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ABSTRACT

We consider a requester who acquires a set of data (e.g. images)
that is not owned by one party. In order to collect as many data
as possible, crowdsourcing mechanisms have been widely used to
seek help from the crowd. However, existing mechanisms rely on
third-party platforms, and the workers from these platforms are
not necessarily helpful and redundant data are also not properly
handled. To combat this problem, we propose a novel crowdsourc-
ing mechanism based on social networks, where the rewards of
the workers are calculated by information entropy and a modified
Shapley value. This mechanism incentivizes the workers from the
network to not only provide all data they have but also further
invite their neighbours to offer more data. Eventually, the mecha-
nism is able to acquire all data from all workers on the network and
the requester’s cost is no more than the value of the data acquired.
The experiments show that our mechanism outperforms traditional
crowdsourcing mechanisms.
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1 INTRODUCTION

Recent years witnessed the rise and development of deep learn-
ing [6]. Many laboratories and companies put emphasis on building
neural network applications such as DeepMind, Facebook Al Re-
search (FAIR) and Stanford AI Lab (SAIL). In these applications,
large-scale datasets are indispensable. Therefore, data acquisition
underpins the success of these applications. Traditionally, they may
hire voluntaries to collect data such as photos or voices, which is a
very time-consuming and labour-intensive process.
Crowdsourcing is a teamwork collaboration mode in which com-
panies use the open call format to attract potential workers to do
the task at a lower cost, which was first proposed by Howe [5].
Many companies are committed to crowdsourcing services such as
Amazon Mechanical Turk and gengo Al Consequently, more and
more research teams turn to these platforms to acquire data. For
example, ImageNet [2] from SAIL is collected via Mechanical Turk.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Yao Zhang
ShanghaiTech University
Shanghai, China
zhangyaol@shanghaitech.edu.cn

1629

Dengji Zhao
ShanghaiTech University
Shanghai, China
zhaodj@shanghaitech.edu.cn

In traditional crowdsourcing models, the requester has to pay
not only the data providers but also the third-party crowdsourcing
platforms. However, the data collected in this way may be redun-
dant, but the requester still has to pay for it. Therefore, whether
the requester can benefit from the paid crowdsourcing platforms is
not clear.

In this paper, we propose a novel crowdsourcing mechanism for
data acquisition via social networks. The requester is the owner of
the mechanism and she can use it to collect data without any third-
party platforms. The mechanism requires the requester to release
the task information to her neighbours on the network. Under this
mechanism, the participants will be incentivized to provide all their
data and invite all their neighbours to do the task. They will gain
payoffs not only from their offered data but also from inviting their
neighbours. By doing so, the task information can be disseminated
through the whole social network without paying the workers in
advance.

Different from other crowdsourcing mechanisms, our mecha-
nism only distributes rewards to those who provide non-redundant
data and do effective diffusion. That is, the workers will not gain any
payoff if they do not contribute to the data acquisition task. Hence it
can eliminate redundant and irrelevant data, and avoid unnecessary
expenses for the requester. More importantly, our mechanism can
incentivize workers participated to invite all their neighbours to
join the task, which is not possible under existing mechanisms.

In the crowdsourcing literature, there are many related mech-
anisms published. Franklin et al. focused on how to use crowd-
sourcing to process difficult queries [4]. Chawla et al. proposed an
optimal crowdsourcing contest for high-quality submissions [1].
Zhou et al. studied a new method of measurement principle for
work quality [20]. Miller et al. devised a scoring system to evaluate
the feedback elicited [8]. Radanovicet al. presented a general mech-
anism to reward the workers according to peer consistency [12].
They are all different from our work. They mainly focused on the
crowdsourcing model to improve the quality of the work provided
by the workers and their settings have not considered the task
propagation between workers. In our setting, we also incentivize
the workers to propagate the task information to their neighbours
to collect more data. Naroditskiy et al. [10] initiated a formal study
of verification in crowdsourcing settings where information is prop-
agated through referrals. However, there is often a single ground
truth in their settings which is unknown to the requester. Our set-
ting is not seeking the answer for a ground truth, and we are aiming
for collecting rich data.

There also exists some interesting literature about information
diffusion on social networks. Narayanam and Narahari studied the
target set selection problem [9], which involves discovering a small
subset of influential workers in a given social network, to maxi-
mize the diffusion quality of the workers rather than incentivizing
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them to diffuse. In terms of incentivizing people to disseminate the
task information, Li et al. proposed a single-item auction diffusion
mechanism via social networks and Zhao et al. then generalized
the mechanism for multiple items [7, 19]. The problem they studied
is a non-cooperative game, while in our setting the workers may
benefit from others’ participation. Emek et al. studied the reward
mechanisms in multi-level marketing within social networks [3].
However, they focused on the false-name manipulations and in
their setting, each agent occurring in the referral tree has to pur-
chase the product, which is not required in our setting. Another
related work is the MIT winning solution under the DARPA Net-
work Challenge [11]. However, their solution only works for tree
structures. Our mechanism refers to their idea and puts forward a
modified payoff policy for workers’ diffusion contribution in single-
source directed acyclic graphs. More importantly, the reward in
the DARPA network challenge is predefined, while in our setting it
varies according to the data offered by the workers.

