses: it

allows for arbitrary numbers of graders per assignment and nearly

arbitrary prior probability distributions over both the true grades

and the noise models describing the probabilities that students and

TAs will observe each signal given the ground truth. In the first

part of the paper we assume that these noise models are homoge-

neous (identical across all students and TAs); in the last section, we

generalize our results to the fully heterogeneous case (each agent

can grade according to a different noise model).

Finally, we mention two final strands of recent, related work.

Wang et al. [21] proposed a different approach for designing peer

grading systems that also varies spot check probabilities. Their

model is substantially different from ours, and hence their mecha-

nism is not directly applicable to our setting. Like us, they study

strategic students who make a binary decision about whether to

invest effort; as we do in the last section of this paper, they assume

that agents’ noise models are heterogeneous. However, they also

assume that TAs can directly observe whether a student invested

effort, making it simple to ensure that a spot-checked student who

invested no effort gets no reward. In contrast, we assume that the

TA noisily observes the assignment’s grade and is only able to

compare this observation with the student’s own report, which is

either a noisy signal or a misreport; thus, students who invest no

effort cannot reliably be identified. Xiao et al. [25] studied incentive

mechanisms for peer reviewing in a repeated setting. In their model,

students benefit from receiving high quality reviews and decide

on the amount of effort to put in when reviewing others. Their

proposed mechanism incentivizes high-quality reviewing by rating

students’ reviewing performance over time and using this rating

to match highly ranked reviewers with each other. Key caveats

are that the mechanism relies on the ability to accurately score

reviewing quality and that high-quality reviewing is incentivized

only in equilibrium.

In the following, we first define our model and formalize the

mechanisms that we study throughout the paper (Section 2). We

next prove that our proposed mechanism is optimal (Section 3) and

show that it outperforms alternatives (Section 4) by demonstrating

a separation analytically and then quantifying the gap via numeri-

cal experiments. Finally, we extend our results to heterogeneous

student and TA noise models (Section 5) and conclude (Section 6).

2 MODEL
A single assignment

1
needs to be graded by a setN of students (with

|N | = n) and has an unobservable binary quality q ∈ Q = {a,b}
drawn from a commonly known distribution Pr[q].

Each student i , by exerting effort at cost c , can examine the

submission and observe a signal si ∈ Q that is informative about

the assignment’s quality. More formally, in a way that depends on

the true quality q, the signals observed by different students are

independently drawn from a single,
2
commonly known distribution

Pr[s |q]. The ex ante signal distribution is then

Pr [s = l] =
∑
t ∈Q

Pr [si = l |q = t] Pr [q = t] .

We denote by P®l the ex ante probability of each agent receiving

the signal corresponding to its index in vector
®l . By our assumption

1
When multiple assignments must be peer graded, our mechanisms can simply be run

in parallel.

2
In Section 5, we relax this assumption that signal distributions are homogeneous.
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of conditional independence, this is

P®l := Pr [s1 = l1, . . . , sn = ln ]

=
∑
t ∈Q

Pr [q = t]
∏
j ∈N

Pr

[
sj = lj |q = t

]
. (1)

Because of conditional independence, any two vectors of reports

®l and ®l ′ containing the same numbers of a’s and b’s occur with
the same probability: P®l = P®l ′ . For this reason, we often drop the

ordering in the subscript, writing, e.g., P(a,b) = P(b,a) = Pab , and
similarly for longer vectors. We name the signals so that Pa ≥ Pb
(note that this implies Pa − Pab = Paa > Pbb = Pb − Pab ). We also

denote by Pl |t , the probability that an agent observes signal l ∈ Q
conditioned on another agent observing signal t ∈ Q .

Besides the students, a teaching assistant (TA) may also receive

a signal. Formally, signal sTA is drawn from Pr[s |q] independently
from the students’ signals.

3

Strategy space. In our model, each student faces two strategic

choices: whether to expend effort grading the assignment and what

grade to report. Three actions are thus possible: the student (i) may

be truthful, investing effort to examine the assignment, observing

her signal, and reporting this signal; (ii) may invest effort but report

a different signal than the one she observed; or (iii) may choose not

to invest effort and report an arbitrary signal. In contrast, the TA is

not a strategic agent. When asked to grade the assignment, the TA

always reports an independently observed signal.

2.1 Spot-checking Mechanisms
A focus of our work is on minimizing the need for the TA’s input

via spot-checking mechanisms. A spot-checking mechanism takes

in students’ reported signals and decides both whether a TA signal

is needed and how much to reward the students.

