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1 INTRODUCTION
Pedestrians often travel with one another [9]. Travel partners share
destinations or temporary subgoals. Such information is often com-
municated on-the-fly, when observations are received and local
direction decisions are needed. At decision points, e.g. intersec-
tions, we observe that there is often a leader (or more) in a group
who actively decides where to go, and the follower(s), without ex-
plicit communication, can adapt their motions quickly to catch
up [10]. In robotics, human-following is achieved by performing
online subgoal inference, for the robot to adapt the motion while
maintaining desired group shapes [5], such as side-by-side walking.
This capability has been realized by applying maximum-likelihood
subgoal estimates upon the robot path planning problem [8, 10].
While assertively following towards the most likely subgoal has
shown success in relatively simple environments, such strategy can
lead to bad states under false inference, e.g. poor visibility to other
route options or blocking group member path options, yielding
poor performance under inference delay.

To enable robust robot following towards real-world application,
which involves durable performance in complex environment con-
figurations, we present a formulation for robot navigation with
humans as a partial-information multi-agent planning problem,
and incorporate subgoal estimation into the planning process for
action evaluation. Under this multi-agent formulation, individuals
plan to accommodate paths planned for the human travel partners,
while maximizing the expected outcome towards possible subgoals
to reach. We show that the proposed planner enables more efficient
following when subject to inference delay, including more efficient
path planning and robust tracking of the travel partner, and retains
the behavior features for natural co-navigation as suggested in the
state-of-the-art robot following approaches [5, 8] and agent-based
pedestrian models [4, 9].

We also noticed an emergent human-like behavior feature: hesi-
tation. When uncertain, the planner delays its action selection at
states where actions have distinctive values under different subgoal
specification. Our framework then serves as an improved model for
realistic pedestrian group simulation, which has gained attention
for interactive agent design, focusing on long-duration small-group
(or often one-to-one) interaction [7].
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2 PROBLEM FORMULATION
We formulate the dynamics of group motions as a sequential opti-
mization problem.We use a game formulation to lay out the mutual-
adaptability behavioral features in the literature of crowd simula-
tion [2, 4, 9] and robot planning for human-following [5, 8, 10]. We
then point out the issue in their behavioral assumption and propose
our group follower model using stochastic Bayesian game.

Collaborative Bayesian Stochastic Games. Pedestrian groups of-
ten maintain certain shapes to facilitate communication between
participants, such as to easily see the faces of each other, stay aware
of the focus or attention of others. Group shapes are affected by
environmental conditions; agents adapt group shapes under envi-
ronment changes, or in coordination with other pedestrians sharing
the space [9]. These features describe the macro pedestrian group
behaviors: shape formulation and mutual adaptation.

To ensure all agents have feasible paths, group members need to
collaboratively plan for others. We therefore first model the macro
pedestrian group behavior as a stochastic game. In stochastic games,
N agents act at a time, here illustrated at time t : the joint-action
at = (a1t ,a

2
t , ...,a

N
t ) ∈ A is defined by the action spaces of all agents

A = A1 × A2... × AN ; the joint-state xt = (x1t , x
2
t , ..., x

N
t ) ∈ X is

defined by the state spaces of all agents X = X 1 × X 2... × Xk .
Time is discretized, and game periods are defined: at the start of
each period t , each agent selects an action ait , i = 1 : N , then the
transition function T : X × A → X takes in the current state xt
and determines (probablistically) the state at the beginning of the
next period xt+1. The reward rit of an agent i at time t is defined as
follows: rit = r i (xt ,a

i
t ,a

−i
t |θ ) ∈ R, where r i is the agent’s reward

function, and θ ∈ Θ is the possible destinations to capture the goal-
driven characteristics of group navigation; and −i denotes all agents
except i . Here we consider all agents to have the same collaborative
reward function r , to maximize the group social welfare.

The optimal policy is then conditioning onθ , given partner policy
π−i , which is a function that maps joint state xt to action a−it ,

ai∗t = argmax
ait
Ea−it |π −i ,θ [Q

i |π −i
(xt ,a

i
t ,a

−i
t |θ )]. (1)

This equation follows the stochastic Bayesian game formulation,
in which agent utilities (rewards) are parametrized by their types.
Agents only have partial observability to the types of other agents.

Instead of solving this stochastic Bayesian game equation based
on modeling and inference of π−i and θ , in previous approaches
mentioned in agent-based modeling and robot navigation [2, 4, 5,
11, 12], θ is assumed shared by all agents. With this assumption,
solving for the optimal collaborative policy for agent i in Eq. 1
converges to the solution of having a centralized system optimizing
for the whole group,

ai∗t = argmax
ait

max
a−it
Ext+1∼T(xt ,at )[r

i (xt ,a
i
t ,a

−i
t |θ ) +V i (xt+1 |θ )].

(2)
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Figure 1: Synthesized human group motion at an intersec-
tion (Left), and the simulation using π i ,1 (Middle and Right).