Our mechanism is also closely related to the strategy diffusion
mechanism proposed by Shen et al. [16]. However, they focused on
the problem of false-name attacks and did not consider data redun-
dancy. Also, their mechanism cannot guarantee that the workers
will diffuse the task information to all their neighbours. Winter [17]
proposed a coalition structure value for level structures. Their idea
is similar to our method of evaluating the data contribution. Nev-
ertheless, their structure does not take the priority of different
coalitions in the same level into consideration, which is essential
for the diffusion incentive in our setting.

The contributions of our mechanism advance the state of the art
in the following ways:

e We model a crowdsourcing mechanism on social networks
without relying on third-party platforms. Our mechanism in-
centivizes the workers to not only offer their data truthfully
but also propagate the task information to all their neigh-
bours without paying them in advance. This guarantees that
more non-redundant data will be collected.

We give a novel method to evaluate the non-redundancy of
the acquired data and distribute rewards to the workers with-
out unnecessary expenses. This is achieved by a modified
Shapley value.

The cost of the requester will be no more than the value
of the data acquired and the payoffs are adjustable by the
requester, which incentivizes the requesters to apply our
mechanism in real-world applications.

The remainder of the paper is organized as follows. Section 2
describes the model of the problem. Section 3 shows the challenges
for directly extending traditional crowdsourcing mechanism on
social networks. Section 4 shows the negative result and gives a
description of the proposed mechanism. Section 5 gives a approach
to choose the valuation function for the mechanism. Section 6
analyzes the key properties of the mechanism. Finally, we conduct
experiments in Section 7 and discuss future work in Section 8.

2 THE MODEL

Consider a data acquisition task T that is executed on a social
network. To simplify the representation, we first model the network
as a directed acyclic graph (DAG) G = (V, E) with a single source
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s € V which is a special node called the requester of task T, and
later on we will consider a general graph. In the graph, V = {s}UN
where N = {1, ..., n} denotes the set of n workers and E denotes
the information flow between vertices. For any i # j € V, if there
is a directed edge e;; € E from i to j, then i can directly propagate
the task information to j. Here, we say j is i’s child and i is j’s
parent. Let r{ be the set of i’s children, r‘lp be the set of i’s parents

and r; = (rf, rf)) be the neighbour set of each i € V. If there is a
directed path from i to j, then we say j is i’s successor and i is j’s
predecessor. For each i € V, let succ(i) be the set of i’s all successors,
and pred(i) be the set of i’s all predecessors. Each worker i € V has
adepth [; > 0 representing the length of the shortest path from the
requester s to i.

In the above network, requester s wants to collect data of task
T. Each worker i € N is a potential data owner and has a private
dataset D; = {d}, diz, . d;‘} related to task T, where each d; € D;
represents an atomic data (e.g. an image) and k is the number of
atomic data owned by the worker i. Let D be the space of all possible
datasets owned by workers. In our setting, we are not aiming for a
single ground truth, instead, we try to collect a dataset as rich as
possible.

Given the problem setting, without using crowdsourcing plat-
forms, it is evident that the requester can only collect data among
her neighbours with whom she can directly communicate. Tradi-
tionally, to collect as many required data as possible, the requester
tends to do propagation with the help of some paid third-party
crowdsourcing platforms (such as Amazon Mechanical Turk and
gengo Al). However, the quality of the data collected cannot be
guaranteed and users may tend to give redundant data which is
costly but not useful for the requester.

In this paper, we propose a novel diffusion mechanism for crowd-
sourcing the data. The goal of the mechanism is to incentivize the
workers on the social network to provide all the data they have
and also propagate the task information to all their neighbours.
Different from other data collection platforms, our mechanism does
not reward the redundant data providers (i.e., duplicate data will
not be paid). Furthermore, the workers’ total payoff is relevant not
only to their provided data but also to their diffusion contribution
(inviting neighbours).

For each worker i € N, let §; = (Dj,r{) be i’s type. Due to
the information flow constraint, we do not need to consider g

in i’s strategy space. Then the type profile of all the workers ils
denoted as 6 = (61, 0,...,0,) = (0;,0-;), where 6_; represents
the type profile of all workers except i. Let ©; be i’s type space, and
0 =(04,...,0,) = (0;,0_;) is the type profile space for all the
workers.