Definition 2.1 (Spot-checking mechanism). A spot-checking mech-
anism is defined by a tuple (xa ,xb ,Y ), where:

(1) xa : {0} ∪N ×N → [0, 1] denotes the probability of spot

checking an agent who reports a. Given two non negative

integers (k,n) specifying the number of a’s reported by the

agents and the total number of agents, xa (k,n) returns the
probability that the mechanism will spot check each agents

reporting a. The probability xa (0,n) is set to zero.

(2) xb : {0} ∪ N × N → [0, 1] is an analogous function for

computing the probability of spot checking an agent who

reports b. The first argument remains the total number of

agents who report a, not b. The probability xb (n,n) is zero.
(3) Y : Q ×Q → R+ denotes the reward given to a student who

is spot checked. Y (r , sTA) is the reward of a spot-checked

student who reported r when the TA reported signal sTA.
When a student is not spot checked, she receives no reward.

The x functions are defined for every n because we require peer

grading mechanisms to work for any number of agents. However,

when n is obvious from context, we will overload notation and

write simply xa (k) and xb (k).

3
In Section 5, we relax this assumption that signal distributions are homogeneous.

Throughout this paper we focus on mechanisms where the re-

ward function Y is the simplest identity function:

Y (r , sTA) =

{
R if r = sTA
0 otherwise,

where R ∈ R+ denotes the reward of matching with the TA signal.

This function is called the output agreement reward function; it

has been widely studied in the peer prediction literature [20, 22].

We model students as having quasilinear utility: i.e., when in-

vesting effort and being rewarded Y , a student’s utility is Y − c .

Definition 2.2 (DSIC). A spot-checking mechanism is dominant
strategy incentive compatible (DSIC) if, for each student i and for

any strategies that the other students choose, i’s expected utility-

maximizing strategy is to be truthful, i.e., to invest effort to observe

her signal and to report what she observes.

The mechanism we will later show to be optimal is DSIC; how-

ever, we also define a weaker solution concept (‘Incentive Compati-

ble with Conscientious Plays", or ICCP), to allow us to compare our

preferred mechanism to a broader set. A mechanism is ICCP if it is

DSIC in a simplified strategy space in which students who observe

their signals must report them honestly. In other words, ICCP does

not allow for the possibility that students could misreport a signal

that they invested effort to observe, but continues to allow for lazy

students pretending to have observed arbitrary signals.

Definition 2.3 (ICCP). A spot-checking mechanism is Incentive
Compatible with Conscientious Plays (ICCP) if, for each student and

for any strategy that other students choose, as long as each student
that examines the assignment always reports the observed signal, the
truthful strategy, i.e., to invest effort to examine the assignment

and report her observed signal, is expected utility maximizing.

Definition 2.4 (TA workload). For a DSIC or ICCP spot-checking

mechanism, the TA workload (or simply the workload) is the prob-
ability with which the TA needs to provide a signal, assuming all

students are truthful:∑
t ∈Q

Pr [q = t]
n∑
j=0

(
n

j

)
(Pr [si = a |q = t])j

· (Pr [si = b |q = t])n−j max{xa (j),xb (j)}. (2)

The expression max{xa (j),xb (j)} is TA workload needed to en-

sure that every student reporting a is spot checked with probability

xa (j) and every student reporting b is spot checked with probabil-

ity xb (j). We say that a mechanism is optimal for some class if it

minimizes TA workload among all mechanisms in that class.

2.2 ROS, RSS, and RSUS Mechanisms
We now introduce three families of mechanisms, beginning with

one studied by Gao et al. [6].

Definition 2.5 (ROSMechanism). A Report-Oblivious Spot-checking
(ROS)mechanism spot checks every student with fixed probability x ,
regardless of the students’ reports.

The focus of this paper is on report-sensitive spot-checking.

Definition 2.6 (RSS Mechanism). A Report-Sensitive Spot-checking
(RSS) mechanism spot checks every student with probability that

can depend on all the students’ reports.
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In a RSS mechanism, we determine whether to spot check each

student independently: i.e., we sometimes refrain from spot check-

ing one student even when the TA signal is already available from

spot checking another student. This seems wasteful: once the TA

spot checks one student, it costs them no additional work to use the

observed signal to spot check other students too. We now define a

class of mechanisms that leverages this fact.

Definition 2.7 (RSUS Mechanism). A Report-Sensitive, Uniform
Spot-checking (RSUS) mechanism ensures that whenever one stu-

dent is spot checked, all are spot checked.

In RSUS mechanisms, ∀j ∈ {0, . . . ,n}, xa (j) = xb (j); of course, it
still allows for j , j ′ that xa (j) , xa (j

′). A main result of this paper

is that RSUS mechanisms can require strictly larger spot-checking

budgets than a DSIC RSS mechanism, and are hence strictly sub-

optimal, not just under the DSIC solution concept but even if they

only need to satisfy the weaker ICCP solution concept. In other

words, paradoxically, in order to minimize the overall TA workload,

it is necessary to commit sometimes not to use the TA’s signal to

spot check some students.

