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ABSTRACT
Redistribution mechanisms have been proposed for more efficient

resource allocation but not for profit. We consider redistribution

mechanism design in a setting where participants are connected

and the resource owner is only connected to some of them. In this

setting, to make the resource allocation more efficient, the resource

owner has to inform the others who are not her neighbours, but

her neighbours do not want more participants to compete with

them. Hence, the goal is to design a redistribution mechanism such

that participants are incentivized to invite more participants and

the resource owner does not earn or lose much money from the

allocation. We first show that existing redistribution mechanisms

cannot be directly applied in the network setting and prove the

impossibility to achieve efficiency without a deficit. Then we pro-

pose a novel network-based redistribution mechanism such that

all participants on the network are invited, the allocation is more

efficient and the resource owner has no deficit.
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1 INTRODUCTION
The problem of resource allocation is about to decide the allocation

of some resource among a group of self-interested agents. Since

the valuation for the resource differs from various agents, it is a

natural objective for the resource owner to pursue the efficiency

of the allocation, i.e., allocating the resource to the agent with the

highest valuation. In many scenarios, the owner does not really

aim at making profits but hopes the wealth maintained among the

agents. For example, the government wants to build a library in a

community that values it the most; a charity distributes a donation

to the recipient who needs it the most; a hospital allocates doctors

to rural areas where doctors are highly demanded.

To find the agent with the highest valuation, one common solu-

tion is to hold an auction such as the well-known Vickrey-Clarke-

Groves (VCG) mechanism [2, 4, 11, 18]. However, the payments

under VCG will be delivered to the auctioneer, which againsts our

non-profit purpose. To maintain as much wealth as possible among

the participants, many redistribution mechanisms based on VCG

have been proposed [1, 6]. They redistribute the revenue generated
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by VCG back to all participants. However, these mechanisms can

only be applied in static settings, i.e., the resource owner can only

allocate the item to the person whom she can directly contact with

(her neighbours).

Therefore, in our setting, we have another issue: how can the

owner enroll more participants in the resource allocation problem

in order to achieve a more efficient allocation? Advertising is a

widely used method to disseminate information to attract more

people. However, it should be paid in advance without a guarantee

that there will be more participants or a more efficient allocation.

Moreover, it is irrational for a resource owner who no longer cares

about profit to pay something for the allocation. Therefore, in this

paper, we consider a cost-free promotion by incentivizing partic-

ipants to invite their neighbours via their social connections [3],

which is an enormous challenge as no one would be willing to

invite more competitors without a profit.

Hence, in this paper, we propose a new network-based redis-

tribution mechanism to tackle this challenge, where the reward

redistributed to each agent is a monotone increasing function to

the number of participants she invites. Although the agents are

not paid in advance, they are still incentivized not only to report

their valuation truthfully but also to diffuse the information to

all their neighbours without sacrificing the non-deficit guarantee.

This is one of the key features of our mechanism. Eventually, more

agents will be informed about the resource allocation and a more

efficient allocation will be achieved. Moreover, it also satisfies the

desirable properties of traditional redistribution mechanisms such

as individual rationality and asymptotically budget-balance.

Some interesting work related to information diffusion via net-

works have been studied recently. Li et al. [13] proposed an auction

mechanism where the seller sells one item in a social network and

the participants are inviting each other to attract more participants.

With this inspiration, soon afterwards Zhao et al. [19] generalized

the mechanism for multiple homogeneous items in the same setting.

Their attention is on how to maximize the seller’s revenue, which is

different from ours. We aim for a more efficient allocation without

profits by attracting more participants. We refer to the idea of their

work and design our redistribution mechanism to achieve the goal.

There exists a rich literature on redistribution mechanisms for

resource allocation [5, 7, 8, 15]. Furthermore, redistribution mecha-

nisms have also been extended to the settings of public projects [8–

10, 17]. However, none of the work took the natural connections

between participants into account. More to the point, our mecha-

nism promises desirable properties when participants are connected

via their personal connections which cannot be achieved by the

existing mechanisms.

We claim our main contributions here. First, to the best of our

knowledge, we are the very first to study the redistribution mech-

anism design problem in social networks. Second, we show the

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1620



limitations of the classical Cavallo mechanism if it is directly ex-

tended in social networks and prove the impossibility to achieve

efficiency without a deficit in our setting. Third, we propose a

novel network-based redistribution mechanism which improves

the efficiency of the allocation without sacrificing all the desirable

properties.

The structure of the paper is organized as follows. Section 2

describes the background and basic definitions of the problem.

Section 3 extends the Cavallo mechanism in social networks and

discusses its limitations. After that, we propose our network-based

redistribution mechanism for tree structures, show its outstanding

properties and prove the efficiency impossibility result in Section 4.

Finally, we generalize our mechanism in graphs in Section 5 and

discuss future work.

2 PRELIMINARIES
We consider a setting where an owner o wants to allocate an item in

a social network G = (V , E), where each agent i ∈ V is a potential

bidder with a private valuation vi ≥ 0 for the item. Each agent

i ∈ V ∪ {o} has a private neighbour set ri ⊆ V . If there exists an
edge e(i, j) ∈ E from agent i to agent j, we say j is i’s neighbour,
denoted by j ∈ ri . Let di be the depth of agent i ∈ V , which is the

length of the shortest path from the owner to i . We say agent j is
agent i’s child neighbour if j ∈ ri and dj = di + 1, denoted by j ∈ rci .
The objective of the owner is to allocate the item to the agent with

the highest valuation to the best of her ability and maintain as

much wealth as possible among the agents. That is, she is aiming to

minimize the surplus of the payment transfers in the mechanism.