Our mechanism requires each worker i € N participating in the
mechanism to report their type. Worker i may not report her type
6; truthfully if it is her interest to do so. Let 6] = (D, rl.c’) be the
type worker i reported, where D/ is the data i provided and ric' is
the children i has invited to do the task. Let 8] = nil if worker i is
not invited or refuses to participate in the mechanism. In the rest
of the paper, we use 0’ to denote the type reports of all workers,
which can be different from their true type profile 6.
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Definition 2.1. Given a report profile 8’ of all workers, let the
network generated from 0’ be G(9”) = (V/,E’) C G, where V' =
{s} UUjen r{" and E’ C E is reduced by V".

Definition 2.2. A report profile 6’ is feasible if for each worker
i € N with ] # nil, there exists at least one path from requester s
to i on the network G(8”). Given workers’ true type profile 6, let
F(0) be the set of all feasible report profiles under 6.

®

(a) A social network. (b) The generated network.

Figure 1: Givenr;’ = {4} and r{’ = @, 6] and 6; must all be nil

in any feasible report profile 8’ € ¥(6) since worker 2 and 3
do not invite 5.

Figure 1 shows an example of feasible report profiles. Intuitively,
feasibility means that an agent cannot join in the mechanism if she
is not invited/informed about the task, which holds naturally in
practice. In other words, infeasible cases will not happen in our
mechanism since a worker cannot know the task information if
nobody else tells her. Therefore, the following discussion will only
focus on feasible report profiles.

In the rest, we define our crowdsourcing diffusion mechanism
and its desirable properties.

Definition 2.3. A crowdsourcing diffusion mechanism M on the
social network is defined by a payoff policy p = (p;)ien, where
pi : © > R. Given a feasible report profile 0’ € F(0), p;(0")
is the payoff of worker i for her data contribution and diffusion
contribution.

To design a crowdsourcing diffusion mechanism, we hope that
workers are incentivized to give all their data and invite all their
neighbours to offer more data. This property is called incentive
compatibility. An incentive compatible (truthful) diffusion mecha-
nism guarantees that for all workers i € N, reporting her true type
is a dominant strategy, i.e., 9{ = (Dj, ric) = 0;.

Definition 2.4. A crowdsourcing diffusion mechanism M = p
is incentive compatible (IC) if p;(0;,0”,) = p;(8;’,6”,), for all
ieN,all§ € F(0),all 9] € ©;, where for any j # i, 9;’ 9Jf if

there exists a path from s to j in G(6;’, 6’ ,), otherwise ij’ = nil.

Note that in the IC definition, we need to adjust the reports of
6’ ; when i’s report changes because some workers may not know
the task information consequently.
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Under the crowdsourcing diffusion mechanism M = p, re-
quester’s payment Ps is the sum of the payments made to the
workers. Traditionally, budget constraint requires the requester’s
payment to be always bounded by a constant. However, in our
setting, owing to the objective to acquire as many data as possible,
we extend the definition and say M is budget constrained if Ps
is bounded by the total value of the dataset collected, which is
reasonable since the expenditure of the requester will be no more
than the value of the data acquired.

Definition 2.5. A crowdsourcing diffusion mechanism M = p
is budget constrained (BC) if for all 6 € © and all 8’ € F(6), we
have

Ps(0") = Zien pi(0") < v(D)
where v(D) is the value of the total dataset D acquired by the
requester.

We say a mechanism is unbounded reward constrained if there is
no limitation for a worker’s payoff even if the data she owned and
the number of her neighbours are limited. To meet the requirement,
the mechanism should reward workers for their inviting, which is
essential in practice for incentivizing diffusion.

Definition 2.6. A crowdsourcing diffusion mechanism M = p
is unbounded reward constrained (URC) if there exists some
positive integer d such that for every real a, there exists a worker i
of maximum number of neighbours d and a feasible reported type
0’ € F(6) in some social network such that

pi(e’) >a

In a data acquisition problem, whether a mechanism can differ-
entiate the redundancy of data is important. A data-redundancy
differentiable mechanism will not reward more to those repeated
data, which reduces the requester’s unnecessary expenditure. Thus
we also take it into consideration.

3 TRADITIONAL CROWDSOURCING
MECHANISM

Consider the data acquisition problem based on social networks,
seemingly the traditional crowdsourcing mechanism can be easily
extended to the new setting. However, in this section, we first extend
the traditional crowdsourcing mechanism on social networks and
then show that the extended mechanism may distribute rewards
for redundant data and violate the properties.

A classic crowdsourcing mechanism gives a fixed reward to each
worker participating in the task without considering the quality of
the data they provide. In this way, the mechanism cannot differen-
tiate agents based on their capabilities and contributions. That is,
no matter what data and how many data a worker provides, she
will receive a fixed reward which is predefined by the requester.
Besides, workers will not be incentivized to give all the data they
have since their reward will not increase with the amount of the
data they provide.

A simple modification of the above mechanism is to distribute
reward according to their work. For example, a fixed reward is
predefined for an atomic of data. Then the more data a worker
provides, the more reward will be given to her. However, since the
budget is constrained and some reward will be given to redundant
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data, it will not collect enough data for the requester. Moreover, the
workers have no incentive to invite their neighbours to do the task
as there is no reward for doing so, which violates the unbounded
reward constraint property.

