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ABSTRACT
Heterogeneous robot fleets are capable of supporting dynamic and
resource-constrained missions. While current temporal AI plan-
ners are able to deal with multi-robot planning problems by pro-
ducing plans that take into account the individual robot capabili-
ties and task requirements, these approaches deal with the high-
dimensionality of the state space inefficiently, leading tomulti-robot
plans with poor plan quality. This paper proposes a novel task allo-
cation strategy called Multi-Role Goal Assignment (MRGA) which
enables for more efficient computation of plans using temporal
planners. The approach allocates a mission’s goals based on ro-
bot capabilities, the redundancy of the sensor system, the spatial
distribution of the goals and task implementation time, avoiding
the need to compute a large number of possible assignments. We
demonstrate the applicability of the strategy with multiple robots
operating jointly in an offshore platform. Experiments demonstrate
that our approach allows for more robust solutions and improved
plan quality while significantly reducing planning time.
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1 INTRODUCTION
Offshore oil and gas structures are usually located in remote and
isolated places, which present a challenge for human operators
due to the unsheltered maritime environment, extreme weather
conditions and unfriendly atmosphere for the personnel working
on those platforms. One alternative for addressing these problems
is the introduction of fully autonomous robots for the commission-
ing and operational phases of these facilities, resulting in fewer
offshore staff, reduced cost and increased personnel safety. Recent
work [22, 35] has proposed a benchmark for improving the role of
autonomous vehicles participating in intervention missions in off-
shore scenarios. However, problems such as long-term inspection
in the oil rig and systematic maintenance of structures such as pipes
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Figure 1: Overview of the offshore mission scenario.

require a level of autonomy not available in currently deployed
systems [3, 42]. One approach for managing mission complexity
is to equip a single vehicle with all of the necessary hardware and
software components needed for complex tasks. However, the re-
sulting robots are typically very expensive, and their designs often
make trade-offs to accommodate all possible missions, leading to
suboptimal systems. In addition, some sets of tasks are only appro-
priate for specific robots. For instance, the vertical inspection of a
pipe can only be implemented using aerial vehicles.

An alternative solution is to use multiple platforms optimised for
specific tasks, which collaborate to achieve a common set of goals
[1, 31, 36, 40, 47]. Such heterogeneous multi-vehicle approaches pro-
vide robustness to the overall system and can increase a mission’s
scope. However, current multi-agent planning solutions struggle
to generate plans that produce optimal task allocations, and often
suffer from a lack of plan quality. We address this challenge in the
context of a fleet of several ground and aerial robots with different
sensory systems. Robots must perform regular supervision and
control tasks in an oil rig environment which requires the vehicles
to move between different towers and levels. For instance, Figure 1
shows the oil rig scenario [35] supervised by a robot team. Mission
implementation in this context must consider robot availability for
achieving goals in different regions of the oil rig, individual robot
capabilities (highlighted in different colours), redundancy of the
sensory system, and the resources required (e.g., battery level) to
successfully complete tasks.

In this paper, we propose a new strategy for improving the qual-
ity of multi-robot plans called Multi-Role Goal Assignment (MRGA).
This method focuses on optimising the goal distribution resulting
from the use of AI temporal planners. The algorithm considers: (i)
the robot sensory andmotion capabilities, which constrains the goal
allocation to robots that can satisfy the goal capability requirement,
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and (ii) the linear combination of distance between the points of
interest (POI), the level of redundancy of the robot sensory system
to implement critical tasks, and the goals makespan—the time that
elapses from the start of task execution to the end. We integrate
the MRGA algorithm with a set of AI temporal planners, reducing
the size of the search space and consequently the planning time.
We evaluate the approach by considering relevant aspects of the
planning performance, such as spatial goal distribution, makespan,
planning time, and the goal allocation rate for different robot sets,
to demonstrate the applicability of the strategy. We deploy our
multi-robot task allocation and planning strategy to a robot fleet
of several Husky and Quadcopter robots operating in an offshore
oil platform simulator, providing evidence of the efficacy of the
method to deal with highly constrained domains.