3 OPTIMAL DSIC MECHANISMS
We now characterize optimal DSIC mechanisms in both the ROS

and RSS families.

3.1 Optimal DSIC ROS Mechanisms
We begin by stating a result about ROS mechanisms from the lit-

erature. Given a prior distribution (Pr[q]) over the assignment’s

quality, the conditional signal distributions Pr[s |q], and the cost

of the effort needed to examine the assignment and the reward R,
there might be a minimum spot-checking probability x (which is

independent of n, the number of students) that guarantees an ROS

mechanism to be DSIC.

Theorem 3.1. (Consequence of Lemma 1 in [6]) For any signal
s ∈ Q , and any c,R > 0, if Pbb − Pab ≥ c

R , a DSIC ROS mechanism
spot checks a student with probability at least

x∗ =
c
R

Paa + Pbb − Pa
=

c
R

Pbb − Pab
; (3)

if Pbb − Pab <
c
R , there does not exist any DSIC ROS mechanism.

Recall that Pab is the ex ante probability that, when two signals

s1 and s2 are drawn independently from Pr[s |q], s1 = a and s2 = b.
The assumption Pbb −Pab ≥ c

R is necessary and sufficient to ensure

that the ROS mechanism is DSIC if spot checks are performed with

probability 1: a student who is always spot checked prefers to be

truthful than to report either signal without effort. We refer to x∗

as the optimal DSIC ROS solution and the ROS mechanism that

spot checks with probability x∗ as the optimal ROS mechanism.

Equation (3) demonstrates that TA workload of the optimal ROS

mechanism falls as the reward–cost ratio R/c increases. However,
both costs (effort required) and rewards (e.g., portion of a course

grade devoted to performing peer review) are often fixed in practical

peer grading scenarios. We thus take the approach of characteriz-

ing which (fixed) values of R/c give rise to feasible spot-checking

mechanisms and of investigating how spot-checking policies can

be tuned to minimize TA workload.

3.2 Optimal DSIC RSS Mechanisms
We begin by defining a class of mechanisms and then go on to prove

our first main result: that a mechanism from this class minimizes

TA workload across all DSIC RSS mechanisms.

Definition 3.2 (PRSS Mechanism). A Personal-Report-Sensitive
Spot-checking mechanism, or PRSS mechanism, spot checks each

student with a probability that only depends on the student’s own

report.

In PRSS mechanisms, the functions xa and xb are constant, i.e.,

for ∀j, j ′ ∈ {0, . . . ,n} and j , j ′, xa (j) = xa (j
′) and xb (j) = xb (j

′).

A remarkable feature of PRSS mechanisms is that, if xa (k) , xb (k)
for some k , the TA’s input is sometimes “wasted”, in the sense

that it is not used to spot check every student. To see this, say if

xb (k) > xa (k), then the mechanism should consult the TA with

probability xb (k) but spot checks a student reporting a with proba-

bility only xa (k).
Our first result is a characterization of the optimal DSIC RSS

mechanism. We show that this optimum is achieved by a PRSS

mechanism with appropriate spot-checking probabilities. We also

characterize the necessary and sufficient condition for the existence

of DSIC RSS mechanisms. Later we show that this condition is

weaker than the one for DSIC ROS mechanisms in Theorem 3.4.

Theorem 3.3. For any signal si ∈ Q , and any c,R > 0, if Pa |a −

Pa ≥ c
R , a PRSS mechanism with the following spot-checking proba-

bilities is the DSIC spot-checking mechanism that minimizes the TA
workload among all other DSIC spot-checking mechanisms:

xa (k) =
c
R

Pb |b − Pb
∀k ∈ {1, . . . ,n} (4)

xb (k) =
c
R

Pa |a − Pa
∀k ∈ {0, . . . ,n − 1}; (5)

if Pa |a − Pa <
c
R , there does not exist any DSIC spot-checking mech-

anism.

This result is nontrivial. Recall that an RSS mechanism has the

power to vary the spot-checking probabilities for each student

based on the reports of all other students, and such side information

conceivably could help reduce the TA workload while maintaining

the students’ incentives. This turns out not to be the case. One

immediate consequence of Theorem 3.3 is that the TA workload

increases with the number of students grading each assignment.

The proof consists of two steps. In Step 1, we reason about a

convex optimization problem that minimizes the workload but

relaxes all of the DSIC constraints except those that incentivize the

truthful strategy when all other students make no effort. We show

that the intersection point of the non-trivial constraints in this

optimization problem is locally optimal, and hence, also, the global

optimal of the defined optimization problem. Then, in Step 2, we

show that this solution in fact gives rise to a DSIC RSS mechanism.