Therefore, diffusion contribution should also be rewarded in
order to incentivize the workers to inform their neighbours about
the task. A trivial method is to set a fixed amount of money to
be the bonus pool for inviting their neighbours. Then the money
will be shared among all the workers with diffusion contribution
by scaling down to meet the constraint of budget. However, it
may violate the property of incentive compatibility and unbounded
reward constraint since the workers” reward for their diffusion
contribution is related to the number of workers who share the
bonus pool. Hence, the workers may refuse to invite others in order
to share more money.

The above discussion raises a few questions: How can the mech-
anism avoid distributing the rewards to those redundant data? How
can the mechanism incentivize the workers to diffuse the task infor-
mation, without sacrificing the property of incentive compatibility,
budget constraint and unbounded reward constraint? In the next
section, we will introduce our mechanism which can handle all
these problems.

4 CROWDSOURCING DIFFUSION
MECHANISM

In this section, we first show the negative result of mechanism
design for data acquisition settings with cost. Then we focus on the
cost-free setting and present our novel diffusion mechanism with
desirable properties.

4.1 Impossibility Theorem

In what follows, we first study the data acquisition setting, where
each worker provides her data with some cost. We investigate
whether there exists any mechanism that satisfies incentive com-
patibility, individual rationality (non-negative utility), budget con-
straint and unbounded reward constraint when the cost for provid-
ing data is considered.

Let ¢(D;) be the cost of worker i for providing her dataset D} C
D;, which is verifiable for the requester. Then, for worker i € N of
type 0;, given a feasible report profile 6’ of all buyers, i’s utility is
defined as

ui(6:,6") = pi(0”) — c(D})
where 0 = (67,0 ;) and 0] = (D}, r{’).

It is natural to require the mechanism to guarantee the non-

negative utility for each worker no matter what dataset she provides

and how many neighbours she invites. We say the mechanism is
individually rational if it satisfies such property.

Definition 4.1. A crowdsourcing diffusion mechanism M = p is
individually rational (IR) if u;(0;,0’) > 0O foralli € N,all € ©
and all " € F(0).

Now, we show the negative result regarding the mechanism
design problem in the setting with cost.

PROPOSITION 4.2. In the setting with cost, there exists no mecha-
nism which is individually rational and budget constrained.

1632

AAMAS 2020, May 9-13, Auckland, New Zealand

Proor. Consider the social network with a requester and n work-
ers. According to the definition of individual rationality, we have
u;i(0;,0") = pi(0”) — ¢(D}) = 0. Sum up the equations for all i € N,
we can infer that

> (pi0) - e(D)) = 0

ieN
D pi0) = ) (D))
ieN ieN

According to the definition of budget constraint, we have Y};cn i (07) <

v(D). Thus, we can infer the necessary condition that

. 7 ’
nmine(D}) < 3 (D)) < o(D)
ieN

v(D)
~ minjen (D))

However, for every #DC)(D,_), in which v(D) does not depend

(D) ) for

on n, there always exists a real m such that n > ————~
min;en ¢(D)
O

each n > m.

This proposition shows that even if we do not consider IC and
URC, there is a trade-off between IR and BC for the setting with cost.
To deal with the problem, an alternative method may be preparing
extra money to compensate the cost for each worker. Thus, in the
following discussion, we only focus on the cost-free setting.

4.2 The mechanism

Next, we will introduce our novel crowdsourcing diffusion mech-
anism (CDM). Under CDM, redundant data will not be rewarded
and the workers’ reward will increase with the amount of non-
redundant data provided. Moreover, the workers are incentivized
to diffuse the task information to as many neighbours as possible to
gain more reward for their diffusion contribution. The mechanism
is also budget constrained.

The payoff policy of CDM is composed of two parts: data contri-
bution and diffusion contribution. The data contribution indicates
how the requester validates workers’ provided data, and the diffu-
sion contribution indicates how the requester validates workers’
diffusion on the social network. Finally, we will give the total payoff
policy by applying both.

4.2.1 Data Contribution. Since the data-redundancy of differen-
tiability is taken into consideration, an alternative method to evalu-
ate data contribution is Shapley value, which is a classical method
to allocate interest in collaborative games [14]. Our data acquisition
game is a kind of collaborative game. We define v : D +— R as
the valuation function that evaluates the value of a dataset D for
the requester. Here the valuation function v should be monotone
increasing and bounded, i.e., for datasets Dy and Dy, if Dy C Dy,
then v(Dy) < v(Dy) < oo,

Then if we directly apply the Shapley value among all workers
on the network, the data contribution for each worker i will be:

ISI'(INT - IS - D!