Initially, without any third-party platforms, the owner can only

allocate the item to her neighbours since all the other agents cannot

be reached directly. To attract more potential bidders, a feasible

approach is to ask the agents to invite their neighbours to join

the allocation. However, there is no reason for these bidders to

invite more competitors. Thus, how to design the incentives for the

agents to propagate the information without sacrificing desirable

properties is the greatest challenge we need to overcome.

In this paper, we propose a novel network-based redistribution

mechanism, where all the agents are willing not only to report their

private valuation for the item but also to invite all their neighbours

to the mechanism voluntarily.

We start by defining some notations in the mechanism:

• Let θi = (vi , ri ) be the type of agent i ∈ V , which is i’s true
private information.

• Let θ = (θ1, . . . , θn ) = (θ−i , θi ) be the type profile of all the
agents, where θ−i is the type profile for agents except i .

• LetΘi be the type space for agent i ∈ V andΘ = (Θ1, . . . ,Θn ) =

(Θ−i ,Θi ) be the type profile space for all the agents.

• Let
ˆθi = (v̂i , r̂i ) be the reported type of agent i ∈ V , where v̂i

is the valuation she reported and r̂i is the neighbour set she

has invited. Let
ˆθi = nil , if agent i is not invited.

• LetG( ˆθ ) = (V ( ˆθ ), E( ˆθ )) be the graph generated by the reported

type profile
ˆθ , which is constructed in the following way:{

i ∈ V ( ˆθ ) if i = o or i ∈ r̂ j where j ∈ V ( ˆθ )

e(i, j) ∈ E( ˆθ ) if e(i, j) ∈ E and i, j ∈ V ( ˆθ )

Note that the reported type is not definitely the same as the true

type. Therefore, we can easily observe that for each agent i ∈ V ,{
ˆθi , nil if i ∈ V ( ˆθ )
ˆθi = nil if i < V ( ˆθ )

o
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(b)

Figure 1: An example of a social networkG and its generated
graph G( ˆθ ).

Figure 1 shows an example of the graph generation process. Fig-

ure 1(a) is a real social network, where o is the resource owner and
other nodes are the bidders. The letter beside each node represents

the ID of a bidder and the value in the node represents the bidder’s

private valuation for the item. Suppose that
ˆθ is the reported type

profile where all the bidders report the truthful type except that

bidder b misreports
ˆθb = (5, ∅), which means that she misreports

her valuation to be 5 and does not invite her neighbour e . Then the

corresponding graph G( ˆθ ) will be generated as Figure 1(b) shows,

where bidder e , д and h do not occur as they cannot receive the

information without b’s invitation and thus their reported type

should all be nil .
Intuitively, if an agent is not informed about the allocation, she

will not occur in the generated graph. Thus, there is no need to

take such agents into consideration. In the following discussion,

we only focus on the generated graph.

Definition 2.1. A redistribution mechanismM in the social net-

work is defined by an allocation policy π = (π1, π2, . . . , πn ) and
a payment policy p = (p1,p2, . . . ,pn ), where πi : Θ → {0, 1} and

pi : Θ → R.

Given a reported type profile
ˆθ ∈ Θ, the payment policy p( ˆθ ) =

(p1( ˆθ ), . . . ,pn ( ˆθ )) represents the money paid by each agent and

the allocation policy π ( ˆθ ) = (π1( ˆθ ), . . . , πn ( ˆθ )) represents the item
allocation result. Intuitively, we have{

pi ( ˆθ ) ≥ 0 if agent i pays pi to the owner

pi ( ˆθ ) < 0 if agent i receives −pi from the owner

πi ( ˆθ ) =

{
1 if the item is allocated to agent i

0 if the item is not allocated to agent i
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Since there is only one item to be allocated, it is natural to require

that the allocation policy will not allocate the resource to those

who have not participated and no more than one agent will win

the item.

Definition 2.2. We say an allocation π ( ˆθ ) is feasible if at most

one agent i with ˆθi , nil is allocated the item, i.e.,∑
i ∈V , ˆθi,nil

πi ( ˆθ ) ≤ 1

In our setting, we assume that there is no cost for an agent

to spread the information to her neighbours. Therefore, given a

reported type profile
ˆθ of all the agents, the utility of agent i ∈ V

with type θi and reported type
ˆθi is defined as:

ui (θi , ˆθ ) = πi ( ˆθ )vi − pi ( ˆθ )

Therefore, the surplus of the payment transfer of the mechanism

is defined as:

S( ˆθ ) =
∑
i ∈V pi ( ˆθ )

Definition 2.3. Given a reported type profile
ˆθ ∈ Θ and a feasible

allocation π , the social welfare of allocation π ( ˆθ ) is defined by

SW ( ˆθ ) =
∑
i ∈V

πi ( ˆθ )v̂i

That is, the social welfare of an allocation is the sum of the

reported valuations of all agents whowin the item for this allocation.

The higher the social welfare is, the more efficient the allocation
is.

