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ABSTRACT
In Boolean games, each agent controls a set of Boolean variables
and has a goal represented by a propositional formula. We initi-
ate a study of inference in Boolean games assuming the presence
of a Principal who has the ability to control the agents and im-
pose taxation schemes. Previous work used taxation schemes to
guide a game towards certain equilibria. We show how taxation
schemes can also be used to infer agents’ goals. In our formulation,
agents’ goals are assumed to be unknown and the objective of the
Principal is to infer the goals of all the agents using appropriate
taxation queries. Using an undirected graph (called the goal overlap
graph) associated with a Boolean game, we establish necessary and
sufficient conditions for the existence of a Nash equilibrium for any
taxation query. Using these conditions, we develop an algorithm
that uses taxation queries to learn agents’ goals. Using a valid node
coloring of the goal overlap graph, we show that goals of many
agents can be inferred simultaneously. We also present more ef-
ficient (in terms of number of queries) goal inference algorithms
for two special classes of Boolean functions, namely threshold and
symmetric functions.
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1 INTRODUCTION
Boolean games [11] are a class of strategic gameswhere each agent’s
goal is represented by a propositional logic formula. Each agent 𝑖
controls a distinct set of Boolean variables Φ𝑖 , and there is a cost
associated with each assignment of values to variables. Agent 𝑖’s
formula or goal 𝛾𝑖 is composed of a set Γ𝑖 of variables that are not
necessarily in its control. Each agent’s first priority is to achieve
its goal and its second priority is to minimize its total cost. The
general appeal of such games is that they are well-structured and
expressive, and the well-developed theory of propositional logic
makes them amenable to computational and structural analysis.
Much of the work on Boolean games is theoretical in nature [4, 6,
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10, 11, 17, 22, 23]. However, Boolean games have recently been used
to model problems such as charging strategies for electric vehicles
and traffic signaling [17].

In many applications of multi-agent systems, agent functions or
goals are unknown and need to be inferred. Recently, a number of
works have emerged where a user either actively queries the system
or relies on passive observations to infer the functions [2, 3, 12, 14,
20]. Wooldridge et al. [23] introduced the notion of a Principal –
an external agent– who can influence the agents’ decisions through
taxation schemes (additional costs for assigning values to variables).
Their objective was to achieve a desirable equilibrium by choosing
an appropriate taxation scheme. Under this framework, we study
the following inference problem on Boolean games. The Principal
has knowledge regarding every variable, the agent that controls it
and the goals in which it appears but does not know the goal of
any agent. The objective of the Principal is to infer these goals by
repeatedly “querying” the system (through taxation schemes) and
observing the outcomes.

Here, we consider inference of goal functions in cost-free Boolean
games; thus, the only cost incurred by an agent for assigning values
to its variables is due to the taxation scheme. We also restrict our at-
tention to pure Nash equilibria. In such a scenario, it is known that
some taxation schemes have no Nash equilibria while others have
one or more equilibria [17]. Such scenarios might make it impossi-
ble to infer some or all goals. To overcome this problem, we provide
additional control to the Principal. Each agent 𝑖 is associated with
an inhibitor variable 𝜓𝑖 , such that its overall goal is 𝛾 ′

𝑖
= 𝛾𝑖 ∧𝜓𝑖 ,

where 𝛾𝑖 is the actual goal of the agent. If𝜓𝑖 set to zero, the agent
can never achieve its goal. This notion of the Principal inhibiting
certain agents has been used in applications of Boolean games.
For example, Levit et al. [16] discuss a Boolean game model for
charging of electric vehicles where some vehicles are not allowed
to charge at certain time intervals to avoid overloading. This is
similar to our notion of the Principal inhibiting certain agents.
A taxation query or simply a query consists of (i) assignments of
values to𝜓𝑖 and (ii) a taxation scheme. While this framework seems
to provide an unrealistic amount of control to the Principal, we
show scenarios where without such control inference might not
be possible. Our approach is to strategically inhibit some agents
and infer the goals of remaining agents by simultaneously query-
ing them through taxation schemes. To this end, we construct an
undirected graph (called goal overlap graph) representing dependen-
cies between agents’ goals and apply vertex coloring on the graph.
Then, for each query, the Principal observes a Nash Equilibrium
(NE) to carry out goal inference. In this context, the questions of
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primary interest are: (i) does there exist a set of queries so that the
Principal can infer all goals? (ii) if yes, can the size of such a query
set be estimated?

