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ABSTRACT
While reinforcement learning (RL) has helped artificial agents solve
challenging tasks, high sample complexity is still a major concern.
Inter-agent teaching – endowing agents with the ability to respond
to instructions from others – has been responsible for many de-
velopments towards scaling up RL. RL agents that can leverage
instructions can learn tasks significantly faster than agents that
cannot take advantage of such instruction. That said, the inter-agent
teaching paradigm presents many new challenges due to, among
other factors, differences between the agents involved in the teach-
ing interaction. This paper is a summary of our JAAMAS article
[15], where we propose two frameworks that provide a comprehen-
sive view of the challenges associated with inter-agent teaching.
We highlight state-of-the-art solutions, open problems, prospective
applications, and argue that new research in this area should be
developed in the context of the proposed frameworks.
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1 INTRODUCTION
Autonomous learning in sequential decision making tasks requires
the ability to reason over time-delayed feedback while taking into
account environmental, sensory, and actuation stochasticity [7].
Although reinforcement learning (RL) methods [2] enable learning
under such conditions, off-the-shelf RL methods can suffer from
high sample complexity, which limits their effectiveness in complex
domains. Leveraging the experience of another, more competent
agent [14], i.e., inter-agent teaching, has been a successful approache
to addressing sample complexity concerns in RL . Although the
literature reports successful inter-agent teaching strategies in terms
of learning speed, real-world applications present several additional
challenges such as differences between the sensors, actuators, and
internal representations of the agents involved. We here summarize
our article in the JAAMAS [15], where we formulate two inter-
agent teaching frameworks: one in which the teacher is responsible
for observing the student behavior and initiating the instruction
when it is most needed (i.e., teacher-driven), and one in which the
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learner is proactive to ask for instructions when desired (i.e, learner-
driven). We present a novel and comprehensive organization and
description of all steps involved in those frameworks.

2 PROBLEM STATEMENT
An inter-agent teaching relationship requires at least two agents,
where a teacher agent communicates information to a learner –
presumably with the intention to accelerate learning (hereafter
called instruction). We define an instruction as any information
communicated by a teacher to a learner with the intention of accel-
erating learning that (a) is specialized to the task at hand, (b) can
be interpreted and assimilated by the learner, (c) is made available
during training, and (d) is devised without detailed knowledge of
the learner’s internal representations and parameters. Examples of
instructions under this definition are demonstrations [11], action
advice [20], and scalar feedback [5] on the current learner policy.
We assume that teachers are competent in the learner’s task, though
they need not be more competent than the learner at all times. This
paradigm is situated in the overarching area of transfer learning
[12], which can be divided into two main subareas [14]: the subarea
covered by our article, i.e., agents teaching agents (ATA)—where
knowledge is transferred across agents, and single-agent transfer
(SA)—where knowledge from source tasks is reused by the same
agent. In ATA, the knowledge is generated with respect to target
task, but it belongs to another agent. In SA, on the other hand, the
learning agent itself generates the knowledge to be reused, but with
respect to different tasks than the one at hand.

3 BACKGROUND
Sequential decision making problems are often modeled as Markov
decision processes (MDPs) [10]. An MDP is composed of a tuple
⟨S,A,T ,R⟩, where S is a set of possible states, A is a set of actions
that can be executed by the agent, T is a state transition function
, and R is a reward function. In these situations, agents may uti-
lize reinforcement learning (RL) [16] techniques to learn behaviors
through interacting with their environment and observing sam-
ples of those functions. Those samples are the only feedback the
agent has to learn policies that achieve good task performance.
The main challenge of applying RL is that learning can require a
large amount of experience. One way to improve RL is by receiving
instructions from another, more-experienced agent. This can help a
learning agent build good initial policies, disambiguate knowledge,
and/or reduce the amount of experience required in order to learn
an acceptable policy [12]. Designing a framework that allows for
agents to instruct one another, i.e., inter-agent teaching, requires
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Table 1: List of all inter-agent teaching modules.

Behavior Generation Instruction Definition
Query Definition - Instruction construction [12]

- Query timing [3, 4, 6, 8, 13] - Interfacing
- Teacher selection Knowledge Update
- Query construction - Receiving instruction

Utility Evaluation - Instruction reliability
- Behavior observation [1, 9] - Knowledge merging [12]
- Instruction timing [8, 9, 13]

dealing with a number of challenges. The literature primarily fo-
cuses on only a portion of those problems—none has outlined and
discussed completely the modules that must be combined to design
an efficient and effective framework.