Definition 2.4. A redistribution mechanism M = (π ,p) is in-
dividually rational (IR) if for all i ∈ V and all

ˆθ ∈ Θ, we have

ui (θi , ˆθ ) ≥ 0, where
ˆθi = (vi , r̂i ).

This is a general extension of the traditional definition of individ-

ual rationality. That is, all the agents participated in the mechanism

will not have negative utilities as long as she truthfully reports

her private valuation. Note that the definition does not require the

agents to invite all their neighbours, which loosens the restriction

of reporting true type.

Definition 2.5. A redistribution mechanismM = (π ,p) is incen-
tive compatible (IC) if for all i ∈ V and all

ˆθ , ˆθ ′ ∈ Θ, we have

ui (θi , ˆθ ) ≥ ui (θi , ˆθ
′), where ˆθi = θi and ˆθ ′i , θi . ˆθ

′
is the corre-

sponding reported type profile when i changes her reported type

such that the reported type of any agent j < V ( ˆθ ′) is nil and the

others are the same as those in
ˆθ .

For the traditional definition of incentive compatibility, all the

buyers’ dominant strategy is to truthfully report their private valua-

tion of the item. Here, we put forward a stricter extended definition

of IC for the network setting, where all the agents are incentivized

not only to report valuation truthfully but also to invite all their

neighbours.

Definition 2.6. A redistribution mechanismM = (π ,p) is non-
deficit (ND) if for all i ∈ V and all

ˆθ ∈ Θ, we have

S( ˆθ ) =
∑
i ∈V

pi ( ˆθ ) ≥ 0

That is, the surplus of the payment transfer is non-negative,

which is reasonable because the owner or other outside parties has

to pay for the deficit otherwise.

Definition 2.7. A redistributionmechanismM = (π ,p) is asymp-
totically budget-balanced (ABB) if for all

ˆθ ∈ Θ, we have

lim

|N |→+∞
S( ˆθ ) = 0

This is to saywhen the number of the participants goes to infinity,

almost all the money received by the owner will be redistributed

back to the participants.

3 CAVALLO MECHANISM IN SOCIAL
NETWORKS

Considering the constraint of generalized IR, extended IC, ND and

ABB, seemingly some traditional redistribution mechanisms can

be easily applied to the new setting in social networks. Therefore,

in this section, we first review the classical Cavallo mechanism [1]

and show that it may lead to a deficit and disincentivize agents to

diffuse the information.

The Cavallo mechanism modifies the VCG framework and re-

distributes the transfer payments back among the agents while

keeping the specified desirable properties of VCG. The mechanism

for a single item is outlined below:

Cavallo Mechanism

(1) Each agent i ∈ V submits her reported type
ˆθi = (v̂i , r̂i ),

which forms a type profile
ˆθ ∈ Θ and a generated graph

G( ˆθ ).
(2) The mechanism chooses the highest bidder w ∈

argmaxi ∈V v̂i as the winner, which maximizes the so-

cial welfare, and allocates the item to her.

(3) All the agents’ payments are defined by pi ( ˆθ ) =

pVCGi ( ˆθ ) − pr ei ( ˆθ ), where pVCGi ( ˆθ ) = SW ( ˆθ−i ) −

(SW ( ˆθ ) − πi ( ˆθ )v̂i ) is the money paid for auction and

pr ei ( ˆθ ) =
SVCGi
n is the money redistributed to i .

(4) The surplus of the mechanism which is given to the

resource owner is S( ˆθ ) =
∑
i ∈V pi ( ˆθ ).

Intuitively, the Cavallo mechanism can be viewed as two stages:

the auction stage and the redistribution stage. In the first auction

stage, the item will be allocated to the highest bidder and she pays

the loss of other players because of her participation to the owner

as defined in the traditional VCG mechanism. Then in the second

redistribution stage, the owner redistributes the money received

to all the agents in the mechanism. The money redistributed to

agent i is calculated by

SVCGi
n , where SVCGi is the surplus lower-

bound in VCG among the same agents over all possible reported

valuation of i . Specially, in the single-item setting, the payment in

the first stage of the highest bidder is the second highest reported

valuation. Letmj be the j
th

highest bidder among all the agents

V . The redistributed money is

v̂m
3

n for the highest bidder and the

second highest bidder, and

v̂m
2

n for the others. Consequently, all
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the agents share the surplus and the rewards are independent of

their reported valuation.

Although the Cavallo mechanism is IR and ABB, we then show

that it may run a deficit and agents may be not willing to diffuse

the information in social networks.

o

0 0a b

d01c

(a)

o

2 4a c

e21d

b3

(b)

Figure 2: (a) An example of running a deficit; (b) An example
of disincentivizing the diffusion.

Proposition 3.1. The Cavallo mechanism runs a deficit.

Proof. We prove the proposition by showing a counter example

in Figure 2(a). Since agent c is the only one with positive valuation,

the mechanism will allocate the item to her. For agent b and d , their
participation does not affect the result, thus they will pay nothing in

the first auction stage. For agent c , if she does not participate in the

mechanism, no one else will win the item with positive utility, thus

her payment is also zero. For agent a, if she quits the mechanism,

agent c will not be involved in, so her payment is −1. Since there

is only one agent with positive valuation, all the agents will be

redistributed nothing in the redistribution stage. Thus we have

S( ˆθ ) =
∑
i ∈V pi ( ˆθ ) = −1, which runs a deficit. □

Proposition 3.2. The Cavallo mechanism disincentivizes the
agents to diffuse the information.

