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ABSTRACT
Geographical clusters of undervaccinated populations have emerged
in various parts of the United States in recent years. Public health re-
sponse involves surveillance and field work, which is very resource
intensive. Given that public health resources are often limited, iden-
tifying and rank-ordering critical clusters can help prioritize and
allocate scarce resources for surveillance and quick intervention.
We quantify the criticality of a cluster as the additional number of
infections caused if the cluster is underimmunized. We focus on
finding clusters that maximize this measure and develop efficient
approximation algorithms for finding critical clusters by exploiting
structural properties of the problem. Our methods involve solving
a more general problem of maximizing a submodular function on a
graph with connectivity constraints. We apply our methods to the
state of Minnesota, where we find clusters with significantly higher
criticality than those obtained by heuristics used in public health.
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1 INTRODUCTION
Many highly contagious childhood diseases, such as measles, can be
prevented by vaccination. Thus, it is worrisome that large outbreaks
of such diseases have occurred in recent years. One of the reasons
for the emergence of underimmunized geographical clusters, such
as in California [7] and Minnesota [4], is misperceptions about the
side effects of vaccines [2]. The typical response by public health
agencies is to monitor clusters where immunization rates are falling,
run active information campaigns, and engage community leaders.
However, implementing public health interventions in all these
clusters would be costly and time-consuming, which motivates the
following question:when do undervaccinated clusters pose significant
risk (i.e., become critical) for the broader community? We develop
a method to address this important public health policy question.
Our contributions are summarized below.
1. Formalizing criticality. We formalize the notion of critical-
ity of a subset S ⊆ V in a social contact network G = (V ,E), as
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the expected number of additional infections that would occur if
the immunization rate within S is “low”. Extending this notion,
we introduce the MaxCrit problem: find the spatial cluster with
maximum criticality in a population.
2. Rigorous algorithms for MaxCrit. We show that MaxCrit is
NP-hard and design algorithm ApproxMaxCrit, which has a worst
case approximation guarantee of Ω(1/k(d−1)/(2d−1)), relative to the
optimum, for clusters of size k . Here, d is the doubling dimension of
the graph.
3. Improved algorithms for submodular functionmaximiza-
tion with connectivity. We show that the criticality function is
submodular, which implies that MaxCrit is a special case of maxi-
mizing a non-negative monotone submodular function over con-
nected subgraphs of size k . Our algorithm is the first improvement
over the best known bound of [6] for submodular function maximiza-
tion with connectivity constraints.
4. Social impact. Our method for finding critical sets, applied to
detailed population and contact network models, provides an oper-
ational tool for public health agencies to prioritize limited surveil-
lance and outreach resources towards the most critical clusters.

2 PRELIMINARIES
LetV denote a population, and letG = (V ,E) be a contact graph on
which a disease can spread. A person or node v ∈ V can propagate
the disease to its neighbors. Each person v is associated with a geo-
graphical location—i.e., their place of residence—denoted by loc(v).
Let R denote the geographical area where the nodesV are located—
e.g., Minnesota—and let R = {r1, . . . , rN } be a decomposition of R
into census block groups. For a block group ri ∈ R, we useV (ri ) to
denote the set of nodes associated with location ri ; that is, those
with loc(v) ∈ ri . Analogously, for a set of block groups or region
R ⊂ R, let V (R) = ∪ri ∈RV (ri ) be the set of nodes located within
R. We consider a graph HR = (R,ER ) on the set of block groups,
where two block groups are connected if they are geographically
contiguous, i.e., adjacent on a map. We use Conn(R) to denote all
the subsets R ⊂ HR that are spatially connected.
Disease model. We use an SEIR model for diseases like measles
[1]. Let γ denote the average region-wide vaccination rate—around
0.97 in Minnesota. Let x be a vaccination vector: xi ∈ [0, 1] denotes
the probability that node i is vaccinated (so xi = γ , by default). Let
SrcA denote the source of the infection: this could be one node or
a small number of nodes from a region A ⊂ R, which initially get
infected. We use #inf(x, SrcA) to denote the expected number of
infections given an intervention x and initial conditions SrcA.
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2.1 Criticality
For a vaccination vector x, let xS denote the corresponding inter-
vention where a subset S ⊂ V of nodes is undervaccinated. That is,
xSi = xi for i < S and xSi = γ

′ for i ∈ S , where γ ′ ≪ γ .
We define the criticality of a region R as the expected number

of additional infections that occur if nodes in R are undervaccinated,
with respect to source SrcA:

crit(R, x, SrcA) = #inf(xV (R), SrcA) − #inf(x, SrcA),
Finding critical clusters. In practice, public health interventions
involve intensive field work, which is most effective within small,
localized geographical regions. Therefore, we focus on finding re-
gions that have high criticality and small size.