$i = Nl

SCN\{i}

(o5, i - 2@%) ()
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Here Dg is the dataset offered by the workers in set S: Dg
Uies Di. Intuitively, the Shapley value calculates the average mar-
ginal valuation contribution of each worker without considering the
network structure. However, with this simple application, work-
ers may not be willing to share the task information with their
neighbours.

PROPOSITION 4.3. A crowdsourcing diffusion mechanism using
Shapley value directly as the evaluation of data contribution is not
incentive compatible.

Proor. Consider the network in Figure 3(a), if D1 = Dy = D
and workers 1 and 2 truthfully offer their data, i.e., Di = D;q and
D; = D3, we have ¢1 = ¢2 = v(D)/2 according to Equation (1).

However, if the worker 1 choose to not propagate the task in-
formation to worker 2, then her data contribution becomes ¢i =
U(D) > ¢1. O

Intuitively, the reason why Shapley value fails is that it divides
the rewards equally among all the workers who provide the same
data whatever the network structure. Then, the workers will not be
willing to invite their neighbours to the task as the neighbours who
have the same data will compete with the worker to reduce her pay-
off, which againsts what we want to achieve with the mechanism.
All the other methods which cannot differentiate the invitation
relationship will run into such problem.

To combat the diffusion issue with Shapley value, we design a
novel payoff sharing policy called layered Shapley value. Let L;
be the set of all the workers with depth i: L; = {j|j € N and [; = i},
and L be all the workers in the first i layers: L} = U]ic:1 L. Suppose
there are totally K layers on the network, then for each worker i,
the layered Shapley value is defined as follows:

ISP | = IS] = Dt

¢ L, !

sclp\(i}

(U (Di’;i_lusu{i}) -v (Di’;i_lus))

Intuitively speaking, Equation (2) calculates the average mar-
ginal contribution of the workers in the layer using the standard
Shapley value, but assumes that all the workers in the prior layers
have already joined the coalition before them. More specifically,
for the first layer (i.e., the requester’s neighbours), the standard
Shapley value is applied to calculate their data contribution among
the workers in the first layer only. Then for the workers in the
second layer, we also apply the Shapley value to compute their data
contribution, under the condition that all the workers in the first
layer have already been in the coalition. The calculation of workers
in the second layer will not change the Shapley value of those in
the first layer. This continues for all the other layers. This ensures
that workers close to the requester will have a higher priority to
get rewards for their data contributions. More importantly, with
the layered Shapley value, we can still ensure the following key
properties:

@)

(1) The sum of all workers’ layered Shapley value is equal to the
valuation of the whole dataset given by workers, i.e. }};en ¢i =
v(Dyy)-
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(@

Figure 2: (a) layers in a diffusion network; (b) an example of
diffusion contribution

(2) If i and j are two workers in the same layer L; who are equiva-

lent in the sense that U(D/L‘l‘ilusu{i}) = U(D,LLIUSU{j}) for all

SCLys.t.i,j¢S, then ggi = @j.
(3) If there is a worker i who has U(DIC§_71USU{i}) =v 2’;__1US)
forall S € Lj,, which indicates that she does not provide any

(D

extra information, then gz;,- =0.

Therefore, we will not reward redundant data which has been
provided by others in the prior layers. The reason is that in this way
child agents cannot decrease the utility of their parents and then
all the workers are incentivized to propagate the task information
to their neighbours.

Take the network in Figure 2(a) as an example. Worker 1, 2 and 3
are in layer 1; worker 4, 5 and 6 are in layer 2; worker 7 and 8 are in
layer 3; worker 9 is in layer 4. The layered Shapley value of worker 1

is: ¢51 = %-(U(D{)+v(D{)+(v(D’{1’2})—v(D;))+(v(D’{1,3})—v(Dg))+
(U(D,{1’2’3})_U(D{{Z’3}))+(U(D,{1’2’3})_U(Df{z’3}))) = % : (ZU(Di)—
v(Dé) - v(Dg) + U(Dl{l‘Z}) + U(D,{l,?;}) - 20(D12’3}) + ZU(D'{I’Z’S})).
This is consistent with intuition that what non-redundant data

should be.

4.2.2  Diffusion Contribution. In traditional crowdsourcing mech-
anisms, only those who are aware of the task information can com-
pete for some rewards. So the participants who have been informed
have no reason to invite their neighbours to do the task. Therefore,
to incentivize workers to propagate the information, CDM will give
them payoffs for their diffusion contribution. In other words, the
workers will gain benefits by spreading the task information to
their neighbours effectively.

In our mechanism, the diffusion contribution of a worker i for
her successor j is recursively computed as:

L
0,

Dy Thj ¥ ifi € pred(j)\s

a‘¢j
0

©)

Tij = ifi=s

otherwise
where0<ys%and0<as 1.

