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ABSTRACT
We develop a Multi-Agent Reinforcement Learning (MARL) method
that finds approximately optimal policies for cooperative agents
that co-exist in an environment. Central to achieving this is how
the agents learn to communicate with each other. Can they together
develop a language while learning to perform a common task? We
formulate and study a MARL problem where cooperative agents
are connected via a fixed underlying network. These agents com-
municate along the edges of this network by exchanging discrete
symbols. However, the semantics of these symbols are not prede-
fined and have to be learned during the training process.We propose
a method for training these agents using emergent communication.
We demonstrate the applicability of the proposed framework by
applying it to the problem of managing traffic controllers, where
we achieve state-of-the-art performance (as compared to several
strong baselines) and perform a detailed analysis of the emergent
communication.

CCS CONCEPTS
• Computing methodologies → Multi-agent reinforcement
learning; Cooperation and coordination;

KEYWORDS
multi-agent reinforcement learning; emergent communication; traf-
fic

ACM Reference Format:
Shubham Gupta, Rishi Hazra, and Ambedkar Dukkipati. 2020. Networked
Multi-Agent Reinforcement Learning with Emergent Communication. In
Proc. of the 19th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 3 pages.

1 INTRODUCTION
We consider a multi-agent setting where a certain number of coop-
erative agents co-exist in an environment that can only be partially
observed by each of them. Further, we assume that these agents are
connected via a fixed network topology and that they can communi-
cate with their immediate neighbors along the edges of this network
to achieve cooperation. The objective of agents is to learn a protocol
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to communicate with each other to cooperatively maximize the
rewards provided to them by the environment.

Note that: (i)Agents learn to communicatewith each otherwhich
enables global cooperation by supplementing the information con-
tent of agents’ local observations. We use discrete communication
to facilitate the analysis of the emergent language. (ii) Agents only
communicate along the edges of a fixed underlying network. This
a more practical scenario and it allows us to study the relation-
ship between emergent communication and the network topology.
Together, these two features distinguish our work from existing
approaches which are either very stylized [1, 7], or don’t perform
an in-depth analysis of communication [5, 6], or don’t consider a
network topology [4, 12, 13].

Many real-world problems can be cast in this framework. We
consider the problem of intelligently managing traffic in a city. The
nodes in the network (i.e., the agents) correspond to traffic con-
trollers and the edges correspond to roads. The controllers must act
cooperatively to ensure a smooth flow of traffic by maximizing an
appropriate notion of reward. Our main contributions are: formula-
tion of the MARL problem with networked agents and emergent
communication; demonstration of the effectiveness of the proposed
approach using traffic management as a case study and; most im-
portantly, analysis of the emergent communication to investigate:
(i) utility of communication; (ii) grounding of language; and (iii)
interplay between network topology and emergent language.

2 PROPOSED MARKOV GAMES WITH
EMERGENT COMMUNICATION

AMarkov game [11], specified by the tuple (S, {O𝑖 ,A𝑖 , 𝑟𝑖 }𝑁𝑖=1,T , 𝛾),
models an environment with 𝑁 intelligent agents. Here, S is the
state-space, O𝑖 , A𝑖 and 𝑟𝑖 are the observation-space, action-space
and reward function respectively for agent 𝑖 , and T is the transition
function. At time 𝑡 , we denote the state by s(𝑡 ) ∈ S, the observation
made by agent 𝑖 by o(𝑡 )

𝑖
∈ O𝑖 , and the action taken by it as a

(𝑡 )
𝑖

∈ A𝑖 .
The goal of all agents is to find their respective optimal policies
𝜋𝑖 : O𝑖 → Δ(A𝑖 ) that maximize the expected long term reward,
R𝑖 = E𝝅 [

∑
𝑡 𝛾

𝑡𝑟
(𝑡 )
𝑖

]. Here 𝑟
(𝑡 )
𝑖

is the reward received by agent
𝑖 at time-step 𝑡 and 𝛾 ∈ (0, 1] is the discount factor. We model
the problem as a Markov game with two additional assumptions:
(i) let V = {1, 2, . . . , 𝑁 } be the set of all agents, we assume that
the agents are connected to each other via an underlying network
whose edge set is given by E; and (ii) agents can communicate
with their immediate neighbors in the underlying network. To
communicate, at each step, agents broadcast a message which is
received by the neighbors at the next time-step. The observation
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made by each agent is augmented to consider the messages received
from all of its neighbors.