2 RELATEDWORK
Automated planning is the process of reasoning about the actions
needed to achieve a set of goals. Planning usually involves explicit
representations of time to implement complex missions with multi-
ple robots. The agents must work concurrently and execute actions
with different time slots which force the use of temporal refer-
ences for solving the problem. Temporal planning problems can be
modelled using PDDL2.1 [19], or other extensions of the standard
Planning Domain Definition Language (PDDL) [29], which adds
support for temporal planning through additional language con-
structs. A number of temporal planners support PDDL2.1, such as
TFD [17], SGPlan [24], and LPG-TD [20]. In addition, the 2018 In-
ternational Planning Competition (IPC-2018) showed the potential
of portfolio-based approaches [12] to deal with larger numbers of
problems using a set of individual planners, and the TFLAP planner,
which represents an extension of [39]. However, these planners face
problems related to scalability, concurrency, and action timeslot
allocation, which have limited their application in real missions
with multiple robots.

There are two temporal planners which are particularly promis-
ing for the implementation of missions in challenging environ-
ments: the Forward-Chaining Partial-Order Planning (POPF) [13]
and Optimizing Preferences and TIme-dependent Costs (OPTIC)
[2], which are later extensions of COLIN [14]. These planners sup-
port numerical fluents, concurrency and exogenous events. POPF is
characterised by its ability to find plans with low makespan while
OPTIC’s main application is in problems where preferences or time-
dependent goal costs define the plan cost. POPF and OPTIC have
been successfully tested in real missions [10, 11]. However, there is
little work addressing the multi-agent problem using these planners
[23, 46]. In general, these approaches present limited task complex-
ity and diversity which prevents the evaluation of the planners’
performance in highly constrained domains.

Multi-Agent Planning (MAP) has also been addressed in [16,
26, 30, 44], which apply a distributed problem-solving design to
substitute the classical single-agent planning paradigm. However,
these solvers do not support tasks with advanced requirements
such as temporal constraints [45], which make them less attrac-
tive for the implementation of complex missions with concurrent
actions. Although several approaches [1, 28, 32] consider mission
timing constraints to solve multi-agent problems, they use specific

language representations or provide solutions to particular plan-
ning problems (e.g., path planning optimisation) in the global plan
which limits the generalisation of the approach. Other approaches
consider separable tasks [40] which limits robot collaboration. In
our work, task allocation conditions the planning process but does
not restrict the implementation of collaborative actions. Other work
[33, 34, 37] has explored task allocation with temporal constraints
using auction-based approaches. [37] proposes a multi-item auction
strategy which replaces the auctioneer for distributed consensus
phases and considers tasks with time windows. [33, 34] present the
Temporal Sequential Single-Item auction (TeSSI) algorithm for tasks
with temporal constraints. The strategy allocates tasks with time
windows to cooperative robots. However, its optimality is subject to
the number of robots and regions to explore. TeSSI also assumes the
robots can execute all the actions allocated and there is no further
analysis considering robot resources (e.g., energy level) which can
affect the sequence of defined actions. In addition, auction-based
approaches can lead to solutions where all tasks are allocated to a
single robot reducing the solution’s optimality. This is mitigated
in our strategy by distributing the robots around the arena at the
start of the mission.

Recent research [27, 48] has considered MAP problems in the
context of more complex domains such as underwater approaches.
In particular, the ScottyActivity planner [18] introduces levels of
coordination in maritime applications and provides good results
for controlling continuous variables in the domain. The strategy ad-
dresses task planning and trajectory optimisation in long horizons
for multiple robots. However, the approach does not guarantee op-
timal action sequences and the small number of robots used in the
missions prevent a scalability analysis. Few works directly consider
temporal planning for multi-agent applications. In [15], planning
problems are modelled using standard PDDL and then translated
to a temporal planning model for generating and distributing plans
to individual robots. [23] implement a strategy based on an auction
algorithm and temporal planning which reduces complexity during
the planning process. The approach presents limitations around
the auction time and does not support domains which require con-
currency. [41] also considers an auction mechanism. However, this
work does not analyse the coordination of multiple robots and the
way the tasks are clustered. Finally, [4] propose a strategy based
on clustering to allocate mission goals. Nevertheless, the method
does not consider the robot capabilities required to implement the
allocation which is considered in our work.

