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ABSTRACT
Games are an increasingly useful tool for training and testing learn-

ing algorithms. Recent examples include GANs, AlphaZero and the

AlphaStar league. However, multi-agent learning can be extremely

difficult to predict and control. Learning dynamics can yield chaotic

behavior even in simple games. In this paper, we present basic

mechanism design tools for constructing games with predictable

and controllable dynamics. We present a robust framework for

dimensionality reduction arguments in large network games.
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1 INTRODUCTION
Games have become a powerful training mechanism used to gen-

erate photorealistic images [4], and also to play Go, Chess and

StarCraft [1, 6, 13–15]. The underlying assumption behind this sys-

tem architecture is that competition between learning algorithms

forces them to continually improve their performance. However,

this assumption is not always valid in practice. Indeed, in numerous

cases of multi-agent competition (or even cooperation) the resulting

dynamics can be unpredictable or, even worse, formally chaotic

[3, 10–12]. This raises our central problem: How can we effectively
control learning dynamics in games?

In this paper, we present a new perspective onmechanism design,

that is concerned with the dynamics of learning in games rather
than fixed-points/equilibria.

Our approach. We define a new approach to solving games.

More precisely we design a novel framework for articulating when

a multi-agent learning system has succeeded in becoming coordi-

nated. We do this by circumventing equilibration, i.e., we do not

artificially require our system to fixate. Instead, we examine condi-

tions under which non-equilibrating dynamics in games can exhibit
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regularities such as conservation laws (invariant functions) as well

as periodicity.

Structure. In section 2 we describe our exact setting, which

includes a new class of polymatrix [7]) n-player games, that we call

network constant-sum games with charges. We assume that

agents apply (possibly different variants) of Follow-the-Regularized-
Leader (FTRL) dynamics [5, 9]. In section 3, we prove conservation

laws for the dynamics and show how symmetries in these games

can be used for dimensionality reduction. In section 4, we prove

periodicity for a specific subclass of network constant-sum games

with charges. Section 5 shows how given a target conservation law

one can reverse-engineer a game that implements it.

2 PRELIMINARIES
2.1 Network Zero-Sum Games with Charges
A graphical polymatrix game is defined by an undirected graph

G = (V ,E), where V corresponds to the set of agents and where

edges correspond to bimatrix games between the endpoints/agents.

We denote by Si the set of strategies of agent i . We denote the

bimatrix game on edge (i,k ) ∈ E via a pair of payoff matrices:

Ai,k of dimension |Si | × |Sk | and A
k,i

of dimension |Sk | × |Si |. Let
s ∈ ×iSi be a strategy profile of the game then we denote by si ∈ Si
the respective strategy of agent i . Similarly, let s−i ∈ ×j ∈V \iSj
denote the strategies of the other agents. The payoff of agent i ∈ V
in strategy profile s is the sum of the payoffs that agent i receives
from all the bimatrix games she participates in. Specifically, ui (s ) =∑

(i,k )∈E A
i,k
si ,sk . A randomized strategy xi for agent i lies on the

simplex ∆(Si ) = {p ∈ �
|Si |
+ :

∑
R∈Si xiR = 1}. Payoff functions are

extended to randomized strategies in the usual multilinear fashion.

A (mixed) Nash equilibrium is a profile of mixed strategies such

that no agent can improve her payoff by unilaterally deviating to

another strategy.

Definition 2.1. [2] A separable constant-sum multiplayer game

GG is a graphical polymatrix game in which, for any pure strategy

profile, the sum of all agent payoffs is equal to the same constant.

Formally, ∀s ∈ ×iSi ,
∑
i ui (s ) = c .

Our main class of games will be produced by taking linear trans-

formations (rescalings with possible switch of the direction of axes)

of separable zero-sum games of the form λiui , where λi ∈ � \ {0}.
That is we can think of each agent as a charged particle, where

their charge, λi can be either positive or negative.

Definition 2.2. An n-agent game G is a network constant-sum

game with charges if there exists a separable constant-sum multi-

player game GG and constants λi ∈ � \ {0} for each agent i such
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that uGG (s ) = λiu
G
i (s ) for each outcome s ∈ S . We will also denote

such game as (λ⃗)-constant-sum multiplayer game.

