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ABSTRACT
Hemaspaandra [22] celebrated the quite close relationship between

computational social choice and computational complexity as a

two-way street from which both areas benefited in the past, and

expressed his hope that the areas become best friends forever. Later

on, Rothe [38] celebrated the prominent Borda voting rule and

surveyed recent advances on the complexity of problems related to

the three most fundamental models of tampering with elections—

namely, via manipulation, control, and bribery—and even related to

using Borda beyond voting: in fair division and coalition formation

in hedonic games. But now the party is over: no more celebration!

Instead, we present a common criticism regarding computational

social choice persistently making use of worst-case complexity.

To overcome this shortcoming, we propose our blue sky idea of

applying to problems from computational social choice the method

of smoothed analysis due to Spielman and Teng [43, 44] and also

used by Bläser and Manthey [7], as some sort of a middle ground

between the worst-case and the average-case analysis of algorithms.
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1 INTRODUCTION
The two-way interaction between computational complexity and

computational social choice (a.k.a. COMSOC) has been emphasized

by Hemaspaandra [22, p. 7971], who points out that COMSOC’s

“existence as a recognized, distinctive research area within AI/multi-

agent-systems is quite recent” and “its growth as an area during

these recent years has been explosive.” He further makes a strong

case for a synergy between COMSOC and computational com-

plexity being at least “partially responsible for that growth.” Ap-

provingly, Rothe [38, p. 9835] calls COMSOC “a true success story

within AI,” showcasing—by results for the prominent Borda voting

rule—recent advances on the complexity of problems related to the

three most fundamental models of how to influence the outcome

of an election: manipulation, control, and bribery, each coming in a
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variety of specific scenarios motivated by real life. There are tons

of literature studying the computational complexity of the related

problems, elaborately surveyed for manipulation by Conitzer and

Walsh [10], for control and bribery by Faliszewski and Rothe [19],

and for manipulation, control, and bribery by Baumeister and Rothe

[5]. We here focus on these three basic scenarios (manipulation,

control, and bribery) as they are at the heart of COMSOC, widely

known within the community, and responsible for the great suc-

cess of COMSOC in recent years. Of course, in the long run, one

might consider our approach also in a broader setting, for example

regarding multiwinner elections, judgment aggregation scenarios,

and so on. Indeed, the combination of social choice and compu-

tational complexity is only one aspect in the broad research area

of COMSOC that covers a wide range of topics from fair division

over opinion diffusion and matching to coalition formation. An

overview is given in the textbooks by Brandt et al. [8], Endriss [14],

and Rothe [37]. However, here we will focus on the computational

complexity of various interference problems in elections.

A common criticism regarding the current orientation of compu-

tational social choice is the persistent use of worst-case complexity.

Often, worst-case complexity is implicitly or explicitly stated as an

argument as to why voting systems are resistant to malicious inter-

ferences such as manipulation, control, and bribery.
1
This approach

is tempting, due to results from social choice theory such as the

Gibbard–Satterthwaite theorem [20, 41], which roughly says that

essentially every reasonable voting rule is susceptible to manipu-

lation. Therefore, one may hope that they still resist manipulative

attacks in practice simply due to the computational burden being

too high. This argument was first made by Bartholdi et al. [2] and

was fundamental to the emergence of computational social choice.

Also, experimental evaluations of real-world or artificial data

show that “hard” problems can often be solved efficiently in practice.

For example,Walsh [46] showed that checking themanipulability of

an STV (single transferable vote) election with a single manipulator,

a problem that is resistant in terms of being NP-hard [1], can in

fact be solved with low effort on both real-world data and artificial

data. Walsh [46] made similar observations about the veto rule.

This issue has long been known and has often been discussed for

manipulative attacks on elections, for example, by Faliszewski and

Procaccia [17], Walsh [45], and Rothe and Schend [40]. Beyond

voting, Hemaspaandra and Williams [23] have given an excellent,

though atypical, treatise of typical-case heuristic algorithms.