2 SUMMARY OF RESULTS
1. Necessary and sufficient conditions for the existence of an NE
for a {0,1}-taxation query. Using an undirected graph (called the
goal overlap graph) that captures the overlaps between the sets of
variables used in agents’ goals, we establish necessary and sufficient
conditions for the existence of an NE for a Boolean game and any
{0,1}-taxation query (i.e., taxation queries with only 0 and 1 costs).
2. Ability to evaluate goals of selected agents at an NE.When there
is an NE for a {0,1}-taxation query, we show that the value of the
goals of selected agents for the zero cost assignment (i.e., the as-
signment whose cost is zero for a selected agent) can be determined
regardless of which NE is reached by the agents. This result in con-
junction with the sufficient condition mentioned in Item 1 forms
the basis for our goal inference algorithms.
3. Goal inference algorithms. Using the results in Items 1 and 2
above, we show that any algorithm that learns a Boolean function
𝑓 usingmembership queries (i.e., queries which specify an input
𝛼 to the function 𝑓 and the required response is the value of the
function 𝑓 (𝛼)) can be used to develop an algorithm that uses taxa-
tion queries to learn 𝑓 when 𝑓 is the goal of an agent in a Boolean
game. Further, using a valid node coloring of the goal overlap graph,
we show that the goals of many agents can be inferred simulta-
neously. We observe that this scheme can be significantly more
efficient than inferring the goals one at a time. We also obtain more
efficient (in terms of the number of taxation queries) goal infer-
ence algorithms for two special classes of goal functions, namely
threshold functions and symmetric functions.
4. Hardness of counting the number of equilibria. When the condi-
tion mentioned in Item 1 holds, there is at least one NE for any
{0,1}-taxation query. However, we show that the problem of count-
ing the number of equilibria is #P-hard, even if there is only one
agent in the game. This result is established using a reduction from
the problem of counting the number of minimum vertex covers
of an undirected graph which is known to be #P-hard [21]. This
result, which shows that the number of equilibria can be large in
general, brings up an important challenge faced by goal inference
algorithms. Such algorithms must be able to correctly infer all the
goals regardless of which of the many equilibria is reached.

Relatedwork.Boolean gameswere introduced byHarrenstein et al.
[11] as a class of two-player games and were later generalized to 𝑛
players [5]. The structural and computational properties of Nash
equilibria in Boolean games are well-studied. Bonzon et al. [6]
define a “dependency graph" (similar to our goal overlap graph)
which takes advantage of the structure of agents’ goals. In our
work, since the Principal has no such knowledge, the goal over-
lap graph is constructed purely based on the variables that appear
in agents’ goals. A substantial body of work has been devoted to
the problem of manipulating a Boolean game to achieve a desired
outcome, which is typically a Nash equilibrium (NE) or a variant
there of. Wooldridge et al. [23] use taxation schemes to achieve a
desirable equilibrium. Levit et al. [17, 18] proposed methods for

finding taxation schemes that incentivize the agents to reach a sta-
ble state. They provide necessary and sufficient conditions for the
existence of an NE. However, unlike our work, their aim is to find
an NE when all the agents are uninhibited. Grant et al. [10] propose
a framework where along with the Boolean variables under an
agent’s control, there are environmental variables whose values are
selectively announced by the Principal to influence agents’ beliefs.
Boolean games where players have incomplete information about
each other’s goals have been considered. De Clercq et al. [7] studied
games where possibilistic propositional logic was used to capture
this uncertainty. Ågotnes et al. [4] propose a different formulation
where each agent can observe a subset of the variables (called the
visibility set for the agent), making some equilibria verifiable and
others not verifiable. To the best of our knowledge, ours is the first
work on inference problems in the domain of Boolean games.

Learning in game theory has been a popular topic albeit from
a different perspective. How agents learn strategies by repeatedly
playing a game, and what type of equilibria result from such strate-
gies is well-studied [9]. Fearnley et al. [8] consider the problem of
finding Nash equilibria by submitting strategy profiles as queries
and observing the payoffs for the agents.

There is an emerging body of similar work on inferring agent
functions in other multi-agent systems contexts. Adiga et al. [3]
consider learning thresholds of nodes in a network propagation
model where a user (like the Principal) actively queries the system.
Kleinberg et al. [14] consider the problem of inferring comparison-
based choice functions that capture a broad range of online behav-
iors. Inferring agent functions from passive observations has been
considered under the probably approximately correct (PAC) frame-
work [2, 12, 20]. The problem of learning Boolean functions using
membership queries has received much attention in the learning
theory literature. For example, Abasi et al. [1] establish upper and
lower bounds on the number of membership queries for learning
monotone disjunctive normal form (DNF) expressions. Under the
PAC model, the problems of learning some conjunctive normal
form (CNF) and DNF functions have also been studied [13]. Some
early work on learning considered inferring finite automata from
passive observations [19] and learning monomial functions (that
model biological phenomena) using experimental data [15].

3 FUTUREWORK
We presented upper bounds on the number of taxation queries used
for inference. It is of interest to develop appropriate lower bounds.
Our work uses representation-dependent learning; in that setting,
if a goal function is from a class C, then the inference algorithm
must produce the correct function from that class. It is of interest to
extend the results to the representation-independent setting where
the learner may produce an equivalent function from another class.
Finally, one can also study inference problems for other components
of the Boolean game (e.g., control variables).
Acknowledgments. We thank the AAMAS 2020 reviewers for
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