Proof. By showing a counter example in Figure 2(b), we can

easily prove the proposition. As agent c is the highest bidder, she

keeps the item and pays the second highest valuation pVCGc ( ˆθ ) =
v̂b = 3. Then in the redistribution stage, all these 5 agents will

share the surplus. For agent b and c , SVCGb = SVCGc = v̂a = 2,

then pr eb ( ˆθ ) = pr ec ( ˆθ ) = 2/5. For agent a, d and e , SVCGa = SVCGd =

SVCGe = v̂b = 3, then pr ea ( ˆθ ) = pr ed ( ˆθ ) = pr ee ( ˆθ ) = 3/5. However,

if a stops inviting d and c stops inviting e , the allocation and the

surplus will remain the same but the number of agents who share

the surplus will decrease. Then pr ea ( ˆθ ′) = 3/3 = 1 > pr ea ( ˆθ ) and

pr ec ( ˆθ ′) = 2/3 > pr ec ( ˆθ ). Thus, the Cavallo mechanism disincen-

tivizes the agents’ diffusion. □

Proposition 3.1 and 3.2 show that owing to the special constraint

of social networks, extending the Cavallo mechanism into network

settings simply is not feasible. In the following section, we will

introduce our novel mechanism with all the desirable properties

satisfied.

4 REDISTRIBUTION MECHANISM IN TREES
To tackle the challenges on networks, we propose a network-based

redistribution mechanism (NRM) which satisfies all the desirable

properties mentioned before. In this section, we will first start with

a special type network, tree structures, which provides a clearer

presentation of the intuition behind. Later we will generalize our

mechanism on common graphs.

Definition 4.1. Given a reported type profile
ˆθ ∈ Θ of all the

agents and the generated tree graph G = (V , E), for each agent

i, j ∈ V if there exists a simple path from the seller s to j through i
with the depth relation di < dj , we say i is j’s ancestor and j is i’s
descendant.

Some basic notations in the mechanism is defined as:

• Let Ai = (a1, · · · ,ak ) be the ancestor sequence of agent i ,
where aj ∈ Ai is an ancestor of agent i and da1 < da2 < · · · <

dak .
• Let Gi = (Vi , Ei ) be the subtree of agent i if Gi is a tree

consisting of i and all its descendants in G. Let ni = |Vi | be
the number of agents in Gi .

• Let Baj = r
c
aj−1 \aj be the sibling set of agent aj ∈ Ai , where

all the agents in Baj has the same parent as aj .

• Let v̂
(1)

D denote the highest reported valuation among all the

agents in any set D.

That is, for each agent i ∈ V , she cannot join in the mechanism

if any agent in her ancestor sequence Ai does not diffuse the infor-
mation. Besides, without the invitation of agent i , any agent in her

subtree Vi cannot receive the information.

Now we will propose our NRM in Trees. The detailed procedure

is given in Algorithm 1.

Intuitively, although the network-based redistribution mecha-

nism is centralized, it can be viewed as a sequential procedure. The

item passes through the ancestor sequence of the highest bidder h
and each agent aj ∈ A∪ {h} is required to pay the highest reported
valuation without her participation for either passing or keeping

the item. The item is allocated to the first agent whose valuation

is higher than or equal to her required payment. The money each

agent paid first compensates the last ancestor’s payment and the

remaining part will be redistributed among her siblings and herself.

The money redistributed to agent i is the new required payment

difference multiplied by the percentage of agents in i’s subtree over
all the agents in the subtrees of the ancestor and its siblings con-

sidered, which is a monotone increasing function to the number of

their descendants. The more their descendants are, the more they

will be redistributed, which incentivizes the agents’ diffusion. The

rest money which is not redistributed will be given to the owner as

the surplus. Note that NRM is a centralized mechanism and all the

operation process is run by the owner. Therefore, only the winner

in NRM is the one who is required to pay the money to the owner

while the ancestor sequence of the winner and their siblings will

be redistributed rewards.

We take Figure 3 as an example. In Figure 3(a), the highest bidder

is agent q and the ancestor sequence isAq = {b,д, l}, which are col-

ored in green. Those purple nodes are siblings of the ancestors, i.e.,

Bb = {a, c}, Bд = { f ,h} and Bl = {k,m}. Figure 3(b), 3(c)and 3(d)

shows a running process of NRM, where each subfigure represents
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Algorithm 1 Network-based Redistribution Mechanism

Require:
A type profile

ˆθ ∈ Θ and the item owner o;

1: construct the tree G = (V , E) by ˆθ ;
2: identify the highest bidder h ∈ argmaxi ∈V v̂i ;
3: find the ancestor sequence Ah ;
4: find the sibling set Bi for each agent i ∈ Ah ∪ {h};
5: set A = (o,Ah,h) = (a0,a1, · · · ,ak ,ak+1);
6: initialize πi = 0, Ri = 0 and pi = 0 for each agent i;

7: initialize pauca0 = 0 and S( ˆθ ) = 0;

8: for each aj in (a1, · · · ,ak+1) do
9: paucaj = v̂

(1)

V \Vaj
;

10: Saj = p
auc
aj − paucaj−1 ;

11: X = Baj ∪ aj ;
12: nX =

∑
q∈X nq ;