3 PROBLEM DEFINITION
We investigate how to allocate tasks with particular capability re-
quirements (sensory and motion) to a set of heterogeneous robots
deployed in an offshore oil platform, such that the generated allo-
cation is feasible according to the robot’s capabilities. In addition,
the task allocation approach considers the minimisation of a cost
function based on the combination of three parameters: makespan,
the distance between the POIs, and sensor-based optimisation con-
sidering redundancy. We assume the sets of robots 𝑅 and goals
𝐺 are nonempty and the mission’s goals are known upfront. The
robots represented by 𝑅 are heterogeneous. The solution to the task
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allocation problem for a heterogeneous fleet intrinsically solves the
homogeneous fleet task allocation problem.

Task allocation methods support the implementation of missions
with different goal capability requirements distributed over large
areas such as search and rescue [23], underwater [4], and surveil-
lance [1]. Our problem considers a set of robots that must complete
tasks located at an offshore oil rig with multiple towers and several
floors (see Figure 1). The autonomous supervision of an offshore
platform requires a considerable number of sensors and actuators.
In this work, we consider six types of tasks which require different
capabilities: check_temperature, check_pressure, observation,
take_image, valve_inspection and manipulate_valve.

Observation tasks involve the exploration of particular POIs and
can be executed using drones or husky robots. The valve_inspection
task requires the husky to identify the state of the valve (on/off),
for which the robot needs to be located in an optimal position.
The take_image task captures images of the structure from dif-
ferent points of view using drones. The tasks check_pressure
and check_temperature are associated with the collection of sen-
sor data by the huskies. The manipulate_valve task changes the
open/close state of a valve and requires the coordination between
drones and huskies (the drone records the execution and the husky
turns the valve). Essential actions in the domain include data com-
munication, navigation, and refuelling (see Section 4.2 for a full list)
which support robot mobility and long-term autonomy. Mission
goals are strongly related to the tasks the robotic system can imple-
ment. The AI planner is responsible for generating a sequence of
actions that achieves a given set of tasks.

PDDL-based temporal planners (such as those that use PDDL2.1
[19]) deal with multi-agent capability constraints [15, 46] and in-
trinsically address the task allocation problem. However, in many
cases the plans generated by these planners show poor task al-
location quality in complex missions [7, 8]. As a result, our ap-
proach solves the goal assignment problem before initialising the
main planning process. Planning then jointly considers the task
allocation (MRGA’s output), temporal constraints, and the robots’
resources and actions to generate plans. Formally, we define the
task allocation problem in multi-robot systems as follows.

Definition 3.1. A Task Allocation Problem is defined by a tuple
𝑡 := ⟨𝑅, 𝑅𝐶,𝐺,𝐺𝐶, 𝑃⟩, where 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛} is a set of robots,
𝑅𝐶 = {𝑟𝑐1, 𝑟𝑐2, ..., 𝑟𝑐𝑚} is a set of capabilities, 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑠 }
is a set of goals, 𝐺𝐶 = {𝑔𝑐1, 𝑔𝑐2, ..., 𝑔𝑐𝑤} is a set of capabilities re-
quired to implement the goals, and 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑠 } is a set of
goal coordinates. Each 𝑟 ∈ 𝑅 can be related to multiple elements of
𝑅𝐶 . Each 𝑔 ∈ 𝐺 is related to a single element of 𝐺𝐶 .

Our strategy first solves the task allocation problem and then
introduces a new set of constraints into the planning phase to
directly allocate goals to individual robots. The allocation is based
on two cost functions: maximising the number of tasks the robots
can achieve and minimising the combination of distance between
goals, task makespan, and aborted tasks due to problems in a robot’s
sensory system. The result is a reduction in the complexity of the
search tree the AI planners need to explore to generate plans.

Algorithm 1: ANALYSER
(
𝑅, 𝑅𝑟𝑛−𝑐𝑎𝑝 ,𝐺,𝐺𝐶

)
Input:
𝑅: Robot Set
𝐺 : Goal Set
𝐺𝐶: Goal Capability Requirements Set
𝑅𝑟𝑛−𝑐𝑎𝑝 : Robot Capabilities Set

1 begin
2 cnt = 0 /* counter over the set of robots */

3 while not 𝑅← ∅ do
/* solvable goal set for robot 𝑟cnt */

4 r𝑔𝑜𝑎𝑙cnt (G) ← ∅
5 for g_cnt to length (𝐺) do
6 if 𝐺𝐶 (g_cnt) → 𝑅𝑟𝑐𝑛𝑡−𝑐𝑎𝑝 then
7 r𝑔𝑜𝑎𝑙cnt (g_cnt) ← 𝐺 (g_cnt)