Here, the parameters are interpreted as: m’_is the number of
worker k’s child neighbours which has a path to j. For example, in
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@—@—@

(@) (b)

Figure 3: Basic cases in crowdsourcing diffusion mechanism

Figure 2(b), among all the child neighbours of the requester, only
worker 2 and worker 3 have a path to worker 7. Hence, m’ = 2.
Similarly, m; = mg = 1. Factor y is a discount factor and « is the
proportion factor, which are predefined coefficients. Note that 7 ;
is a virtual payoff of the requester to simplify the calculation, which
will not be paid actually.

To show the intuition behind our mechanism, we study three
basic cases and only consider the diffusion contribution of worker
3 for her successor worker 4 in Figure 3(b), 3(c) and 3(d). Firstly,
we have 754 = o - (]54 for all three cases. In Figure 3(b), since the
network is a chain, the contribution of a worker is her parent’s
contribution multiplied by a discount factor y, then we have 73 4 =
Y Tsa=Yy- -a- §Z§4 and w34 =y - m2 4 = )/2 Sa - ¢;4. In Figure 3(c),
since the requester has two children who are connected to worker
4, the worker 1 and 2 have to share the discounted contribution
from their parent, then we have 71 4 = 7134 = %y-ns,4 = %y-a-<}§4.
In Figure 3(d), since the diffusion path from 1 to 4 and from 2 to
4 both contains worker 3, worker 3’s contribution are the sum
of the discounted contribution from her parents. Then we have
M4 =Y M4ty -Ma=y-a- (]544 Therefore, all the workers’
contribution can be computed by Equation (3). Finally, the total
diffusion contribution of worker i is defined as:

T = Z T, j
jeN

The intuition behind the diffusion contribution of CDM is that
if a worker’s successor provides some non-redundant data, then
the worker will be rewarded for her diffusion. Furthermore, from
Equation (3), we can easily conclude that the diffusion contribution
is evaluated along the path layer by layer.

The requester can adjust the two factors a and y for different
demands. A higher « implies that the requester is willing to give
more rewards for diffusion contribution, which will also bring
greater expenses. A higher y means that the diffusion contribution
will decrease rapidly with depth.

LEMMA 4.4. Given a data contribution ¢Aj related to task T from
worker j, the diffusion contribution distributed to all her predecessors
is bounded.

Proor. According to the definition of diffusion contribution in
Equation (3), we can calculate the total contribution of j’s prede-

Cessors as:
(o]

k

2,7 < 21
k=1

ieN
Since q§ ; is bounded according to the properties of Equation (2), the
total contribution of j’s predecessors is also bounded. O

A )/ A
Of'¢j5m'a'¢j
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Take the network in Figure 2(b) as an example. Let @ = 1 and
Yy = % If worker 7 has a data contribution ¢, then we can calculate
all the corresponding diffusion contribution: 757 = <]§7; M7 =
w37 = /4 w57 = o /4.

4.3 Total Payoff
At last, we can get our total payoff policy:

pi = Api + pri
where 0 < a-p <A< % are predefined factors. This is to ensure
that the payoff for data contribution is greater than that for diffu-
sion contribution. Otherwise, the workers may not want to offer
their data. Another important observation is p; > 0 and bounded
since gzgi > 0 and bounded. The detailed proof will be illustrated in
Section 6.
The total procedure of the mechanism is shown below.

Crowdsourcing Diffusion Mechanism (CDM)

Input:
A feasible 8" € F(0) and parameters A, y1, « and y s.t. 0 <
a-p<A< %,0<y£%and0<a£l.
(1) Construct the generated social network graph G(6”).
(2) Run breadth first search on the graph G(8”) and get the
layer sets L1, Ly, ..., L.
(3) Foriin1...K, consider workers in L;:
Compute the layered Shapley value é ; for each worker
j in L; by Equation (2).
(4) Initialize ; j = 0 for all i, j € N.
(5) For each worker i € N, start from the requester s, set
B = {s}, 75.; = ad;. Until B = {i}, do:
(a) For each worker j € 4, consider each k € rj?' N
pred(i), update the diffusion contribution 7y ; «
Tk,; +Y - mj,i/m, where m = |rJ?' N pred(i)|.
(b) Set % =J r;' N pred(i).
(6) For each worker i, calculate 7; = 3’ ;e n 7 j-
Output:
Return total payoff Agzgi + pr; for each worker i.

In general, CDM is a centralized data acquisition mechanism. In
the beginning, the requester does not know all the workers except
her neighbours, so she can only inform her neighbours about the
task. Under CDM, the workers informed are incentivized to invite
their neighbours to join in the task and to provide all the data they
owned to the requester directly. In this way, the requester can know
the whole network and collect data as rich as possible without any
third-party platforms.