Since it is an optimal solution with most DSIC constraints relaxed,

it is also optimal when one enforces all constraints.

Proof. Step 1. In a DSIC mechanism, fixing a student i , if all
students other than i report a signal without expending effort, i
should be incentivized to be truthful, i.e., to invest effort and to

report the signal observed. Suppose k other students report a: then,
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the utility of student i reporting signal a without investing effort is

R · Pr[sTA = a] · xa (k + 1), whereas her utility for being truthful is

R · (Pr [si = a] · Pr [sTA = a | si = a]xa (k + 1)

+ Pr [si = b] · Pr [sTA = b | si = b]xb (k)) − c .

We therefore should have that, for k ∈ {0, . . . ,n − 1},

Pr [si = a] · Pr [sTA = a | si = a]xa (k + 1)

+ Pr [si = b] · Pr [sTA = b | si = b]xb (k)

− Pr [sTA = a]xa (k + 1) ≥
c

R
. (6)

Similarly we should have for k ∈ {0, . . . ,n − 1} that

Pr [si = a] · Pr [sTA = a | si = a]xa (k + 1)

+ Pr [si = b] · Pr [sTA = b | si = b]xb (k)

− Pr [sTA = b]xb (k) ≥
c

R
. (7)

Simplifying (6) and (7), we have

−Pabxa (k + 1) + Pbbxb (k) ≥
c

R
. (8)

Paaxa (k + 1) − Pabxb (k) ≥
c

R
. (9)

Consider minimizing the TA workload subject to (8) and (9):

min
xa,xb

∑
t ∈Q

Pr [q = t]
n∑
j=0

(
n

j

)
(Pr [si = a |q = t])j

· (Pr [si = b |q = t])n−j max{xa (j),xb (j)}.

with 0 ≤ xa (k),xb (k) ≤ 1 for all k ∈ {0, · · · ,n}. The value of this
optimization problem is an upper bound to the workload of any

DSICmechanism, since it relaxed all DSIC constraints except (6) and

(7). Note also that the objective function is convex in the variables,

due to the presence of the max functions, and its feasible region

is a convex polytope since all constraints are linear. There are 2n
variables: xb (0),xa (1),xb (1),xa (2), . . . ,xa (n − 1),xb (n − 1),xa (n).
(Note that xa (0) and xb (n) are zero.) These variables can be grouped
into n pairs, with xb (k) and xa (k + 1) as a pair for each k . Each pair

is subject to a pair of constraints from (8) and (9) with the corre-

sponding k , and there is no constraint governing variables from

different pairs. This means the optimization problem is separated

into n subproblems, one for each pair of variables. We now claim

that the optimal solution for each subproblem is given by forcing

(8) and (9) to be tight, which gives us the following expressions:

xa (k) =
c

R
·

Pb
PaaPbb − (Pab )

2
∀k ∈ {1, . . . ,n} (10)

xb (k) =
c

R
·

Pa
PaaPbb − (Pab )

2
∀k ∈ {0, . . . ,n − 1}; (11)

Simplifying (11), we get

xb (k) =
c

R
·

Pa
PaaPbb − (Pab )

2
=

c

R
·

Pa
PaaPbb − Pab (Pa − Paa )

=
c

R
·

Pa
PaaPb − PaPab

=
c

R
·

Pa
Paa (1 − Pa ) − PaPab

=

c
R

Paa
Pa − Pa

=

c
R

Pa |a − Pa
,

which is the expression in (5). We get the expression in (4) by

simplifying (10), similarly.

We first check that these solutions are feasible: we have that

Pa > Pb in (10) and (11), therefore, if Pa |a − Pa ≥ c
R , the spot-

checking probabilities are indeed between 0 and 1. To see that these

solutions are optimal, we invoke the convexity of the problem,

which means we only need to argue that the solutions are locally

optimal. At the point where (8) and (9) are tight for a given k ,
increasing xa (k + 1) forces xb (k) to increase, and vice versa, in

order for the pair to keep being feasible — this is a consequence

of the coefficients’ signs in (8) and (9) — but it is not feasible to

decrease both variables. Therefore the only local move within the

feasible region is to increase both variables. However, both variables

have positive coefficients in the objective function. Therefore the

solution in (4) and (5) is both locally optimal and globally optimal

for our convex program.

We note that if Pa |a − Pa <
c
R , to make sure that Constraints

(8) and (9) are all satisfied for k ∈ {0, . . . ,n − 1}, at least one of

xb (k) or xa (k + 1) has to be strictly greater than one. This is also

a consequence of the coefficients’ signs in (8) and (9). However,

0 ≤ xa (k),xb (k) ≤ 1 for all k ∈ {0, · · · ,n − 1}. Therefore, there

does not exist any feasible DSIC RSS mechanism.