8 cnt = cnt +1
9 𝑅 = 𝑅.remove.𝑟cnt

4 SYSTEM FORMULATION & DESCRIPTION
We address the goal assignment problem in the context of a hetero-
geneous robot fleet. The role of the robots during goal execution
can be active (agents can execute goals) or passive (agents cannot
execute goals), which is determined by their capabilities. Temporal
planning is capable of dealing with multi-agent planning problems
since time is modelled explicitly: individual actions for different
robots can be scheduled and executed in parallel. Heuristic forward
search planners have shown the best performance generating plans
in many domains. However, plan search is not primarily guided to
guarantee optimal task allocation. In this section, we present the
MRGA algorithmwhich improves the quality of the plans generated
by temporal planners (TP) dealing with the task allocation problem.

4.1 Multi-Role Goal Assignment (MRGA)
The MRGA algorithm is based on two cost functions: (i) the tasks
solvable for a robot by considering its capabilities, and (ii) the
linear combination of the makespan, distance between the POIs
and redundancy of the sensory system. We divide the analysis into
two parts: Capabilities Analyser and Regions Delimiter.

4.1.1 Capabilities Analyser: The capabilities analysis deter-
mines the set of mission goals each robot can implement. Algo-
rithm 1 describes the strategy which considers four inputs: the
sets of available robots 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}, goals 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑠 },
capabilities required to implement the goals 𝐺𝐶 , and the set of
robot capabilities 𝑅𝑟𝑛−𝑐𝑎𝑝 which includes 𝑛 subsets (one subset per
robot). The method identifies the robots that possess the capability
required to implement each goal (line 4), and allocates the tasks
(line 5) to the list of solvable goals r𝑔𝑜𝑎𝑙cnt for robot 𝑟𝑐𝑛𝑡 when
the required capability is found. The role the robots (active or pas-
sive) regarding the execution of each goal is defined based on the
capability analysis. As an example of how the algorithm operates,
consider two robots 𝑟1 and 𝑟2 and a goal 𝑔1. We compare the capa-
bility required to implement 𝑔1 with the capability set of 𝑟1 and 𝑟2.
Each robot is considered and if the capability required to execute 𝑔1
is found, the goal is allocated to the solvable goal set for that robot.
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This process is repeated (line 1) until all the robots in the mission
know the goals they can achieve based on their capabilities.

4.1.2 Regions Delimiter: The Regions Delimiter is divided in
two parts: Robot Distribution (RD) and Goal Allocation (GA). RD
identifies regions in the environment to deploy the robots following
the pipeline presented in Algorithm 2, which considers the number
of available robots and the goal coordinates. We use the RD strategy
to distribute robots around the environment to avoid worst-case
complexity [33], which arises when all the tasks are assigned to a
single robot. Regions are obtained using an updated version of the k-
means algorithm [21], which decomposes the goals geographically
(line 3) by partitioning the observations according to the Voronoi
diagram generated by their means. Given an initial set of 𝑘 means
𝑚𝑖 := {𝑚 (1)1 ... 𝑚

(1)
𝑘
}, the formal distribution is described as:

𝑆𝑡𝑖 =

{
𝑥𝑝 : ∥ 𝑥𝑝 −𝑚𝑡

𝑖 ∥
2≤∥ 𝑥𝑝 −𝑚𝑡

𝑗 ∥
2 ∀𝑗, 1 ≤ 𝑗 ≤ 𝑘

}
, (1)

where 𝑆 (𝑡 )
𝑖

is a cluster,𝑥𝑝 are goal coordinates, and𝑚 := {𝑚1, ...,𝑚𝑡 }
is a set of means updated using:

𝑚
(𝑡+1)
𝑖

=
1

| 𝑆 (𝑡 )
𝑖
|

∑
𝑥 ∈𝑆 (𝑡 )

𝑖

𝑥 𝑗 . (2)