Problem 1 (MaxCrit(G,HR ,k)). Given an instance (G,HR ,k),
find a connected region R ∈ Conn(R) of size at most k that maximizes
criticality over all choices of source:

R = argmaxR′∈Conn(R), |R′ | ≤k crit(R
′, x, SrcR′)

In words, the MaxCrit problem involves maximizing over all
possible choices of the sources SrcR′ in the cluster R′.

3 PROPOSED METHODS
Our strategy involves showing that the crit function is submodular.
Intuitively, crit satisfies a diminishing returns property because an
unvaccinated block group r causes more additional infections in
the context of a smaller region. Thus, the MaxCrit problem reduces
to maximizing a submodular function over connected subgraphs R
of HR with |R | ≤ k .

We present our algorithm for MaxCrit in Algorithm 1. For sub-
modular maximization with connectivity constraints, Kuo et al. [6]
give an Ω(1/

√
k) approximation guarantee. We derive an improved

algorithm by exploiting the geometric structure of the graph. As
in [6], the main idea is to first solve the relaxed problem where we
ignore the connectivity constraint for each location r and surround-
ing locations at distance ℓ—i.e., the ball B(r , ℓ) in line 11. Then,
we make the solution connected via a Steiner tree (line 12). Our
algorithm has an approximation guarantee of Ω(1/k(d−1)/(2d−1))
for a graph with doubling dimension d , which improves the bound
of [6], since d is finite for any graph. We also solve a Budgeted
Steiner Tree (BST) problem [? ] as a subroutine in our algorithm
(line 5). BST is a relaxed version of the problem where the function
is modular (instead of submodular) on the criticality of the nodes.
This step is not needed for the approximation guarantee, but we
find that it improves optimization power in practice.

4 APPLICATION TO MINNESOTA
Experimental setup.We use a realistic contact network model of
Minnesota [5] with 5, 048, 920 individuals in total, aggregated into
4,082 census block groups from the 2010 U.S. census. We consider
an SEIR stochastic model for measles, as described in Section 2. The
criticality of a region R of block groups is assessed by leaving every
individual inside R unvaccinated; everybody else in the population
is vaccinated with probability 0.97, which is the statewide vacci-
nation rate. We compare our algorithms with two heuristics used
in public health. The Population heuristic finds a cluster of size
k with the largest total population. The Vulnerability heuristic

Algorithm 1 ApproxMaxCrit(HR, k )

1: RunMaxSubmodConn(HR, k, d ), and let T̂ be the subgraph returned
2: for r ∈ HR do
3: Let wtr = crit(r )
4: end for
5: Let T ′ = k -MaxST(HR, k ) (using the approach of [3])
6: return argmax{crit(Tr ), crit(T ′)}

7:
8: procedureMaxSubmodConn(HR, k, d )

9: Let ℓ = k
d

2d−1
10: for r ∈ HR do
11: Run Greedy(B(r, ℓ), crit, ℓ) to get subset S ⊆ B(r, ℓ) of size ℓ
12: Construct a minimum steiner tree T (r, ℓ) of S in graph HR

13: end for
14: return argmaxr {crit(T (r, ℓ))}
15:
16: procedure Greedy(V , f , k ) [8]
17: Let S = ∅

18: for i = 1 to k do
19: x = argmaxx ′∈V \S f (S ∪ {x ′ }) − f (S )
20: S = S ∪ {x }
21: end for

22: return S

Figure 1: Comparison of algorithms for the MaxCrit prob-
lem as a function of the solution size k

prioritizes individuals who are most likely to get infected when no
one is vaccinated. We also compare to a Random baseline, which
finds a connected cluster of size k by doing a random walk on the
graph HR .
Optimization power. In Figure 1, we show the criticality obtained
by ApproxMaxCrit and the baselines as a function of cluster size
k . ApproxMaxCrit exhibits notably better performance than the
heuristics. Random performs poorly and results in almost no addi-
tional infections. Surprisingly, Vulnerability does not perform
much better than Random. Overall, the Population heuristic has
better performance among the baselines but non-monotonic growth
with cluster size.
Demographics of critical clusters.We compare the distribution
of age and income in the cluster discovered by ApproxMaxCrit to
that of the entire state (results not shown). The most critical cluster
has significantly more households of low income (below $25,000)
compared to the entire state—19.6% to 34.9%. Similarly, minors are
over-represented. 26.6% of the population is between 5–18 years
old compared to the average of 18.7%.

When we focus on the Minneapolis area instead of the entire
state, the most critical cluster covers Brooklyn Park, where measles
outbreaks occurred in 2017 and 2019.
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