Step 2. We now show that the spot-checking probabilities given

in (4) and (5) in fact give rise to a DSIC mechanism. We only need

to check the validity of the DSIC constraints not included in the

convex program above.

We first check the condition that a student having spent the

effort to get a signal should be incentivized to report the observation

faithfully. We need for k ∈ {0, . . . ,n − 1},

Pr [sTA = a | si = a]xa (k + 1)

≥ Pr [sTA = b | si = a]xb (k), (12)

and

Pr [sTA = b | si = b]xb (k)

≥ Pr [sTA = a | si = b]xa (k + 1), (13)

which simplify to

Paaxa (k + 1) − Pabxb (k) ≥ 0. (14)

−Pabxa (k + 1) + Pbbxb (k) ≥ 0. (15)

Note that (14) and (15) are in fact implied by (8) and (9).

For the other DSIC constraints that concern a student’s utility

when some other students may spend effort to observe a signal,

note that the spot-checking probabilities given by (4) and (5) are

independent of k , i.e., they are independent from what the other

students report, and therefore the corresponding mechanism is

PRSS. In such a mechanism, a student’s utility is independent from

the other students’ strategies. If the truthful strategy maximizes a

student’s utility when no other student spends any effort, it still

does when other students spend effort. Therefore the mechanism

obtained from Step 1 is indeed DSIC, and this completes the proof.

□

The following theorem shows that for a given set of input distri-

butions, while the optimal DSIC RSS mechanism might be feasible,

there might not exist any DSIC ROS mechanism.
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Theorem 3.4. For any signal s ∈ Q , and any c,R > 0, whenever
there is a DSIC ROS mechanism, there is a DSIC RSS mechanism;
however, when Pa > Pb , there exist c,R > 0 for which Pbb − Pab <
c
R ≤ Pa |a − Pa , i.e., the optimal DSIC RSS mechanism exists while
DSIC ROS mechanisms do not.

Proof. By Theorem 3.3, we know that for any signal si ∈ Q

and any c,R > 0, if
c
R ≥ Pa |a − Pa =

PaaPbb−(Pab )2
Pa , then the

optimal DSIC RSS mechanism exists. Therefore, we only need to

show that
PaaPbb−(Pab )2

Pa > Pbb − Pab , i.e., there is a gap between

these expressions. We can write

Paa · Pbb − P2ab > Paa · Pbb − P2ab − Pab · (Paa − Pbb )

= (Paa + Pab )(Pbb − Pab ) = Pa · (Pbb − Pab ),

where the first inequality is dues to the fact that Paa > Pbb .
□

4 COMPARING MECHANISMS
In this section, we compare our optimal DSIC RSS mechanism with

alternatives both analytically and experimentally.

4.1 Analytic Comparisons
Drawing on our characterization from Section 3, we can now com-

pare the workloads required by the optimal DSIC ROS, RSS and

RSUS mechanisms. We begin by comparing the TA workload of the

optimal DSIC RSS mechanism with that of the optimal DSIC ROS

mechanism.

Corollary 4.1. When Pa > Pb and Pbb − Pab >
c
R , the TA

workload of the optimal DSIC ROS mechanism exceeds that of the
optimal DSIC RSS mechanism by at least c

R ·
Pb

PaaPbb−(Pab )2
.

Proof. By Theorem 3.1, the optimal DSIC ROS solution is
c
R ·

1

Pbb−Pab
. Let ®a be a vector of length n where all signals are a.

By (10), this vector is be spot checked with probability xa (n). By (10)
and (11), xb (k) > xa (k) for any k ∈ {0, . . . ,n − 1} (recall that

xb (n) = xa (0) = 0). Therefore, max{xa (j),xb (j)} = xb (j) for any
vector other than ®a. Hence, the TA workload saved by the RSS

mechanism is:(
P ®a

(
x∗ −

c

R
·

Pb
PaaPbb − (Pab )

2

)
(16)

+
(
1 − P ®a

) (
x∗ −

c

R
·

Pa
PaaPbb − (Pab )

2

))
≥

c

R
·

(
1

Pbb − Pab
−

Pa
PaaPbb − (Pab )

2

)
≥

c

R
·

Pb
PaaPbb − (Pab )

2
,

where the first and second inequalities are due to the facts that

Pa ≥ Pb and Paa ≥ Pab . □

Corollary 4.2. When Pa = Pb and Pbb − Pab >
c
R , the TA

workload of the optimal DSIC RSS mechanism is equal to that of the
optimal DSIC ROS mechanism.