The algorithm can use all the robots available for the mission.
However, the strategy optimises the resources based on the mission
requirements and goal positions. The method takes the results from
the clustering (line 3) and the Capabilities Analyser (Algorithm 1,
line 7) and calculates the number of goals the robots can execute
in each region (lines 3-4). These results are used to determine the
best robot option for implementing actions in each cluster. We
perform this evaluation using linear programming methods [5]
which determines the optimal robot distribution over the clusters
by addressing the problem as a maximisation problem (line 4):

max 𝑧 =

𝑚∑
𝑟=1

𝑛∑
𝑐=1

𝑤𝑟𝑐𝑥𝑟𝑐 , (3)

subject to
∑𝑛
𝑐=1 𝑥𝑟𝑐 = 𝑎𝑟 ,

∑𝑚
𝑟=1 𝑥𝑟𝑐 = 𝑏𝑐 , with 𝑟 = 1, ...,𝑚 and

𝑐 = 1, ..., 𝑛, 𝑥𝑟𝑐 ≥ 0. Where robot 𝑟 ∈ 𝑅 robot set, cluster 𝑐 ∈ 𝐶

cluster set, (𝑟, 𝑐) is an edge,𝑤𝑟𝑐 is the number of goals 𝑟 can execute
in 𝑐 , and 𝑥𝑟𝑐 is the variable in the edge.

The solution to the maximisation problem provides the optimal
robot distribution over the clusters by considering the robot that
is most appropriate for a region based on the number of tasks
it can solve there. Our approach calculates the distance between
robot allocations and all the solvable goals in the area (line 8).
The closest goal is the first assigned to the robot (lines 11-12).
This process is repeated for all the robots until the vehicles are
distributed over the environment. The strategy removes the goals
allocated from the unallocated goal set (line 13). This method can
solve a large number of goals; however, the approach can also lead
to suboptimal solutions when the robots cannot execute all the goals
in a region. This is due to RD which restricts the operation of robots
to particular clusters based on the locations of their closest goals.
The approach can be generalised to instead cluster by similar goals,
by abstracting the notion of spatial distance to distance between

Algorithm 2: ROBOT-D
(
𝑅, 𝑅𝑐𝑜𝑜𝑟𝑑 ,𝐺,𝐺𝑐𝑜𝑜𝑟𝑑 , 𝑅r𝑔𝑜𝑎𝑙n

)
Input:
𝑅: Robot Set
𝐺 : Goal Set
𝑅𝑐𝑜𝑜𝑟𝑑 : Initial Coordinates of Robot Set
𝐺𝑐𝑜𝑜𝑟𝑑 : Coordinates of Goal Set
𝑅r𝑔𝑜𝑎𝑙n : Set of solvable goals for the n robots in 𝑅

1 begin
2

{
𝐺𝐴𝐼𝑁 𝐼𝑇 , 𝑅𝐴𝐼𝑁 𝐼𝑇 , 𝐶𝑠𝑜𝑙 , 𝑅𝑠𝑜𝑙

}
← ∅

/* 𝐺𝐴𝐼𝑁 𝐼𝑇 is set with the first goal allocated to each

robot, 𝑅𝐴𝐼𝑁 𝐼𝑇 is set with robot allocated to each

cluster, 𝐶𝑠𝑜𝑙 is set with clusters id and POIs, and 𝑅𝑠𝑜𝑙

is the number of robots required */

3 [𝐶𝑠𝑜𝑙 , 𝑅𝑠𝑜𝑙 ] = cluster_cal (𝐺, 𝑅, 𝑅𝑐𝑜𝑜𝑟𝑑 ,𝐺𝑐𝑜𝑜𝑟𝑑 )
4 𝑅𝐴𝐼𝑁 𝐼𝑇 = max

{
weight_cal(𝑅r𝑔𝑜𝑎𝑙n ,𝐶𝑠𝑜𝑙 ,𝑅𝑠𝑜𝑙 )

}
5 cnt = 0 /* counter over the set of robots */

6 while not 𝑅← ∅ do
7 for 0 to length (𝐶𝑠𝑜𝑙 (cnt)) do
8 𝑑𝑖𝑠𝑡 = dist_cal (𝑅𝐴𝐼𝑁 𝐼𝑇 , 𝑅𝑐𝑜𝑜𝑟𝑑 ,𝐶𝑠𝑜𝑙 ,𝐶𝑐𝑜𝑜𝑟𝑑 )
9 for 0 to r𝑔𝑜𝑎𝑙cnt do
10 if min

∑
𝑑𝑖𝑠𝑡 then

11 𝑅𝑐𝑜𝑜𝑟𝑑 (cnt) ← 𝐶𝑐𝑜𝑜𝑟𝑑 (cnt)
12 𝐺𝐴𝐼𝑁 𝐼𝑇 (cnt) ← 𝐺 (cnt)
13 𝐺 .remove.𝐺𝐴𝐼𝑁 𝐼𝑇

14 cnt = cnt +1
15 𝑅 = 𝑅.remove.𝑟cnt

goal characteristics when each robot presents a unique capability
required for planning.