In the traffic management problem, as mentioned earlier, nodes
represent agents and edges represent roads.We used a traffic simula-
tor known as Simulation of Urban MObility (SUMO) [9] to simulate
the traffic flow. Each agent observes an image representation of the
traffic junction obtained by cropping a square patch of size 140px
centered at that agent from the simulation window. Actions corre-
spond to valid configurations of traffic lights [10]. Rewards depend
on factors like queue length, waiting time of vehicles, number of
vehicles executing emergency deceleration and so on.

Learning Policies with Communication: The policy of each
agent is composed of three modules: (i) Observation encoder: It
encodes the observation of an agent into a form suitable for the
other two modules. (ii) Communicator: It takes the encoded obser-
vation as input and produces a discrete message to be broadcasted
m(𝑡 )
𝑖

∈ {0, 1}𝑑 as output. Here 𝑑 is the number of bits in the binary
vector m(𝑡 )

𝑖
. We use the straight through Gumbel-Softmax trick [8]

to retain differentiability. Aside from sending messages, commu-
nicator is also responsible for processing the received messages.
(iii) Action selector: It takes the encoded observation and processed
received messages as input and produces a probability distribution
over actions inA𝑖 as output. We parameterize these modules using
neural networks and train them using policy gradient [14].

3 EXPERIMENTAL RESULTS
Through our experiments, we wish to establish the following claims:
(i) the proposed approach outperforms baseline methods, (ii) com-
munication is useful as the agents are exchanging meaningful infor-
mation, (iii) emergent communication is grounded in the actions
taken by the agents, and (iv) network topology plays an important
role in determining the nature of emergent communication.

Comparison with baselines: We compare our approach with
the following baselines: (i) Fixed-time control: The agents peri-
odically switch between actions in a round-robin fashion after
every five steps. (ii) Self-Organizing Traffic Light control (SOTL):
SOTL [3] switches between actions when the queue length at an ad-
joining lane exceeds a predefined threshold. (iii) Deep-Q Learning
(DQN): Agents are training independently and each agent has its
own deep Q-network. (iv) IntelliLight: [16]; (v) Fixed communica-
tion protocol: Agents share all the parameters needed to compute
rewardswith their neighbors directly. It can be seen that ourmethod
outperforms all baseline approaches (Fig. 1).

Utility of communication:We provide a qualitative analysis
of the communication: (i)We modified the setup presented to mask
all communication messages in the system with an all zeros vector
(blank message). We observed that post convergence rewards were
lower as compared to the original setting (the difference was ≈ 85,
also see Fig. 1). (ii) We define an agent to be visually impaired (or
blind) if it does not use its local observation while taking an action.
Note that a visually impaired agent can still receive messages from
its neighbors. We observed that, after convergence, the rewards
were same as the rewards obtained in the original setup. This indi-
cates that the visually impaired agent learned to receive necessary
information from its neighbors through communication. To test this
hypothesis further, we made two neighboring agents blind so they

Figure 1: Comparison of our method with the baselines. Fig-
ure shows mean and standard deviation over five indepen-
dent runs.

Figure 2: t-SNE plot for neighbors of a three-way (left) and
four-way (right) junction. Points have been colored based
on the action with which the symbol was highly correlated.
Agents on three and four-way junctions can take three and
four actions respectively.

can no longer supplement each other’s missing information using
communication and observed that the performance decreased.

Grounding in communication: To establish groundedness of
communication, we constructed a Pointwise Mutual Information
(PMI) [2] matrix for each pair of agents. The rows of this matrix
correspond to the actions of one agent (say 𝑖) and the columns
correspond to the discrete symbol sent by the other agent (say
𝑗 ). If two columns of this matrix are similar, it indicates that the
corresponding symbols spoken by 𝑗 have a similar effect on the
actions taken by 𝑖 . Fig. 2 shows the t-SNE [15] plot of columns of
the PMI matrix for a pair of agents on a three-way and a four-way
junction. It can be seen that symbols cluster together and, moreover,
these clusters align with the actions taken by 𝑖 .

Effect of network topology:We obtain a tf-idf matrix where
rows correspond to agents and columns correspond to the words in
the vocabulary. Similarity between two rows implies similarity in
the language spoken by the agents. We observed that agents that
broadcast to a common neighbor tend to be have similar rows in
the tf-idf matrix.

4 CONCLUSION
In this paper, we formulated a networkedmulti-agent reinforcement
learning problemwhere cooperative agents communicate with each
other using an emergent language. As future work, we intend to
extend the proposed setup to address the following (i) scalability
of our setup; (ii) robustness of our setup to randomness in the
underlying network. It would be interesting to try out a continuous
communication version of our setup.
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