Proof. The optimal DSIC ROS solution is

c
R

Pbb−Pab
. Also, when

Pa = Pb , Pa − Pab = Paa = Pb − Pab = Pbb , and the spot-checking
probabilities defined by (4) and (5) are equal. Thus, the TAworkload

that the RSS mechanism saves is:

c

R
·

(
1

Pbb − Pab
−

Pb
PaaPbb − (Pab )

2

)
=

PaaPbb − (Pab )
2 − (Pbb + Pab )(Pbb − Pab )

(Pbb − Pab )(PaaPbb − (Pab )
2)

= 0.

□

We now turn to comparing RSUS and RSS mechanisms. Because

RSUS mechanisms are special cases of RSS mechanisms, it is ob-

vious that the former perform weakly worse than the latter, all

else being equal. Our second nontrivial main result shows some-

thing stronger: that the optimal RSS mechanism is strictly better

than all RSUS mechanisms, even when the latter are strengthened

by being required to satisfy only the ICCP solution concept. The

proof is based on a linear program that lower bounds the workload

of the optimal RSUS mechanism under the ICCP constraints. We

show that this workload is still greater than that of the optimal RSS

mechanism. Recall that RSUS mechanisms spot check all students

whenever the TA is consulted. Our result thus implies that the TA

workload can be decreased by choosing not to spot check certain

students even when the TA spot checks other students.

Theorem 4.3. When Pa > Pb and Pa |a − Pa ≥ c
R , the optimal

RSS under the DSIC solution concept spot checks strictly less than the
optimal RSUS mechanism under the ICCP solution concept.

Remark: It is straightforward to see that in the case of Pa = Pb ,
the TA workload of the optimal ICCP RSUS mechanism is equal to

the optimal DSIC RSS and ROS mechanisms.

Proof. The RSUSmechanisms are special cases of the RSS mech-

anisms, where xa (k) = xb (k) = x(k) for k ∈ {0, . . . ,n}. We prove

this theorem by showing that the optimal solution of an adapted

version of the RSS convex optimization problem for the RSUS mech-

anisms is strictly worse than the optimal DSIC RSS solution defined

by (4) and (5). Once xa (k) = xb (k), for any student i , we get that

min
x

∑
t ∈Q

Pr [q = t]
n∑
j=0

(
n

j

)
(Pr [si = a |q = t])j

· (Pr [si = b |q = t])n−jx(k) (17)

subject to:

−Pabx(k + 1) + Pbbx(k) ≥
c

R
∀k ∈ {0, . . . ,n − 1} (18)

Paax(k + 1) − Pabx(k) ≥
c

R
∀k ∈ {0, . . . ,n − 1} (19)

−Pabx(k + 1) + Pbbx(k) ≥ 0 ∀k ∈ {0, . . . ,n − 1} (20)

Paax(k + 1) − Pabx(k) ≥ 0 ∀k ∈ {0, . . . ,n − 1} (21)

0 ≤ x(k) ≤ 1 ∀k ∈ {0, . . . ,n} (22)

The derivation of Constraints (18)–(21) is similar to that of Con-

straints(8)–(15) in the proof of Theorem 3.3. Observe that our opti-

mization problem is now a linear program and that Constraints (20)

and (21) are implied by Constraints (18) and (19); thus, they can be

removed without changing the optimal solution.
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We start from the optimal DSIC ROS solution x∗ and decrease

x(n) by △x(n) = c
R ·

Pa−Pb
Pbb−Pab

·
Pbb

PaaPbb−(Pab )2
and the rest of the

spot checking probabilities by

△x(k) =

(
Pbb
Pab

)
△ x(k − 1), ∀k ∈ {0, . . . ,n}. (23)

At x∗, Constraint (18) becomes tight, following directly from our

construction of the step size given by (23). Constraint (19) is tight

when k = n−1; the rest of the constraints are easily satisfied. Hence,
we only need to show that Constraint (19) will not be violated by

the specified decrease in the decision variables. However, by (23)

we get that for k ∈ {0, . . . ,n − 1}, the ratios by which the gap

between the left and right hand sides of Constraints (19) decreases is(
Pab
Pbb

)(n−k )
≤ 1 times the ratio by which the gap for the constraint

corresponding to n = k − 1 is decreasing. Therefore, the constraint

corresponding to n = k − 1 binds faster.

As a result, since Constraint (18) and (19) when k = n − 1 are all

binding, we can not decrease any of the decision variables anymore

without increasing another. Since every objective coefficient is

positive, increasing x(k) for any k ∈ {0, . . . ,n} could be beneficial

only if it resulted in decreasing the value of the rest of the decision

variables, achieving an overall objective function improvement.