1
Such attacks are not always considered malicious: Bribery can also be seen posi-

tively as “campaign management” [18, 19, 42] and regarding manipulation Rothe [38,

p. 9832] writes, “After all, every voter—human or software agent—has the right to

think strategically about which vote to cast; not doing so would not be smart.”
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While empirical studies using real-world data and artificially

generated data give us an idea of what the practical complexity of

such problems may look like, their validity and reliability is often

debatable: Suitable real-world data may be difficult to obtain and

not scalable, which means that we observe only a fraction of the

large-scale behavior. Although generated data is scalable, it can be

inappropriate due to the models: Naive models, such as impartial

culture (i.e., assuming the uniform distribution over all possible

votes and profiles), can be easily distinguished from real-world data

and are therefore inappropriate, as, e.g., Regenwetter et al. [36]

point out. Richer models, such as the model of Mallows [31] or a

spatial model [33], must first be trained with or fitted to real-world

data to produce realistic results, making a theoretical investigation

difficult. Especially if the choice of parameters relies on real-world

data, scalability may be a problem. Either way, the choice of a

distribution restricts the results and makes them less reliable.

To avoid explicit assumptions about the distribution of votes,

Procaccia and Rosenschein [35] define the class of junta distributions.
The idea is to capture a class of distributions that concentrate on

hard instances in a way that if a manipulation problem can be

solved efficiently for just those distributions, it can also be solved

efficiently for other reasonable distributions. Erdélyi et al. [15],

however, show that the three core properties of junta distributions

(which, thus restricted, they call “basic junta”) allow to construct a

basic junta for which NP-hard problems such as SAT can be solved

in deterministic heuristic polynomial time with high probability.

Another approach is to study the problems in terms of their pa-

rameterized complexity. This multivariate complexity analysis may

yield fixed-parameter tractable algorithms if some input parameter

can be bounded. Parameterized complexity results in COMSOC

have been surveyed by Bredereck et al. [9], Dorn and Schlotter [12],

and Lindner and Rothe [28]. However, as this again relies on worst-

case complexity, the same issues arise. In some applications, it may

be better to use fast approximation algorithms instead of slow op-

timal algorithms. Markakis [32] and Nguyen et al. [34] surveyed

recent results on approximation algorithms in fair division.

We propose an alternative approach that allows theoretical inves-

tigations of realistic complexity without having tomake such strong

assumptions: smoothed analysis, some sort of a middle ground be-

tween the worst-case and the average-case analysis of algorithms.

This approach seems to have been overlooked in the quest for more

realistic complexity results protecting elections against manipula-

tion, control, and bribery. In a nutshell, instead of considering either

the worst complexity of a single instance or the expected complex-

ity regarding a distribution of all instances at a given length, we

now consider the worst expected complexity of an algorithm with
respect to a random perturbation of a given instance. Smoothed anal-

ysis was very successfully introduced by Spielman and Teng [43]

to explain the practical efficiency of the simplex algorithm, despite

its exponential worst-case complexity. For developing this novel

approach and its great practical relevance, Spielman and Teng were

awarded the 2008 Gödel Prize by the ACM and the EATCS.

2 SMOOTHED ANALYSIS
As mentioned earlier, smoothed analysis measures the complexity

of an algorithm with respect to the worst expected complexity

of an instance, taking into account a random perturbation of the

instance. The idea behind this is that even if in principle instances

leading to an exponential worst-case complexity of an algorithm

can occur, it is in practice highly unlikely to hit exactly those hard

instances. The expected complexity of an algorithm would thus

be much better a measure when only some hard instances are like

islands rising steeply over an ocean of easy instances with a much

lower complexity. Almost all real-world data is subject to such

perturbations. For example, data that is automatically measured

by sensors is subject to permanent fluctuations due to changes

and measurement inaccuracies. Further, data can be perturbed to

limit disclosure of sensitive information or to protect confidential

data [27, 29]. And, finally, elections and surveys are also subject to

permanent fluctuations by changes in the voters’ minds (even if

their number remains constant), i.e., in the individuals’ opinions

due to psychological, emotional, and behavioral effects [36, 39]. In

particular, for a sufficiently large number of voters, the expected

profile is subject to massive uncertainty, even if good predictions

exist. In fact, this is the reason why the application of smoothed

analysis to voting problems in computational social choice does

make sense and could be fruitful.