The GA step distributes the set of unallocated goals and elimi-
nates the possibility of suboptimal goal distribution. We initiate the
GA after assigning the first goal to each robot (using the RD step).
GA does not consider cluster restrictions. Therefore, the robots
can move freely in the environment implementing goals based on
the GA cost function. The strategy described in Algorithm 3 com-
bines the system reliability analysis based on the redundancy of
the sensory system [25] with vehicle routing and scheduling prob-
lems [43], which allows us to consider past distance travelled and
makespan to allocate the goals. The method evaluates the cost of
implementing each goal for each agent over the set of unallocated
goals and robots (lines 6-8). We find the minimum cost associated
with the implementation of a goal (lines 9-10) using Equation 4:

min 𝑐 =
𝑛∑

𝑔=1

𝑚∑
𝑟=1

𝛾𝑀𝑟
𝑚𝑎𝑥 + 𝛼

[
𝑇 𝑟
(𝑔𝑖 ,𝑔𝑓 ) −𝑇

𝑟
(𝑔𝑖 ,0)

]
+𝛽

(
𝑇 𝑟
𝑔−𝑎𝑏𝑜𝑟𝑡𝑒𝑑
𝑁𝑜_𝑠

)
,

(4)

where 𝛾 , 𝛼 and 𝛽 ∈ [0, 1] are weighting factors, 𝛾 + 𝛼 + 𝛽 = 1, and
𝑀𝑟
𝑚𝑎𝑥 is a maximum makespan for robot 𝑟 , 𝑇 𝑟

𝑔−𝑎𝑏𝑜𝑟𝑡𝑒𝑑 is the total
wasted time resulting from aborted tasks, 𝑁𝑜_𝑠 is the number of
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Algorithm 3: GOAL-A (𝑀𝑟
𝑚𝑎𝑥 , 𝑁𝑆 ,𝐶𝑇 , ROBOT-D)

Input:
𝑀𝑟
𝑚𝑎𝑥 : Task Makespan Set

𝐶𝑇 : Number of Critical Tasks in the Mission
ROBOT-D: Inputs and Outputs of Algorithm 2
𝑁𝑆 : Number of Sensor Sets
/* NS defines the redundancy associated with each goal. Some

inputs and outputs of ROBOT-D are also used here. */

1 begin
2 𝐺𝐴𝐹𝐼𝑁𝐴𝐿 (𝐺) ← 𝐺𝐴𝐼𝑁 𝐼𝑇

/* 𝐺𝐴𝐹𝐼𝑁𝐴𝐿 (𝐺) will contain all the goal allocations,

initially it has the goals allocated for ROBOT-D */

3 cnt = 0 /* counter over the set of robots */

4 while not 𝐺 ← ∅ do
5 g = 0 /* initialisation of the number of goals */

6 for g to length (𝐺 −𝐺𝐴𝐼𝑁 𝐼𝑇 ) do
7 if 𝐺𝐶 (𝑐𝑛𝑡) ∈ r𝑔𝑜𝑎𝑙cnt then
8 for 0 to length(𝑅) do
9 𝑑𝑖𝑠𝑡 (𝑟 ) = 𝑑𝑖𝑠𝑡_𝑐𝑎𝑙

(
𝑅𝑐𝑜𝑜𝑟𝑑,𝐺𝑐𝑜𝑜𝑟𝑑

)
10 cost(r) = f (𝛾, 𝛽, 𝛼, 𝑁𝑆,𝐶𝑇 ,𝑀𝑟

𝑚𝑎𝑥 , 𝑑𝑖𝑠𝑡 )
11 𝑀𝑟

𝑚𝑎𝑥 = update.makespan_cal(𝑔)