13: for each k ∈ X do
14: h′ ∈ argmaxi ∈V \Vk v̂i ;
15: find Ah′ and A′ = (o,Ah′,h′);

16: S−k =


v̂
(1)

V \{Va′j
∪Vk }

− paucaj−1 if aj−1 = a′j−1 ∈ A′

0 otherwise

;

17: Rk =
nk
nX · S−k ;

18: pk = −Rk ;
19: end for
20: Update surplus S( ˆθ ) = S( ˆθ ) + Saj −

∑
k ∈Baj ∪aj

Rk ;

21: if v̂aj ≥ v̂
(1)

V \Vaj
then

22: πaj = 1;

23: paj = v̂
(1)

V \Vaj
− Raj ;

24: break;

25: end if
26: end for
27: Return πi and pi for each agent i and S( ˆθ ) for the owner;

the computational process for each step. For each subfigure, the

nodes in grey are the ancestor and its siblings we focus on in this

step, and the nodes in red circle are the highest bidder in the subtree

of the ancestor or its siblings. The value Pauc on the left top is the

required payment for the ancestor and the red arrows represent

the payment transfer. In the first step in Figure 3(b), the required

payment for agent b is the highest reported valuation without her

participation paucb = v̂i = 10. Since she is the first one in the ances-

tor sequence, the payment paucb can be directly used to redistribute

among the siblings and herself. The total number of agents in the

subtrees of a, b and c is 16. For agent a, without her participation
the new required payment is also 10 and the number of agents

in her subtree is na = 4, thus the money redistributed to her is

Ra =
4∗10
16
= 2.5. For agent b, the new required payment becomes

8 if she quits the mechanism and nb = 8, thus the money redis-

tributed is Rb =
8∗8
16
= 4. Similarly, we have Rc =

4∗8
16
= 2. Then

the surplus paucb − Ra − Rb − Rc = 10 − 2.5 − 4 − 2 = 1.5 will

be given to the owner. In the second step in Figure 3(c), we have

paucд = 17. Since paucb = 10, the money first compensates agent b’s

payment. Then the payment difference paucд − paucb = 17 − 10 = 7

o

7

18

19

4 6

17

a b

f

l

c

i10

q

1712 g h2d

13k 11

8e

1j 3 p7 nm

(a)

o

7

18

19

4 6

17

a b

f

l

c

i10

q

1712 g h2d

13k 11

8e

1j 3 p7 nm

2.5 2

1.5

𝑝𝑏
𝑎𝑢𝑐 = 10 

(b)

o

7

18

19

4 6

17

a b

f

l

c

i10

q

1712 g h2d

13k 11

8e

1j 3 p7 nm

𝑝𝑔
𝑎𝑢𝑐 = 17 

10
1 1

(c)

0

o

7

18

19

4 6

17

a b

f

l

c

i10

q

1712 g h2d

13k 11

8e

1j 3 p7 nm

𝑝𝑙
𝑎𝑢𝑐 = 17 

0

17

(d)

Figure 3: (a) The ancestor sequence of agent q and their sib-
lings; (b)(c)(d) A running process of NRM in Trees.

will be redistributed among f , д and h. For each f , д and h, the new
required payment difference without their participation is also 7.

Thus, we have Rf = Rh =
1∗7
7
= 1 and Rд =

5∗7
7
= 5. In this step

the surplus to owner is zero since paucд − paucb − Rf − Rд − Rh = 0.

In the third step in Figure 3(d), paucl = 17 is equal to paucд . Thus

the money will all be used to compensate agent д’s payment and

remain nothing for redistribution. Thus we have Rk = Rl = Rm = 0.

Since v̂l = 18 > paucl , the item will be allocated to agent l . Till now,

the NRM runs over. The winner is agent l and the surplus is S = 1.5.

Compared to the classical Cavallo mechanism, the owner allocates

the item to agent b with social welfare v̂b = 7 and only three agents

a, b and c have positive utilities while in NRM the social welfare is

18 and 7 agents have positive utilities. Therefore, our mechanism

achieves a more efficient allocation and more agents have positive

utilities.

4.1 Properties of NRM
In what follows, we show that our NRM satisfies all the desirable

properties of IR, IC, ND and ABB in trees. Also, the allocation

is more efficient than traditional Cavallo mechanism among the

neighbours.

Theorem 4.2. The network-based redistribution mechanism in
trees is individually rational.

Proof. According to the algorithm of NRM, for each sibling i of
ancestors, they are not required to pay money and they will receive

the money redistributed. Thus we haveui (θi , ˆθ ) = πi ( ˆθ )vi −pi ( ˆθ ) =

−pi ( ˆθ ) = Ri ( ˆθ ) ≥ 0. For each ancestor i of the winner, although
they are required to pay money for either passing or keeping the

item, their payment will be compensated by the next ancestor in the

sequence. Thus they will be only redistributed the money from the

mechanism, i.e., ui (θi , ˆθ ) = πi ( ˆθ )vi − pi ( ˆθ ) = −pi ( ˆθ ) = Ri ( ˆθ ) ≥ 0.
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For the winnerw of the item, her valuation must be greater than or

equal to her required payment according to the allocation condition.