We now formally define the notion of smoothed analysis and will

then present our corresponding models regarding elections. Since

we here consider election profiles originating from discrete domains,

yet the original model of smoothed analysis by Spielman and Teng

[44] is mainly designed for the perturbation of continuous domains,

we present the definitions of Bläser and Manthey [7] instead.

In the model of Bläser and Manthey [7], perturbation is mod-

eled as a family of distributions D = (Dn,x ,ϕ ), which includes a

distribution Dn,x ,ϕ for each possible instance x as the mean of the

distribution, ϕ as a parameter that limits the maximum density of

the distribution, and, only for clarity, n as the length of the instance

x . By definition, they demand that Dn,x ,ϕ (y) ≤ ϕ holds for each

combination of n, x , ϕ, and y. The idea of choosing the maximum

density ϕ as a parameter of the distributions is attributed to Beier

and Vöcking [6] by Bläser and Manthey [7].

Additionally, they demand that the binary encoding of the sup-

port {y | Dn,x ,ϕ (y) > 0} of each distribution Dn,x ,ϕ is contained

in {0, 1}poly(n), thus bounding the length of each “neighbor” y of in-

stance x with nonzero probability by a polynomial inn, the length of
x . Moreover, the possible values of ϕ should be discretized in a way

that they are representable in {0, 1}poly(n) and should also be con-

tained in [1/Nn,x , 1] with Nn,x = |{y | Dn,x ,ϕ (y) > 0 for some ϕ}|.
For ϕ = 1, we allow the distribution to collapse to x with proba-

bility 1, giving us the worst-case complexity. For ϕ = 1/Nn,x , we en-

force the uniform distribution, which gives us the classical average-

case complexity with respect to the uniform distribution.

Now, an algorithm A admits a smoothed polynomial complex-
ity regarding distribution family D if there exists an ϵ > 0 such

that Ey∼Dn,x ,ϕ (timeA(y,n,ϕ)
ϵ ) = O(n · Nn,x · ϕ) for all combina-

tions of n, x , and ϕ. Note that this definition is analogous to the

definition of average-case polynomial-time complexity by Levin

[26]. Levin did not use the naive definition of the expected running

time being bounded by a polynomial as it would not be robust, e.g.,

against polynomial slowdowns of the algorithm due to changing

the computational model (as noticed, e.g., by Goldreich [21]).
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For the same reason, Bläser and Manthey [7] also chose to define

the expected running time raised to some power ϵ . A crucial differ-

ence between worst-case complexity and smoothed analysis is that

the latter focuses on specific algorithms, whereas the former makes

a statement on hard instances irrespective of the used algorithm.

As an example, Bläser and Manthey [7] show that the graph

coloring problem admits a smoothed polynomial complexity. Given

a graph G = (V , E), the perturbation model is defined through φ,
which means that in the perturbed graph G ′

each edge is flipped

independently with a probability of φ while the set of vertices

remains unchanged. A graphwithn vertices can then be represented

as a binary string of length

(n
2

)
, and it holds that Nn,G = 2

(n
2
)
.

The parameter ϕ for the smoothed analysis is given through φ by

choosing φ ≤ 1

2
such that (1 − φ)(

n
2
) = ϕ. Note that this model

includes, on one side of the spectrum, the fully random graph by

choosing ϕ = 2
−(n

2
)
and φ = 1

2
and, on its other side, the worst case

with ϕ = 1 and thus φ = 0.