This optimal policy with known θ , is referred as the zero-inference
policy of agent i: π i ,0, imposing the collective agency assumption in
teammate modeling in Bayesian games [1]. The converged homoge-
neous solution π i ,0 describes this collaborative mutually-adaptive
macro pedestrian group behavior; they reciprocally leave room for
others to avoid obstacles, and expect partners to do the same.

Proposed Follower Behavioral Model. The shared knowledge as-
sumption for path planning is however invalid for real-world ap-
plications, and can lead to inefficient planning performance due to
false parametrization. Here we describe follower behavior using the
general stochastic Bayesian game formulation in Eq. 1, and model
group leader(s) by π−i ,0; the follower makes observation ot ∈ O
at time t , and use the observation history o0:t−1 to compute the
expected value over θ , Eθ |o0:t−1 [Q

i (xt ,a
i
t , π

i ,0(xt |θ )|θ )]. Here O is
the observation space. Given online observations, type identifica-
tion influences the optimal policy on-the-fly. Along with sensing
capability for observation modeling, we use Ωi to sample agent i’s
observation given joint state xt and action ait ; Ω

i : X × Ai → O .
We then formulate followers as the following,

ai∗0:T = argmax
ai0:T
Ex0:T ,θ |Ωi ,T [

T−1∑
t=0

r i (xt ,a
i
t , π

i ,0(xt |θ )|θ )+

Qi
T (xT ,a

i
T , π

i ,0(xt |θ )|θ )].

(3)

Herewe consider finite-horizon lookaheadT , for the local-observation-
driven human behavior rather than long-horizon planning [6, 13].
The multi-agent sequential optimization problem in Eq. 1 now be-
comes a tractable belief planning problem in finite type space Θ.
We also use Eq. 3 to model human followers, based on a Bayesian-
optimal assumption. The choice of Ω affects agent behavior by their
sensing capability, which we will detail in Section. 3.

Compared to prior work in crowd modeling and robot following,
here formulated by Eq. 2, with Eq. 3, the following agent would
not assertively turn to a dead-end, or go in front of the leader or
stay behind a corner obstacle, which leaves the leader out of its
sensing range. We propose that behaviors driven by uncertainty as
such are missing in the literature to describe the micro inter-group
interactive behavior.

The reasoning in Eq. 3 involves the ability tomodel the individual
differences in other agents’ knowledge. We here refer this policy
as to have first-order inference for teamwork planning: π i ,1; it is
the basic ability of theory of mind in human behaviors [3].

3 VALIDATION
To validate the approach as a robust planner for robot following
with humans, we first evaluate our approach’s performance subject

Figure 2: Robot follower behaviors under inference delay :
assertive decisions (Left) lead to bad values, e.g. lost tracking
of partner (Middle), which our planner prevents (Right).

to inference delay, which is a common issue in robotics. We show
superior path efficiency in simulation, with controlled noise and
state initialization for benchmark study. We then simulate human
follower behavior in comparison to synthesized group motion.

Follower under Inference Delay. Assertive decisions under false
inference can lead to bad values; this is even more significant in clut-
tered environments, where bad decision can lead to unrecoverable
states, given robot non-holonomic constraints and limited sensing
capabilities. We choose narrow corridor intersections to demon-
strate this scenario, with an obstacle at the corner which potentially
blocks the view, leading to lost tracking of the partner shown in
Figure. 2. We implemented the baseline with a state-of-the-art ro-
bot following approach [10], in comparison to our planner under
sensing range of [-120,120] deд from forward direction, which is
achievable with a common Lidar. Experiments are conducted with
20 trials of randomized initial locations. Even priors are initialized
on each direction. Example path comparison can be seen in Fig-
ure. 2-Left and Right. Our approach is aware of the observability
when planning for future motion and results in more robust motion.

We evaluate path quality when the belief converged to the correct
value, and calculate the delay comparing to that predicted by the
zero-inference policy π i ,0 (that is, with a perfect prior). Our planner
had an averaged delay of 1.19s , whereas the baseline had 3.53s .
Among the trials, our planner experienced zero lost tracking, while
the baseline experienced 10. An example is shown in Figure. 2-
Middle: when belief converged at t = 10, the baseline had gone
close to the obstacle, making it lost track of its travel partner.

Human Follower Simulation. We simulate a human sensingmodel
with a range of [-75,75] deд from head orientation, using π i ,1. The
limited range of view causes the simulated follower to slow down
and stay slightly behind the leader, to actively sense the leader’s
goal, as shown in Fig. 1-Middle; with larger safety margin specified
for collision check, the follower steps slightly aside to prevent
blocking the leader from potential turning, as shown in Fig. 1-Right,
which is a behavior feature described in Murakami, et al. [10].

4 CONCLUSION
We presented a framework for robust planning for group agents,
implemented in navigation. The framework erased the need for
unrealistic behavioral assumptions as used in prior agent-based
modeling and robot planning approaches. We showed superior fol-
lowing performance subject to decision uncertainty, and simulated
pedestrians with real-world pedestrian motion features suggested
in the literature.
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