Together with the redistributed money, her utility is uw (θw , ˆθ ) =

πw ( ˆθ )vw − pw ( ˆθ ) = vw − paucw + Ri ( ˆθ ) ≥ Ri ( ˆθ ) ≥ 0. All the other

agents pay nothing. Thus, agents’ utilities in NRM are non-negative

and the mechanism is individually rational. □

Theorem 4.2 proves that all the agents participating the mech-

anism will not have negative utilities as long as they report their

valuation truthfully, which is the basic requirement for the mecha-

nism. Then we prove that our mechanism is truthful.

Theorem 4.3. The network-based redistribution mechanism in
trees is incentive compatible.

Proof. As defined in the extended IC, all agents are required

not only to report their truthful valuation but also to invite all

their neighbours. Here we prove the theorem in two steps. First, fix

whatever valuation for each agent, we prove that inviting all the

neighbours is the dominant strategy. Next, fix whatever neighbours

invited by each agent, we prove that reporting the truthful valuation

is the dominant strategy. Thereby, for each agent, both reporting the

truthful valuation and inviting all the neighbours is the dominant

strategy.

In NRM, all the agents can be divided into four categories: the

winner, winner’s ancestors, siblings of the ancestors and the others.

Only the agents in the first three categories will gain non-zero

utilities.

For the winnerw , her utility is uw (θw , ˆθ ) = πw ( ˆθ )vw − pw ( ˆθ ) =
vw−paucw +Rw . First, assume that her reported valuation is fixed and

the neighbours she invited is r̂w ⊂ rw . According to the allocation

condition, no matter how many neighbours she invites, she will be

still the winner since her valuation is at least equal to the required

payment. The termvw −paucw remains the same. However, since Rw
is a monotone increasing function to the number of the descendants,

Rw will decrease if inviting fewer neighbours, which leads to a lower

utility. Next, assume that her neighbours invited is fixed and her

reported valuation is v̂w , vw . If she is still the winner, her utility

remains the same since it is not related to her reported valuation.

If she becomes an ancestor of the new winner or the siblings of

the ancestor, her utility will only consist the redistributed part

Rw ≤ vw − paucw + Rw , which is lower than the utility of being the

winner.

For the winner’s ancestor i , her utility is ui (θi , ˆθ ) = πi ( ˆθ )vi −

pi ( ˆθ ) = Ri . First, assume that her reported valuation is fixed and the

neighbours she invited is r̂i ⊂ ri . According to the allocation con-

dition, no matter how many neighbours she invites, she cannot be

the winner since her valuation is lower than the required payment,

i.e., vw < paucw . If she is still the ancestor or becomes a sibling, her

utility will decrease after inviting fewer neighbours since the total

amount of the money to be redistributed will not increase and the

Rw is a monotone increasing function to the number of the descen-

dants. Next, assume that her neighbours invited is fixed and her

reported valuation is v̂i , vi . She has no chance to be the sibling.

If she becomes the winner, her utility will be vi − pauci + Ri < Ri ,
which is lower than that of reporting truthfully. If she is still the

ancestor, her utility will not change no matter what valuation she

reports.

For the sibling of the ancestors i , her utility isui (θi , ˆθ ) = πi ( ˆθ )vi−

pi ( ˆθ ) = Ri . First, assume that her reported valuation is fixed and

the neighbours she invited is r̂i ⊂ ri . She has no chance to be the

winner or the ancestor according to the allocation condition. If

she is still the sibling, her utility will decrease after misreporting

since the total amount of the money to be redistributed will not

increase and the Rw is a monotone increasing function to the num-

ber of the descendants. Next, assume that her neighbours invited is

fixed and her reported valuation is v̂i , vi . She has no chance to

be an ancestor. If she becomes the winner, her required payment

will be the highest valuation without her participation, which is

higher than her valuation. Thus her utility will decrease because

vi − pauci + Ri < Ri . If she is still the sibling, her utility remains

unchanged.

For any other agent i , her utility is 0. First, assume that her re-

ported valuation is fixed and the neighbours she invited is r̂i ⊂ ri .
The allocation will not change and she cannot become the winner,

the ancestor or the sibling. So she will still gain nothing. Next,

assume that her neighbours invited is fixed and her reported valua-

tion is v̂i , vi . The only possible way to gain something through

misreporting valuation is to report a higher valuation and become

the winner. However, the money she is required to pay must be

higher than her valuation and the money redistributed to her must

be zero. Thus her utility is negative.

Accordingly, NRM is incentive compatible since all the agents

have no incentive to either misreporting their valuation or inviting

fewer neighbours. □

Next, we show that the resource owner will never pay some

extra money for the allocation in our mechanism and the surplus

after redistribution among the agents will go to zero asymptotically

when the number of participants goes to infinite. Moreover, our

mechanism can achieve a more efficient allocation compared to the

Cavallo mechanism.

Theorem 4.4. The network-based redistribution mechanism in
trees runs no deficit.

Proof. According to the process of NRM, in each step, the an-

cestor ai pays the money required paucai = v̂
(1)

V \Vai
and shares the

remaining part after compensationpaucai −paucai−1 amongX = Bai ∪ai .
The total money redistributed is∑

k ∈X

Rk =
∑
k ∈X

nk
nX

· S−k

≤
∑
k ∈X

nk
nX

· (paucai − paucai−1 )

= paucai − paucai−1

Thus, the required payment can cover the compensation and the

money redistributed. So NRM runs no deficit. □

Theorem 4.5. The network-based redistribution mechanism in
trees is asymptotically budget-balanced.