5 INFORMATION ENTROPY

Till now, we have qualified the data contribution by the layered
Shapley value and presented the mechanism. There is one remain-
ing problem when we apply it to a real-world application, which
is how to choose the valuation function v. Here we will give a
possible approach using information entropy. Information entropy
is a function which was first proposed by Shannon [13]. Now it
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becomes a traditional method to measure the amount of the infor-
mation of data [15, 18]. Information entropy is defined in terms of
distributions q on some space X with finite dimension |X]|:

H(q) = -E[logq]

To evaluate a dataset D related to the data acquisition task T by
information entropy, we can assume the overall dataset required
by the requester s can be classified in m independent target classes,
denoted by X = {(\’1, ...,X™}. For each class X/ e X, let X/ be
its feature space with a predefined finite dimension |X/|. Then for
a dataset D, every atomic data d € D can be expressed as a feature
vector d = (lei’ . ,x{’in), where xél € X7 is the specific feature in
class X/ for 1 < j < m. For example, if the task is to collect images
of nature, let the two target classes be animals and plants. The
space of animals is defined as {dog, cat, others} and the space of
plantsis defined as {tree, flower, grass, tree and flower, others}.
Suppose a dataset D has two images d' and d?, where d' is an image
with a dog beside a tree while d? is an image with a cat lying on
the lawn. Then d! = (dog, tree) and d? = (cat, grass).

We also need to define a distribution function Q : D +— q, where
q=(q!,...,q™)is the distribution vector of the dataset D. Each ¢/
represents the distribution over the feature space X’ of the dataset
D. In the example above, the distribution of the class animals is
q! = (0.5,0.5,0) and the distribution of the class plants is q* =
(0.5,0,0.5,0, 0). Therefore, Q(D) = ((0.5, 0.5, 0), (0.5, 0, 0.5, 0, 0)).

Now we can use information entropy to evaluate a dataset D
using the joint entropy defined on m independent target classes:

m
(D) £ HQ(D)) = H(G',....,q™) = ZH(q‘) ©
i=1
LEMMA 5.1. Given a dataset D related to task T, the valuation of
the dataset D by information entropy is bounded.

ProoF. According to the definition of information entropy, we
can calculate the valuation of D as:

v(D) = ) H(g) < ) log|X'|
i=1 i=1

Since the dimensions of feature spaces of the task T are prede-
fined and finite, the valuation v(D) is bounded. O

6 PROPERTIES OF CDM

In this section, we will prove that our crowdsourcing diffusion
mechanism is incentive compatible, unbounded reward constrained
and budget constrained. The mechanism also helps the requester
collect more non-redundant data. With these properties, a requester
is incentivized to apply our mechanism.

THEOREM 6.1. The data collected from the crowdsourcing diffusion
mechanism is no less than only doing the crowdsourcing among the
requester’s neighbours.

Proor. Traditionally, the participants in crowdsourcing mech-
anism are those whom the requester can directly communicate
with (i.e., the requester is a platform and participants are the reg-
istered users of the platform). These users can be viewed as the
requester’s child neighbours in CDM, denoted as r{ € N, which is
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a subset of all the workers on the social network. Then we have:
DJ%DM = Uien Di > Uy¢ D;. Therefore, the amount of data col-
lected in CDM is always equal to or greater than that of traditional
crowdsourcing. O

As is proved in Theorem 6.1, more non-redundant data will be
acquired by CDM, which incentivizes the requester to apply our
mechanism.

THEOREM 6.2. The crowdsourcing diffusion mechanism is incentive
compatible.

Proor. For each worker i, her private data D; is composed of
three parts (Df , D;:, Df.’), where D{ , D:: and Df.’ respectively means
the data has been offered by the workers in the previous layers,
the data can be only offered by the workers in the same layer as i
and the data can be offered by the workers in the succedent layers.
Obviously, we can discuss the three parts separately.

(1) For D{ , the worker i will receive zero payoffs in our mecha-
’
nism. She cannot enlarge this payoff by reporting a D{ c

D{ or by inviting fewer workers since it has nothing to do
with the workers in previous layers.

For Di suppose in the layer where i is, there are k work-
ers (including i) own this data where 1 < k < |L;,|. Then
according to the property of Shapley value, if i truthfully
offers Df , these k workers will share the payoffs for this data.

—~
oY)
~

Therefore, the payoff the worker i will receive is Av(Di:) k.
If she offers a Df' c Di then the payoff will become to
Av(D;:/)/k < /Iv(D;:)/k. If she invites fewer workers, it has
nothing to do with her payoffs.

For Dg’, suppose worker i is the predecessor of the first
worker j in the succedent layers who also owns this data;
otherwise, she will not be rewarded if not offering this data
or inviting fewer neighbours. If she reports Df” c Df’, she
transfers some of her data payoffs to diffusion payoffs. Then
the payoff for her diffusion contribution is pr; j < p-a- gz§ i <
Aj = (DY - Db"), where Av(D? — D?") is the payoff if i
offers this part of data by herself. Hence, she will be likely
to offer the whole D? by herself.

Therefore, for each worker i, truthfully reporting her type is the
dominant strategy, i.e., 0] = 0; = (D;, {). a

Theorem 6.2 shows that all the agents’ dominant strategy is to
provide all the data they owned and invite all their neighbours for
their interests. Then we show that workers’ reward is unbounded
and the requester’s expenditure will be no more than the value of
the data acquired, which incentivizes both the requester and the
workers to take part in the mechanism.