The problem k-Coloring asks whether the vertices of a graph

can be colored with at most k different colors such that no pair of

adjacent vertices is colored the same. To show that this problem

admits a smoothed polynomial complexity, it suffices to analyze

the simple algorithm which checks whether there is a clique of size

k + 1 in the input graph that is perturbed according to the model

described above. If so, the answer is no; otherwise, an exhaustive

search is performed. It can be shown that the expected running

time raised to some constant power is polynomial.

Smoothed analysis has also been applied in algorithmic game the-

ory. For example, Deng et al. [11] introduce the notion of smoothed

approximation ratio for the performance comparison between opti-

mal and truthful mechanisms, under the assumption of perturbed

inputs, and Huang and Teng [24] analyze the smoothed complex-

ity of solving the approximate Leontief market exchange problem

through Scarf’s general fixed-point algorithm.

As demonstrated, for instance, by Bläser and Manthey [7], there

are also concepts to show hardness under smoothed analysis. Here,

however, we focus on smoothed efficiency, i.e., on smoothed poly-

nomial complexity.

3 PERTURBATION MODELS FOR ELECTIONS
In order to perform a smoothed analysis of problems in computa-

tional social choice, appropriate perturbation models are needed.

One of the main research fields within this area is voting, and in

particular various ways of how to tamper with the outcome of

elections.

An election consists of a set C of candidates and a preference

profileV (i.e., a list of the voters’ preferences) overC . Then a voting

rule R is applied in order to determine the winning candidate(s).

Typical problems studied in computational social choice include

winner determination, manipulation, bribery, and control. Let us

describe these problems in a nutshell. Let R be a voting rule.

• In the winner determination problem, we ask whether some

designated candidate is an R winner of a given election.

• The (most basic variant of the) manipulation problem for R

asks, given an election with a distinguished candidate, whether it

is possible for a manipulator (joining the given election) to cast a

strategic vote such that the distinguished candidate is an R winner

of the resulting election. This problem was introduced by Bartholdi

et al. [2], and there are many more variants of manipulation de-

pending, for instance, on whether the election is weighted or un-

weighted; a destructive variant aiming at preventing someone’s

victory complements the above constructive variant; there may

be a coalition of manipulators instead of just a single manipulator;

and so on. For more information, we refer to the book chapters by

Conitzer and Walsh [10] and Baumeister and Rothe [5].

• In (the most basic variant of) bribery, given an election with a

designated candidate, a budget, and a collection of price functions

(one per voter). An external agent bribes the voters to change their

votes in the limit of the briber’s budget. The question is whether

there is an alternative preference profile resulting from such a

bribery action such that the designated candidate is an R winner

of the resulting election. This basic variant was first studied by Fal-

iszewski et al. [16].

• Finally, for, e.g., the problem constructive control by deleting
voters under R, we are given an election with a distinguished candi-

date and some nonnegative integer bound k , and we ask whether it

is possible for the election chair (who has the power to change the

structure of elections) to make the distinguished candidate an R

winner by deleting up to k votes. The study of control in elections

was initiated by Bartholdi et al. [3].

Again, there are many more variants of bribery and control

problems; see, e.g., the book chapters by Faliszewski and Rothe [19]

and Baumeister and Rothe [5].

In the following, we present suggestions regarding models for

the perturbation of instances in the context of elections. Note that

here we define perturbations for election profiles themselves, in

other words, for lists of votes. While there are election problems,

such as the winner determination and the manipulation problem,

whose instances consist of only one preference profile (including a

distinguished candidate), there also exist election problems, such

as bribery and control problems, which require additional inputs

such as the briber’s budget or an integer limiting the number of

deleted voters or candidates in control. For the latter, one can either

accept the budget or deletion limit as commonly known (mean-

ing that it is not subject to perturbation), or one must extend the

perturbation to the budget or deletion limit. The application of

smoothed analysis in computational social choice is of course not

limited to the analysis of different ways to tamper with the out-

come of an election. We present a general perturbation model for

preference profiles that are central to many problems in elections

and hence may be extended for the study of other problems like

gerrymandering, committee elections, and many more. In addition

to the analysis of the computational complexity these models can

be used to determine the practical relevance of properties such as

the occurrence of voting paradoxes or ties without having a general

understanding of the distribution of the profiles.