4 PROPOSED FRAMEWORKS
Broadly speaking, we categorize ATA techniques into one of the two
following frameworks: learner-driven or teacher-driven. In the for-
mer, the learner is responsible for initiating the interaction between
agents. Under this framework, the learning agent must first generate
a behavior, i.e., attempt to perform its task using some initial policy.
Then, throughout the course of the learning process, it is up to the
learning agent to decide when and how to define a query to send to
a (potential) teacher. Assuming the query is successfully received,
the teaching agent then evaluates the utility of actually providing
instruction to the learner in the context of the current situation. If
the teacher deems the situation worthy of instruction, the teacher
then defines the instruction and communicates that instruction to
the learner. Finally, the learner then updates its knowledge in re-
sponse to the instruction, after which it is ready to initiate another
interaction with the teacher and/or resume learning through its
own means. In contrast to the learner-driven framework for ATA,
in the teacher-driven framework, the teacher initiates the interaction
between agents. The main difference between this framework and
the learner-driven framework is that, in this configuration, there
is no explicit query generated by the learner. This lack of query
means that it is up to the teacher to decide when the instruction
takes place. Table 1 summarizes the modules composing each of the
frameworks, summarized below. Behavior Generation – To start,
before any learning can take place, the learner must first generate
an initial behavior from which it can start exploring. Generally, RL
agents use a random policy, though perhaps better initial policies
can also be found using the agent’s own experiences from similar
previous tasks [19] (i.e., SA). Query Definition – In the context
of learner-driven approaches, the agent must define when (query
timing), to whom (teacher selection), and how (query construction) to
ask for instruction. In principle, the agent could receive instructions
at every time step [17]. In many applications, though, communica-
tion is limited. In general, it is desirable for inter-agent teaching
systems to limit the number of queries to only those that are most
needed. After the learner determines when to query a prospec-
tive teacher, it might have to reason about whom to query. Most
inter-agent teaching methods assume that the teacher is known
and has agreed to provide instructions. Adaptive teacher-definition
algorithms have not been the subject of extensive research, and

how to automatically identify, engage with, and estimate the trust-
worthiness of a new teacher is an open area of research. After that,
the task of constructing the query may have to be considered. This
is itself a challenging research problem, involving both adhering
to a given query protocol, and deciding what information should
be transmitted as part of the query. Utility Evaluation – An im-
portant component of the interaction is the strategy used to decide
if instructions should be provided to the learner, i.e., utility eval-
uation. For teacher-driven approaches, deciding when to observe
the learner’s behavior is important (behavior observation). While
many methods assume that the teacher will observe the learner
during the entire training process [9, 18, 20], constant observation
is impractical in many situations. A second fundamental concern
in utility evaluation is deciding when to send the instruction (in-
struction timing). One possible solution is to endow the learner
with the ability to modify its behavior to indicate when instruc-
tions are most needed, e.g., slowing down its actuation when the
confidence in its policy is low [9]. Instruction definition – Af-
ter determining that the current state is appropriate for giving an
instruction, the question now is how to define and represent the
instruction to be transferred. This is especially challenging if agents
have different or unknown representations, or different sensors and
actuators, requiring some kind of interface or translation to enable
communicating the instruction successfully. The first challenge,
instruction construction, consists of defining how the instruction
is encoded. The interface by which the teacher communicates its
instructions is also an important factor to consider in all teaching
frameworks. Such interfaces consist of two critical components: (a)
the way in which observations of the learner are presented to the
teacher, and (b) the way in which instructions are presented to the
learner. Knowledge update – Finally, after the teacher issues an
instruction, the learner is faced with the problem of updating its
own knowledge using the information contained in that instruction.
Major components of this problem include receiving the instruc-
tion, determining the reliability of the instruction, and merging the
instruction with the learner’s existing knowledge.

5 CONCLUSION
Inter-agent teaching methods have played an important role in
augmenting RL methods to increase task learning speed. However,
existing literature presents solutions for only some of themany chal-
lenges involved in designing these inter-agent methods. We here
summarize our article [15], where we provided a comprehensive
view of these challenges, and also outlined two broad categories in
which to organize them, i.e., learner-driven and teacher-drivenmeth-
ods. We have also discussed the state-of-the-art options available
to implement various modules required in these frameworks.
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