2.2 Follow the Regularized Leader
Follow the Regularized Leader (FTRL) is a class of learning dynamics

that tries to optimize the strategies being played by tracking cumu-

lative payoffs over time and trying to maximize the payoff to each

player at every time instant. To this end, let viR (x ) := ui (R,x−i )
and thusvi (x ) = (viR (x ))R∈Si The FTRL dynamics can be specified

as follows:

yi (t ) = yi (0) +

∫ t

0

vi (x (s ))ds, (FTRL)

xi (t ) = Qi (yi (t )), (1)

where Qi : R
Si 7→ Xi is defined as

Qi (yi ) = argmax

xi ∈Xi
{⟨yi ,xi ⟩ − hi (xi )}. (2)

Here Xi = ∆(Si ).
Another useful notion is of the convex conjugate of hi (x ), which

is defined to be:

h∗i (yi ) = max

xi ∈Xi
{⟨yi ,xi ⟩ − hi (xi )}. (3)

3 DIMENSIONALITY REDUCTION AND
INVARIANT FUNCTIONS

3.1 Constant of Motion
We describe a function that is invariant to the evolution of the

agents’ strategies over time, when playing a network constant-sum

game with charges, i.e., a constant of motion. We show that the

time derivative of H (y) :=
∑
i ∈V λi

(
h∗i (yi ) − ⟨yi ,x

∗
i ⟩
)
is zero, i.e,

H (y) remains invariant with the motion of the FTRL dynamics. In

the above definition x∗ is an interior Nash equilibrium.

Theorem 3.1. H (y) :=
∑
i ∈V λi

(
h∗i (yi ) − ⟨yi ,x

∗
i ⟩
)
is invariant

to the evolution of FTRL dynamics when agents play a network
constant-sum game with charges.

3.2 Dimensionality Reduction & Symmetries
Consider a network constant-sum game with charges where each

edge game is the same n-by-n zero-sum (base) game with payoff

matrix A. The network topology is a bipartite graph with L lay-

ers and each layer has K vertices (agents). Edges/games exist only

between successive layers and the corresponding subgraph is com-

plete (i.e., all agents in layer j play against all agents in layer j + 1).
Let the set of all vertices be V and the set of all edges be E. The
agents are indexed by their vertex and the layer. For instance the

agent in vertex i and layer j is indexed as (i, j ). The correspond-
ing mixed strategies, payoff vectors and utilities are thus going

to be indexed by x (i, j ) , y(i, j ) , u(i, j ) and the vector of charges by

λ⃗ =
[
λ(1,1) , λ(2,1) , . . . , λ(L,K )

]
.

We use G :=
(
V ,E; λ⃗,A

)
to represent this setting that is pa-

rameterized by charges λ⃗ and the base game matrix A. Then the

following theorem holds:

Theorem 3.2. The dynamical system induced by agents using any
FTRL dynamics in any symmetric bipartite network constant-sum
game with charges G =

(
V ,E; λ⃗,A

)
, lies on a low dimensional space

requiring only L(n − 1) variables to completely describe the system.

4 PERIODIC ORBITS
Here we show how we can leverage the dimensionality reduction

proven in the previous section to establish the emergence of peri-

odic orbits and other useful properties about the system dynamics

(such as the lack of chaos).

Theorem 4.1. If the setting of symmetric bipartite network constant-
sum games with charges G =

(
V ,E; λ⃗,A

)
consists of two layers and

each agent has two actions and the charges of all agents have the
same sign then almost all orbits are periodic.

Thus, we can understand to a large extent the topology of these

multi-agent systems, despite the fact that they correspond to games

with possibly arbitrarily large number of agents. When contrasting

this with the possibility of chaos even in two player games [10, 12],

we see the power of these techniques.

5 REVERSE-ENGINEERING THE GAME
Our stated goal is to design systems that exhibit conservation laws.

By theorem 3.1 we know we can enforce a parametric family of con-

stants of motions of the form H (y) :=
∑
i ∈V λi

(
h∗i (yi ) − ⟨yi ,x

∗
i ⟩
)
.

Here we explore the reverse question. Can we efficiently find a

game that implements such a law?

Theorem 5.1. Given any conservation law of the form H (y) :=∑
i ∈V λi

(
h∗i (yi ) − ⟨yi ,x

∗
i ⟩
)
we can compute in linear time a network

constant-sum game with charges that implements it where each agent
i uses FTRL dynamics with regularizer hi . Moreover, the payoff ma-
trices of the network constant-sum game with charges are sparse.

6 CONCLUSION
What is self-organization? We know it when we see it in familiar

games like soccer, where forcing teams to compete encourages

players to learn coordinated behaviors such as passing [8]. In this

paper, we precisely characterize how self-organization arises in

network constant-sum games with charges. Our strategy is twofold.

Firstly, we show that the games satisfy conservation laws, i.e, the

dynamics of the game are contained in level sets of certain invariant

functions and hence live on a (sometimes much) lower dimensional

subspace of the space of possible joint actions. Secondly, we apply

the dimensionality reduction argument to show that, for symmetric

games on a bipartite graph, the limit behaviors of the dynamics are

simple (periodic) and chaotic dynamics are excluded.
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