We distinguish between the two best known vote types: complete
linear orders and approval vectors. For complete linear orders, we

propose an extension of the classical model of Mallows [31] to com-

plete preference profiles as our perturbation model.
2
In this model,

the profiles are weighted exponentially decreasing according to

2
As mentioned in the introduction, Mallows is used here as a perturbation model and

not as a model for generating artificial data.
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their pairwise comparisons deviating from the original profile. The

strength of the probability decrease is indicated by the dispersion

factor φ ∈ [0, 1]. Note that the size of the alternative (i.e., perturbed)

profiles is fixed to the size of the original profile.

For a set C ofm candidates, an original profile V = (v1, . . . ,vn ),
and an alternative profileV ′ = (v ′

1
, . . . ,v ′

n ), the model is then given

by the following probability distribution for V ′
: Pr(V ′ | V ,φ) =

φ
∑n
i=1 inv(vi ,v

′
i )/(Zm,φ )

n
with inv(v,v ′) = |{(a,b) ∈ C × C | a >v

b ∧ b >v ′ a}| the number of inversions. The normalization factor

Zm,φ can be expressed as 1 · (1 + φ) · (1 + φ + φ2) · · · (1 + φ +

· · · + φm−1), as proposed, e.g., by Lu and Boutilier [30]. Note that

the presented probability distribution is the product of the vote-

wise application of the classical Mallows model. For φ = 0, the

distribution collapses to V with probability 1. For φ = 1, we obtain

the uniform distribution over all profiles. To make it applicable to

smoothed analysis, we obtain the following parameters analogously

to the analysis of the graph coloring problem due to Bläser and

Manthey [7]. The length of the instance is n ·m and the number of

preference profiles with nonzero probability is Nn ·m,V = (m!)n .

The parameter ϕ is given by φ and vice versa, since ϕ = 1

(Zm,φ )n

and the maximum probability is always given by the probability of

the original profile itself. For proofs, it may be advisable to argue

about the choice of φ and the thus resulting ϕ the other way around,

since deriving the associated φ from ϕ seems to be problematic.

For approval vectors in {0, 1}m , we propose a variant of the Mal-

lows model based on the Hamming distance H : Pr(V ′ | V ,φ) =
φ
∑n
i=1 H (vi ,v

′
i )/(Zm,φ )

n
. Again, the normalization Zm,φ can be ex-

pressed efficiently by

∑m
k=0

(m
k
)
· φk . While this can be used well

as a perturbation model and we can also efficiently sample from it,

efficiently generating more realistic data through a related mixture

model is problematic, as Irurozki et al. [25] point out. Similar models

can be defined for variants with a fixed number of approvals.

While the two presented models are compelling models for in-

vestigating a variety of problems like winner determination, manip-

ulation, bribery, and control, there are also other suitable models

that may depend on the problems themselves, the motivation, and

the assumptions about the uncertainty regarding the instances of

the problems. For example, in addition to perturbing actual votes,

the question of whether or not a voter (or even a candidate) will

participate in an election may itself be subject to uncertainty. This

could be expressed by a model in which voters (or candidates) have

a certain probability of not participating in the election. Similar

models have already been used in the literature, e.g., by Wojtas and

Faliszewski [47]. If the profiles are given in succinct representation

(i.e., as a list containing each occurring vote with the corresponding

multiplicity) or if the voters are weighted, one can also use models

in which the respective numbers or weights are uncertain.

Another type of preference profile that is also often used are

tournament graphs in which the pairwise comparison between two

candidates is represented as the orientation of an edge in a complete

graph whose vertices are the candidates (or participants when it

is not an election). Such tournaments may result from pairwise

elections. A suitable model for this would be that—analogously to

the graph model presented above in which the existence of an edge

is flipped with a certain probability—the orientation of each edge is

now reversed with a certain probability. This models, for example,

the situation in sports tournaments where the outcome of a game

is unpredictable to a certain degree. Majority graphs that represent

the pairwise majority relation of a given preference profile are also

used; however, a different perturbation model incorporating the

additional information from the preferences would be needed here.