However, if x(k + 1) is increased then x(k) needs to increase as

well to preserve feasibility; if x(k) increases then x(k − 1) needs

to increase as well; and so on. Thus, overall, there exist no local,

objective-improving changes to the current values of x(k), and
so we have identified an optimal solution to our linear program.

Finding the intersection point of the binding constraints shows that

x(n) = xa (k) ≤ x(n − 1) = xb (k) < x(n − 2), . . . , < x(0), where
xa (k) and xb (k) are defined by (4) and (5) for any k ∈ {0, . . . ,n}.
This leads to the result of the theorem statement.

4 □

4.2 Experimental Comparisons
In this section, we use numerical experiments to quantify perfor-

mance differences between the optimal DSIC RSS mechanism and

the optimal DSIC ROS mechanism. For simplicity we consider

Pr[si = a |q = a] = Pr[si = b |q = b] (other settings yield qual-

itatively similar results but have more parameters over which to

optimize).

First, we consider the case where each assignment is graded by

three students, as occurs in various practical peer grading systems

[2, 24]. Observe that TA workload can be computed given three

quantities:
R
c , the factor by which the reward exceeds the cost of ef-

fort; Pr[q], the prior over an assignment’s true quality; and Pr[s |q],
the prior over the grader’s signal given a true quality. Given these

quantities, let the scaled RSS workload be the per-assignment TA

workload required by the optimal DSIC RSS mechanism, expressed

as a fraction of the per-assignment TA workload required by the

optimal DSIC ROS mechanism. (Note that a scaled RSS workload

of 1 means that RSS offers no benefits over ROS, and scaled RSS

workloads approaching 0 correspond to TA workloads under RSS

that approach a 0% fraction of those under ROS.) To investigate the

4
Note that we actually prove more than claimed in the theorem statement: our result

holds not only for the ICCP solution concept, but also for all strategies in which no

students invest grading effort.
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Figure 1: Scaled RSS workload as a function of R/c (on a log
scale) and for different values of Pr[s |q], and for the value of
Pr[q] that minimizes scaled RSS workload.

scaled RSS workload empirically, we varied Pr[s |q] in 10% incre-

ments from 0.6 (the signal gives little information about the true

grade) to 1 (the signal perfectly identifies the true grade) and then

set Pr[q] to minimize scaled RSS workload.
5
The result is shown in

Figure 1. We make two key observations. First, scaled RSS work-

load starts out at 1 when rewards are similar to costs, but falls

towards zero as R/c increases. Second, holding R/c constant, scaled
RSS workload decreases as graders become more accurate (i.e., as

Pr[s |q] approaches 1).
Second, we investigate the relationship between the number of

students grading each assignment and the scaled RSS workload.

Observe that the optimal ROS mechanism gives rise to the same TA

workload regardless of the number of students, while TA workload

does change with the number of students under the optimal RSS

mechanism. Figure 2 shows scaled RSS workload as a function

of number of students for a setting with a moderately skewed

prior distribution (Pr[q = a] = 0.8), relatively accurate graders

(Pr[si = a |q = a] = 0.9), and a big gap between rewards and

costs (
R
c = 25).

6
Overall, as the number of students grading each

assignment increases, the scaled RSS workload increases (and hence

the RSS mechanism offers less benefit over the ROS mechanism). To

make this pattern more concrete, consider that when three students

grade each assignment and follow their dominant strategies, the

optimal ROSmechanism has a TAworkload of 0.5while the optimal

RSS mechanism has a TA workload of 0.18 (a scaled RSS workload

of 0.36); whereas, when 10 students grade each assignment, the

ROS workload remains at 0.5 while the TA workload of the RSS

mechanism increases to 0.23 (for a scaled RSS workload of 0.47). As

5
We already know that from Corollary 4.2 that for every value of Pr[s |q] there

exists a value of Pr[q] under which the scaled RSS workload is 1: the Pr[q] for which∑
q Pr[s |q] · Pr[q] is uniform. Furthermore, note that for any fixed value of Pr[q],

scaled RSSworkload is unaffected by changes toR/c (consult Equations (3), (4), and (5)).
However, Theorem 3.4 shows that as

R
c increases, a wider range of Pr[q] and Pr[s |q]

distributions become feasible, allowing for smaller scaled RSS workloads. We thus

focus on characterizing the smallest RSS workload that can be achieved for given

values of R/c and Pr[s |q].
6
Other values of these parameters yield different quantitative results but the same

qualitative trends.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1599



1 10 100
Number of students grading each assignment (log scale)

0

0.2

0.4

0.6

0.8

1

Sc
al

ed
 R

SS
 W

or
kl

oa
d

Figure 2: Scaled RSS Workload as a function of number of
students.

the number of students grows, the scaled RSS workload approaches

0.58.