THEOREM 6.3. The crowdsourcing diffusion mechanism is unbounded
reward constrained and budget constrained.

ProoF. According to the payoff policy, a worker’s total payoff is
composed of data contribution and diffusion contribution, which is
a monotone increasing function of non-redundant data her descen-
dants provided. Then, a worker’s reward will always be increasing



Research Paper

as long as her neighbours are invited and they also invite their
neighbours. Thus, CDM is unbounded reward constrained.

The total dataset collected by our crowdsourcing diffusion mech-
anism is Dy = U;en Di. In Lemma 4.4, we have that };cn 7;,j
is bounded. Since the requester’s expenses Ps is the sum of the
payoffs, then we have:

Ps = Zpi = Z(Mgi + pri)
ieN ieN
= ZM;ﬁZﬂZm,}‘
ieN jeN ieN
~ )/ A
<2 Mk e d
ieN JjeEN
= (/1+/J~a- L) i
ieN
< ()L+/1 - ) éi
=Y/
hl R
<Ay
I=v i
< 2Au(Dn)
< v(Dn)

Then, we can conclude that the expenses for a data acquisition
task T will not exceed v(Dy), which is bounded. Moreover, the
requester can control the expenses by adjusting the factors. O

At last, we show that our mechanism can work on any social
networks rather than DAGs. Since CDM is executed layer by layer,
we can first run breadth first traversal on the network and then
reduce the edges between the workers in the same layer. After
reduction, an arbitrary network can be transferred to a DAG with
all the properties remained.

7 EXPERIMENTS

In this section, we conduct experiments to demonstrate the per-
formance difference between CDM and three classic mechanisms.
Our experiments shed light on the advantage of data acquisition
through social networks for both the data non-redundancy and the
requester’s expenditure.

In our experiments, we compare the performance of four mech-
anisms:

o NonDiff eps: The requester only collects data from her
neighbours and distributes each of worker a fixed reward e
as a reward.

NonDiff shapley: The requester only collects data from
her neighbours and calculates each worker’s reward by the
standard Shapley value.

Diff_eps: The requester collects data from all the workers
on social networks and distributes each of worker a fixed
reward €.

CDM: The requester collects data from all the workers on so-
cial networks and calculates each worker’s reward by CDM.

We set the number of workers as 15, the size of whole data as 100,
the maximum amount of data for each worker as 20, and randomly
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generate social networks and the data each worker owned. We
set € as the mean of the data from all the workers, which can be
viewed as the statistical expectation in real-world applications; we
seta =0.1,y = 0.5and A = p = 1 in the setting of CDM. For each
graph, we ran the experiments 20 times. All the experiments were
performed using python 3.7 on a machine with a 2.9GHz processor
and 16GB RAM.

Non-redundant data collected in different mechanisms Expenditure in different mechanisms

Non-redundant Data
al

NonDiff_eps  NonDiff_shapley Diff_eps
Mechanisms

(@)

NonDiff_eps  NonDiff_shapley Diff_eps
Mechanisms

(b)

Figure 4: Given a social network, mechanisms with diffusion
collect more data than those without diffusion. For the same
amount of data, rewards computed by Shapley value leads to
a lower expenditure.

In Section 3, we have discussed the limitations for traditional
crowdsourcing mechanisms, i.e., violating some theoretical prop-
erties. Here we move our attention to the practice of these mech-
anisms and compare their performance difference. As shown in
Figure 4, experimental results suggest that more workers can be
involved in the data acquisition task with diffusion and more data
can be collected consequently. Reward distribution with Shapley
value can avoid unnecessary expenses to redundant data, which
leads to a lower expenditure for the requester, which advances the
state of the art for data acquisition tasks.

8 CONCLUSION

In this paper, we have proposed a novel crowdsourcing mechanism
via social networks. The mechanism is run by the task requester,
and she does not need to pay in advance for the propagation. The
prominent contribution of our mechanism is that it incentivizes
participants to propagate the task information to their neighbours
and to involve more workers in the task. Besides, all workers will
also offer as many data as they have. One of the keys to guarantee
these properties is that workers close to the requester will have
a higher priority to win rewards than their children according to
layered Shapley value. We also conducted experiments to further
demonstrate the advantages of our mechanism.

Our work has several interesting aspects for future investigation.
First of all, the false-name attack is typical in a crowdsourcing sys-
tem. Hence, designing an advanced mechanism which is false-name
proof is a vital successor work. An interesting scene can be con-
sidered where workers’ action will be affected by their neighbours.
Another valuable further work can be generalising our mechanism
to other crowdsourcing tasks rather than data acquisition. Although
we have shown the impossibility theorem for the setting with cost,
it would also be a direction to study the problem after relaxing
some assumptions.
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