4 CONCLUSIONS AND OUTLOOK
Using smoothed complexity is an important step towards reality

in analyzing problems of computational social choice from a new

perspective when implementing suitable decision-making systems.

In times of digitized decision making, one of COMSOC’s main goals

should be to provide practical algorithms to solve the many hard

(in terms of worst-case complexity) problems that arise. Smoothed

analysis can be a tool to prove with theoretical means the practical

efficiency of algorithms for those hard problems. By analyzing the

practical complexity of the problems, not only the opportunities

but also the risks of digital democracy from a complexity point

of view can be estimated. The two perturbation models we have

proposed may be fundamental to analyze algorithms for election

problems involving preference profiles based on linear orders or

approval vectors. Challenges for future research are now to develop

and analyze algorithms for such election problems that can be used

in practical applications. This involves a deeper understanding of

the structure of the problems, and identifying components that are

responsible for their high worst-case complexity. Here, existing

analyses from a parameterized point of view may be useful, since

they also explore the structure of the given instances.

While we have focused primarily on elections, there are other

areas in COMSOC or related to COMSOC where it could be fruitful

to apply smoothed analysis. These include, for example, fair alloca-
tion, matching, hedonic games, and judgment aggregation. Another
example is abstract argumentation, which builds on the seminal

work of Dung [13]. Argumentations are described as graphs, where

the vertices correspond to the arguments and the edges model the

attack relation between them. Different semantics are then used

to identify acceptable sets of arguments with certain properties. In

particular, the application and automatic processing of argumenta-

tions in the context of online participation becomes more and more

important and algorithms with a fast practical running time are

desired. Many related problems, however, are computationally hard

(again, in the worst case) for abstract argumentation frameworks,

especially so when uncertainty is involved [4]. Therefore, smoothed

analysis would again be useful in this context.

So far, there are only a few papers using smoothed analysis, and

some of the analyzed problems are rather artificial. We suspect that

computational social choice is an area where results on smoothed

analysis may be obtained for natural and practically important
problems, as it was the case in the worst-case analysis for the

higher levels of the polynomial hierarchy [22].

ACKNOWLEDGMENTS
We thank the AAMAS’20 reviewers for helpful comments and Scott

Alfeld for pointing us to the literature on smoothed complexity. This

work was supported by DFG grants BA 6270/1-1 and RO 1202/14-2.

Blue Sky Idea Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1694



REFERENCES
[1] J. Bartholdi and J. Orlin. 1991. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare 8, 4 (1991), 341–354.
[2] J. Bartholdi, C. Tovey, and M. Trick. 1989. The Computational Difficulty of

Manipulating an Election. Social Choice and Welfare 6, 3 (1989), 227–241.
[3] J. Bartholdi, C. Tovey, and M. Trick. 1992. How Hard is it to Control an Election?

Mathematical Comput. Modelling 16, 8/9 (1992), 27–40.

[4] D. Baumeister, D. Neugebauer, J. Rothe, and H. Schadrack. 2018. Verification in

Incomplete Argumentation Frameworks. Artificial Intelligence 264 (2018), 1–26.
[5] D. Baumeister and J. Rothe. 2015. Preference Aggregation by Voting. In Economics

and Computation, J. Rothe (Ed.). Springer, 197–325.
[6] R. Beier and B. Vöcking. 2004. Random Knapsack in Expected Polynomial Time.

J. Comput. System Sci. 69, 3 (2004), 306–329.
[7] M. Bläser and B. Manthey. 2012. Smoothed Complexity Theory. In Proc. MFCS’12.

Springer LNCS #7464, 198–209.
[8] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia (Eds.). 2016. Handbook

of Computational Social Choice. Cambridge University Press.