5 HETEROGENEOUS SIGNAL DISTRIBUTIONS
So far, our analysis has been limited to a model in which students’

and TA’s signals are drawn from the same signal distribution. In

this section, we show that our main structural result, Theorem 3.3,

in fact extends to a model in which students’ and TA’s signals are

from different distributions.

More formally, suppose each student i , by exerting effort at

cost ci , can examine the submission and observe a signal si ∈

Q ; conditioning on the submission’s quality q, each signal si is
drawn independently from a commonly known distribution Pr[si |q].
Also, the TA’s signal sTA is independently drawn from distribution

Pr[sTA |q]. Note that the key difference from the setting in the first

few sections is that Pr[si |q] and Pr[sTA |q]may all be different from

each other.

Let ®r−i be the vector of reports made by all students except i;
xai (®r−i ) denote the probability of spot checking student i when she

reports a, while the other students report ®r−i ; similarly, xbi (®r−i ) de-
notes the probability of spot checking student i when she reports b.

Theorem 5.1. If for any student i and signal si ∈ Q ,

min

l ∈Q
{Pr [si = l | sTA = l] − Pr [si = l]} ≥

ci
R
,

the PRSS mechanism with the following spot-checking probabilities is
DSIC and minimizes the TA workload among all DSIC spot-checking
mechanisms:

xai (®r−i ) =

ci
R

Pr[si = b | sTA = b] − Pr[si = b]
∀®r−i ∈ Qn−1

(24)

xbi (®r−i ) =

ci
R

Pr[si = a | sTA = a] − Pr[si = a]
∀®r−i ∈ Qn−1

; (25)

if minl ∈Q {Pr[si = l | sTA = l] − Pr[si = l]} < ci
R for any i and l ,

there exists no DSIC spot-checking mechanism.

Proof Sketch. We first note that Eqs. (8) and (9) in the proof of

Theorem 3.3 are defined for each student i and do not depend on the
signal distribution of any student except student i . When the signal

distribution for the TA and Students are different, the only change

in (8) and (9) is that instead having n pair of such constraints and 2n
variables, there are 2

n−1
constraints and 2

n
variables, with xai (®r−i )

and xbi (®r−i ) as a pair for each ®r−i . Let ®s−i be the signal observed by

all students except student i . The objective function in minimization

problem defined in the proof of Theorem 3.3 for minimizing the TA

workload subject to (8) and (9) can be redefined as follows:

min

xai ,x
b
i

∑
®s ∈Qn

∑
t ∈Q

Pr [q = t]·
∏
j ∈N

Pr

[
sj = lj |q = t

]
max

i
{xsii (®s−i )}

with 0 ≤ xai (®r−i ),x
b
i (®r−i ) ≤ 1 for all ®r−i ∈ Qn−1

and i , which is

again a convex function due to the presence of the max functions.

Since the constraints are again linear and with the same struc-

ture, the same argument about the optimally of the intersection

of the constraints can be applied here. This means that for each

®r−i ∈ Qn−1
, the intersection of the corresponding pairs of con-

straints defined similar to (8) and (9), which are expressed by (24)

and (25), give optimal solution to the above optimization problem.

The arguments in the Step 2 of the proof of Theorem 3.3 are also

directly applicable here. This completes the proof. □

6 CONCLUSION
We have investigated peer grading mechanisms that achieve domi-

nant strategy incentive compatibility by using TAs to spot check stu-

dents, and have focused on minimizing the required TA workload.

We have explored mechanisms for report-sensitive spot checking:
varying spot-checking probabilities based on the profile of grades

that all students report for a given assignment. We proposed a sim-

ple optimal DSIC “PRSS” mechanism, and showed that it minimizes

the required spot-checking budget (across both the “RSS” mecha-

nisms and the more constrained “RSUS” mechanisms even under

a weaker solution concept) and outperforms the (“ROS”) mecha-

nisms that spot checks all students with a fixed, report-oblivious

probability. We evaluated the performance of the optimal DSIC

RSS mechanism both analytically and empirically. Finally, we ex-

tended our results to a setting which allowed each student and TA

to observe the ground truth according to a different noise model.

We consider the most important direction for future work to be

generalizing our results beyond two signals.We note that this would

require a fundamentally different proof technique, as our convex

programming formulation depends critically on the problem’s two-

signal structure. We expect that the multi-signal setting would also

require other variations in the model. Notably, in such domains

it becomes natural to impose an ordering over the signals and

to reward agents according to the distance between their reports

and that of the TA, rather than rewarding all “correct” reports

equally. Another limitation of our work is the assumption that the

prior distribution over signals is known to the mechanism designer.

The derivation of prior-independent report-sensitive mechanisms

is a second, worthwhile direction for future work. One possible

strategy for building such mechanisms could be learning the prior

in a repeated setting.
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