Proof. In each step, the money is redistributed among the ances-

torai and her siblingsBai . Let theX = Bai∪{ai } = {x1, x2, · · · , xm },
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where v̂
(1)

Vx
1

≥ v̂
(1)

Vx
2

≥ · · · ≥ v̂
(1)

Vxm
. The amount of the money redis-

tributed is∑
k ∈X Rk

=
∑
k ∈X

nk
nX · S−k

=
nx

1

nX ·max(0, v̂
(1)

Vx
3

− paucai−1 ) +
nx

2

nX ·max(0, v̂
(1)

Vx
3

− paucai−1 )

+
nx

3

nX ·max(0, v̂
(1)

Vx
2

− paucai−1 ) + · · · +
nxm
nX ·max(0, v̂

(1)

Vx
2

− paucai−1 )

=λ ·max(0, v̂
(1)

Vx
3

− paucai−1 ) + (1 − λ) ·max(0, v̂
(1)

Vx
2

− paucai−1 )

where λ = (nx1 + nx2 )/nX .
As the number of participating agents n goes to∞, the surplus

for this step is

lim

n→+∞
(paucai − paucai−1 −

∑
k ∈X Rk )

= lim

n→+∞
(max(v̂

(1)

Vx
2

,paucai−1 ) − paucai−1

−λ ·max(0, v̂
(1)

Vx
3

− paucai−1 ) − (1 − λ) ·max(0, v̂
(1)

Vx
2

− paucai−1 ))

= lim

n→+∞
(max(0, v̂

(1)

Vx
2

− paucai−1 )

−λ ·max(0, v̂
(1)

Vx
3

− paucai−1 ) − (1 − λ) ·max(0, v̂
(1)

Vx
2

− paucai−1 ))

= lim

n→+∞
(λ ·max(0, v̂

(1)

Vx
2

− paucai−1 ) − λ ·max(0, v̂
(1)

Vx
3

− paucai−1 ))

= lim

n→+∞

nx
1
+nx

2

nX · (max(0, v̂
(1)

Vx
2

− paucai−1 ) −max(0, v̂
(1)

Vx
3

− paucai−1 ))

=0

Thus in each step the surplus is asymptotically zero, so the NRM is

asymptotically budget-balanced.

□

Theorem 4.6. The network-based redistribution mechanism in
trees is at least as efficient as Cavallo mechanism among neighbours.

Proof. According to the allocation condition, the winner is the

agent whose reported valuation satisfies v̂w ≥ paucw = v̂
(1)

V \Vw
≥

v̂
(1)
ro . Thus, NRM is at least as efficient as Cavallo mechanism among

the owner’s neighbours. □

4.2 Efficiency Impossibility
In what follows, we discuss the efficiency of redistribution mech-

anisms on networks. It seems that Theorem 4.6 is not that strong

since there are no further guarantees for the efficiency except for

the improvement compared to the Cavallo mechanism among the

neighbours. However, even if we ignore redistribution and only

consider non-deficit (and IC, IR), efficiency approximation has not

been found yet for diffusion settings [12, 13].

Let us now exhibit the negative result regarding the design of

mechanisms for diffusion settings. The result shows that it is impos-

sible to achieve any efficiency guarantee given that all the properties

are satisfied.

Proposition 4.7. There exists no mechanism in the diffusion set-
ting which can guarantee any efficiency without sacrificing non-
deficit, IR and IC.

Proof. Consider a simple line graph in Figure 4, where o is the
resource owner, agent a has two neighbors o and b, and a and b’s
valuations are va and vb and va < vb . If a does not invite b, a wins

the resource and pays zero, so a will only invite b if a’s reward is

at least va . If a invites b, to achieve a more efficient allocation, b
wins and her payment should be not more than vb ; otherwise, it
may violate IR. To achieve non-deficit, b should pay at least what

a receives. Eventually, their payments depend on their valuations,

which violates IC. Thus, no matter how large vb is, she cannot be

allocated the item.

That is, whatever the mechanism, it cannot guarantee any effi-

ciency for all the network structures without sacrificing non-deficit,

IR and IC. □

o va vba b

Figure 4: The worst case for efficiency.

The simple setting presented in proposition 4.7 is somewhat

equivalent to the bilateral trading setting of one seller and one

buyer studied by Myerson and Satterthwaite [16] where a behaves

like the seller and b is the buyer since a can easily get the item for

free by not inviting anyone. Then their well-known impossibility

theorem holds here (i.e. we cannot have efficiency, IC, IR and non-

deficit at the same time). Even in bilateral trading settings, we

haven’t seen good non-deficit examples to approximate efficiency.

The well-known example is McAfee’s trade reduction for multiple

buyers and multiple sellers, where efficiency is sacrificed to remove

deficit, but the efficiency loss is diminished when the number of

traders increases [14]. However, it still does not guarantee a lower

bound of efficiency in general. In the worst case when there is only

one seller and one buyer, it has no efficiency guarantee.

Therefore, the efficiency of amechanism depends on the network.

To the best of our knowledge, we are the very first to study the

redistribution problem in the network setting. The benchmark used

in our setting is the Cavallo mechanism, which achieves efficiency

among the resource owner’s neighbours. Since we have shown that

generically, no non-deficit, IR and IC mechanism can guarantee any

efficiency in the diffusion setting in Proposition 4.7, NRM breaks

new ground for this problem as the efficiency is improved compared

to Cavallo mechanism.