[9] R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. Woegin-

ger. 2014. Parameterized Algorithmics for Computational Social Choice: Nine

Research Challenges. Tsinghua Science and Technology 19, 4 (2014), 358–373.

[10] V. Conitzer and T. Walsh. 2016. Barriers to Manipulation in Voting. In Handbook
of Computational Social Choice, F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia (Eds.). Cambridge University Press, 127–145.

[11] X. Deng, Y. Gao, and J. Zhang. 2017. Smoothed and Average-Case Approximation

Ratios of Mechanisms: Beyond the Worst-Case Analysis. In Proceedings of the
42th International Symposium on Mathematical Foundations of Computer Science.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, 16:1–16:15.

[12] B. Dorn and I. Schlotter. 2017. Having a Hard Time? Explore Parameterized

Complexity. In Trends in Computational Social Choice, U. Endriss (Ed.). AI Access
Foundation, 209–230.

[13] P. Dung. 1995. On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial
Intelligence 77, 2 (1995), 321–357.

[14] U. Endriss (Ed.). 2017. Trends in Computational Social Choice. AI Access Founda-
tion.

[15] G. Erdélyi, L. Hemaspaandra, J. Rothe, andH. Spakowski. 2009. Generalized Juntas

and NP-Hard Sets. Theoretical Computer Science 410, 38–40 (2009), 3995–4000.
[16] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. 2009. How Hard Is

Bribery in Elections? Journal of Artificial Intelligence Research 35 (2009), 485–

532.

[17] P. Faliszewski and A. Procaccia. 2010. AI’s War on Manipulation: Are We Win-

ning? AI Magazine 31, 4 (2010), 53–64.
[18] P. Faliszewski, Y. Reisch, J. Rothe, and L. Schend. 2015. Complexity of Manip-

ulation, Bribery, and Campaign Management in Bucklin and Fallback Voting.

Autonomous Agents and Multi-Agent Systems 29, 6 (2015), 1091–1124.
[19] P. Faliszewski and J. Rothe. 2016. Control and Bribery in Voting. In Handbook

of Computational Social Choice, F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia (Eds.). Cambridge University Press, 146–168.

[20] A. Gibbard. 1973. Manipulation of Voting Schemes: A General Result. Economet-
rica 41, 4 (1973), 587–601.

[21] O. Goldreich. 1997. Notes on Levin’s Theory of Average-Case Complexity. Technical
Report TR97-058. Electronic Colloquium on Computational Complexity.

[22] L. Hemaspaandra. 2018. Computational Social Choice and Computational Com-

plexity: BFFs? In Proc. AAAI’18. AAAI Press, 7971–7977.
[23] L. Hemaspaandra and R. Williams. 2012. An Atypical Survey of Typical-Case

Heuristic Algorithms. SIGACT News 43, 4 (Dec. 2012), 71–89.
[24] L. Huang and S. Teng. 2007. On the Approximation and Smoothed Complexity of

Leontief Market Equilibria. In Proceedings of the 1st Annual InternationalWorkshop
of Frontiers in Algorithmics. Springer LNCS #4613, 96–107.

[25] E. Irurozki, B. Calvo, and J. Lozano. 2019. Mallows and Generalized Mallows

Model for Matchings. Bernoulli 25, 2 (2019), 1160–1188.
[26] L. Levin. 1986. Average Case Complete Problems. SIAM J. Comput. 15, 1 (1986),

285–286.

[27] X. Li and S. Sarkar. 2006. Privacy Protection in Data Mining: A Pertubation

Approach to Catagorical Data. Information Systems Research 17, 3 (2006), 254–

270.

[28] C. Lindner and J. Rothe. 2008. Fixed-Parameter Tractability and Parameterized

Complexity, Applied to Problems From Computational Social Choice. In Mathe-
matical Programming Glossary, A. Holder (Ed.). INFORMS Computing Society.

[29] L. Liu, M. Kantarcioglu, and B. Thuraisingham. 2008. The Applicability of the

Perturbation Based Privacy Preserving Data Mining for Real-World Data. Data
& Knowledge Engineering 65, 1 (2008), 5–21.