5 REDISTRIBUTION MECHANISM IN
GRAPHS

In the previous section, we only studied the mechanism in tree

structures. In real life, most social networks are common graphs.

Hence in this section, we extend our NRM to more general cases

without sacrificing all desirable properties.

Different from the tree cases, we extend the definitions and basic

notations for the graph setting.
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Definition 5.1. Given a reported type profile
ˆθ ∈ Θ of all the

agents and a generated common graph G = (V , E), for each agent

i, j ∈ V if all the paths from o to j have to pass i , we say i is j’s
ancestor and j is i’s descendant.

• Let Ai = (a1, · · · ,ak ) be the ancestor sequence of agent i .
• Let Gi = (Vi , Ei ) be the subgraph of agent i .
• Let Baj = r

c
aj−1 \ aj be the sibling set of agent aj ∈ Ai .

That is, an ancestor aj ∈ Ai for agent i ∈ V is a cut-point from

the seller to i . The subgraph of agent i are those who cannot receive
the information without i’s invitation. The siblings of an ancestor

aj are the child neighbours of ancestor aj−1 except aj herself.
Then the NRM can be simply extended in graphs by updating

the definitions of the notations above in Algorithm 1.

Intuitively, the network-based redistributionmechanism in graphs

is a generalization of that in trees. The sibling set who share the

money with an ancestor are the child neighbours of the last an-

cestor. Seemingly, it is quite different from the ancestor’s brother

neighbours with the same parent in tree cases. Actually, in tree

structures, the ancestor herself is also one of the child neighbours

of the last ancestor, which can be viewed as a special case of the

common graphs.
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Figure 5: (a) The ancestor sequence of agent r and their sib-
lings; (b)(c) A running process of NRM in graphs.

Also an example is given to illustrate the mechanism. In Fig-

ure 5(a), the highest bidder is agent r . According to the definition,

the green nodes are the ancestors of agent r and purple nodes are

their siblings, i.e., Ar = {д,p}, Bд = {a,b, c} and Bp = {j,k, l,m}.

In the running example in Figure 5(b) 5(c), first for agent д, her
required payment paucд = v̂i = 12 will all be used to redistribute

among a, b, c and д. The total number of agents in the subgraph of

all a, b, c and д is 3+ 1+ 2+ 9 = 15. If a quits the mechanism, d and

e will be not able to receive the information and b will be the new

ancestor with payment 12. Thus we have Ra =
3∗12
15
= 2.4. If b quits

the mechanism, only herself will be out of the network and a will be
the new ancestor with payment 12. Thus we have Rb =

1∗12
15
= 0.8.

Similarly, we have Rc =
2∗9
15
= 1.2 and Rд =

9∗9
15
= 5.4. The surplus

in this step is 12 − 2.4 − 0.8 − 1.2 − 5.4 = 2.2, which will be given

to the owner. In the same way, the required payment for agent

p is paucp = 15 and the remaining money after compensation is

paucp − paucд = 3. Then the money redistributed to each agent is

Rj = Rk = Rl = Rm =
1∗3
6
= 0.5 and Rp =

2∗3
6
= 1. The surplus

is 0 and p will keep the item since v̂p = 16 ≥ 15 = paucp . Till now,

the mechanism runs over. The winner is agent p, the social welfare
is v̂p = 16 and the total surplus is 2.2. Compared to the classical

Cavallo mechanism, agentb is allocated the itemwith social welfare

v̂b = 7 and only three agents a, b and c have positive utilities while
in NRM the social welfare is 16 and 9 agents have positive utilities.

Since the network-based redistribution mechanism in graphs is

a generalization of that in trees, we can easily obtain the following

corollary.

Corollary 5.2. The network-based redistribution mechanism in
graphs runs no deficit and is IR, IC, ABB and at least as efficient as
Cavallo mechanism among neighbours.

6 CONCLUSION
In this paper, we considered the redistribution mechanism design

problem in social networks, where the owner wants to allocate one

item and hopes the wealth maintained among the agents as much

as possible. The objective is to incentivize agents participated to

invite all their neighbours to the mechanism so that the owner can

make the allocation more efficient. The classical Cavallo mechanism

performs well in the traditional static setting; however, it may lead

to a deficit and disincentivize the agents to diffuse the information

if it is directly extended in social networks. To overcome the chal-

lenge, we propose a novel network-based redistribution mechanism

which incentivizes agents to invite all their neighbours. The key

of our mechanism is that the reward redistributed to each agent

on the network is carefully designed by a monotone increasing

function to the number of participants she invites. The mechanism

works not only for the tree structures but also for the common

graphs. Moreover, the mechanism satisfies all the desirable proper-

ties of individual rationality, incentive compatibility, asymptotically

budget-balance and non-deficit. More importantly, the allocation is

also more efficient.

Our work has many interesting aspects for further investigation.

Although we have shown the efficiency impossibility result in the

paper, it is still an interesting future work to study the efficiency

approximation for some certain network structures like trees given

some prior knowledge about agents’ valuations. We only consider

the single-item situation in this paper, so it may be a challenge to

extend the mechanism for multiple items, which cannot be achieved

by simply running the mechanism for several times. We assume

that there is no cost for an agent to spread the information to their

neighbours in this paper. Another interesting future work may be

designing a mechanism for the setting with cost.
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