[30] T. Lu and C. Boutilier. 2014. Effective Sampling and Learning for Mallows Models

with Pairwise-Preference Data. The Journal of Machine Learning Research 15, 1

(2014), 3783–3829.

[31] C. Mallows. 1957. Non-Null Ranking Models. Biometrika 44 (1957), 114–130.
[32] E. Markakis. 2017. Approximation Algorithms and Hardness Results for Fair

Division. In Trends in Computational Social Choice, U. Endriss (Ed.). AI Access
Foundation, 231–248.

[33] R. McKelvey and P. Ordeshook. 1978. A Decade of Experimental Research on

Spatial Models of Elections and Committees. In Advances in the Spatial Theory of
Voting, J. Enelow and M. Hinich (Eds.). Cambridge University Press, 99–144.

[34] T. Nguyen, M. Roos, and J. Rothe. 2013. A Survey of Approximability and

Inapproximability Results for SocialWelfare Optimization inMultiagent Resource

Allocation. Annals of Mathematics and Artificial Intelligence 68, 1–3 (2013), 65–90.
[35] A. Procaccia and J. Rosenschein. 2007. Junta Distributions and the Average-Case

Complexity of Manipulating Elections. Journal of Artificial Intelligence Research
28 (2007), 157–181.

[36] M. Regenwetter, B. Grofman, I. Tsetlin, and A. Marley. 2006. Behavioral Social
Choice: Probabilistic Models, Statistical Inference, and Applications. Cambridge

University Press.

[37] J. Rothe (Ed.). 2015. Economics and Computation. An Introduction to Algorithmic
Game Theory, Computational Social Choice, and Fair Division. Springer-Verlag.

[38] J. Rothe. 2019. Borda Count in Collective Decision Making: A Summary of Recent

Results. In Proc. AAAI’19. AAAI Press, 9830–9836.
[39] J. Rothe. 2019. How Can We Model Emotional and Behavioral Dynamics in Col-

lective Decision Making? In The Future of Economic Design, J. Laslier, H. Moulin,

R. Sanver, and W. Zwicker (Eds.). Springer, 245–251.

[40] J. Rothe and L. Schend. 2013. Challenges to Complexity Shields That Are Supposed

to Protect Elections against Manipulation and Control: A Survey. Annals of
Mathematics and Artificial Intelligence 68, 1–3 (2013), 161–193.

[41] M. Satterthwaite. 1975. Strategy-Proofness and Arrow’s Conditions: Existence

and Correspondence Theorems for Voting Procedures and Social Welfare Func-

tions. Journal of Economic Theory 10, 2 (1975), 187–217.

[42] I. Schlotter, P. Faliszewski, and E. Elkind. 2011. Campaign Management under

Approval-Driven Voting Rules. In Proc. AAAI’11. AAAI Press, 726–731.
[43] D. Spielman and S. Teng. 2004. Smoothed Analysis of Algorithms: Why the

Simplex Algorithm Usually Takes Polynomial Time. J. ACM 51, 3 (2004), 385–

463.

[44] D. Spielman and S. Teng. 2009. Smoothed Analysis: An Attempt to Explain the

Behavior of Algorithms in Practice. Commun. ACM 52, 10 (2009), 76–84.

[45] T. Walsh. 2011. Is Computational Complexity a Barrier to Manipulation? Annals
of Mathematics and Artificial Intelligence 62, 1–2 (2011), 7–26.

[46] T. Walsh. 2011. Where Are the Hard Manipulation Problems? Journal of Artificial
Intelligence Research 42 (2011), 1–29.

[47] K. Wojtas and P. Faliszewski. 2012. Possible Winners in Noisy Elections. In Proc.
AAAI’12. AAAI Press, 1499–1505.

Blue Sky Idea Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1695


	Abstract
	1 Introduction
	2 Smoothed Analysis
	3 Perturbation Models for Elections
	4 Conclusions and Outlook
	Acknowledgments
	References