12 𝑐𝑜𝑠𝑡𝑟 (g) = min (cost(r))
13 𝑐𝑜𝑠𝑡𝑟 (G)← 𝑐𝑜𝑠𝑡𝑟 (g)
14 𝐺𝐴𝐹𝐼𝑁𝐴𝐿 ←𝑚𝑖𝑛

{
𝑐𝑜𝑠𝑡𝑟 (G)

}
15 𝐺 = 𝐺 .remove.𝐺𝐴𝐹𝐼𝑁𝐴𝐿

robot sensors that provide redundancy to implement a goal, and[
𝑇 𝑟
(𝑔𝑖 ,𝑔𝑓 ) −𝑇

𝑟
(𝑔𝑖 ,0)

]
represents the distance between the the initial

goal𝑔𝑖 and the final goal𝑔𝑓 . The distance travelled is transformed to
travel time by assuming all robots are moving at the same speed. We
calculate 𝑀𝑟

𝑚𝑎𝑥 by considering the accumulated makespan and the
makespan associated with the implementation of the actual action.
The𝑇 𝑟

𝑔−𝑎𝑏𝑜𝑟𝑡𝑒𝑑 parameter is calculated by defining the critical tasks
in the mission which require redundancy and can be implemented
by the robot.

The robots update their allocation cost function for each unallo-
cated goal in the environment (independent of the clusters) (lines
11-13) by considering the distance to each goal and its makespan.
The robot with the minimum bid will take the goal associated with
the smallest cost value (line 14). The robot will then update its
position and calculate the cost function for all unallocated goals
again. This process is repeated until all the goals are allocated to the
robots. The accumulated makespan considers the distance travelled
between the POIs. The weight parameters condition the allocation
of a goal to a particular robot giving more importance to the dis-
tance between the goals, the makespan, or the redundancy analysis.
We choose 𝛼 + 𝛽 = 0.45 in an attempt to find a balance between
makespan and redundancy while still considering distance. This
method optimises the goal distribution allowing the robots to move
to other regions when they are required to solve a goal that de-
pends on a capability the robot in that area does not possess (line

Table 1: Robot capabilities and estimated task duration.

Capabilities Robots Time

navigation 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 𝑡 = 𝑓 (𝑑)
communicate-data 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 7

refuel 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 𝑡 = 𝑓 (𝑐ℎ𝑟, 𝑒)
observation 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 15
take-image 𝑅5, 𝑅6 5

valve-inspection 𝑅1, 𝑅3, 𝑅4 20
check-temperature 𝑅1, 𝑅2 10
check-pressure 𝑅1, 𝑅3, 𝑅4 10
turn-valve 𝑅1, 𝑅3, 𝑅4, 𝑅5, 𝑅6 30

7). MRGA’s output is defined in PDDL. The results of the alloca-
tion (line 14) are transformed to instances of the PDDL predicate
(robot_can_act ?r ?to), where ?r is the robot and ?to repre-
sents the POI of the goal. We modify the PDDL problem file to add
these instances to the initial state. The PDDL domain file is also
modified to add an instance of this predicate to each action as a
precondition in order to constrain the selection and execution of the
action to the appropriate robots.We introduce capability constraints
into our domain actions using two different definitions. We can
define a predicate for each action associated with specific sensors
and an action precondition associated with each defined predicate.
For instance, we define the predicate (can_inspect_valve ?r)
which ensures the agents performing the inspection action have the
appropriate sensor. We use this representation to generate plans
using the benchmark planners. In this case, PDDL solvers deal
with the task allocation problem directly. Alternatively, we can add
robot_can_act preconditions to the domain’s actions. The MRGA
strategy generates a set of instances of the (robot_can_act ?r
?to) predicate covering all the mission goals at positions ?to.

4.2 MRGA+TP Definition
The goal assignment algorithm adds true instances of the predicate
to the initial state of the PDDL problem definition which directly
allocates goals before using the benchmark solvers to generate the
plan. We introduce the results of MRGA into the planning process,
referred to as the MRGA+TP strategy, resulting in solutions that
improve the performance of the TP.

4.2.1 PDDL Domain Definition: The planning process re-
quires a realistic representation of the domain. Our domain defini-
tion captures the dynamics of the world using standard PDDL fea-
tures like types, static facts, and functions.1 The domain file contains
the following types: robot, robot_sensor, observation_point
and actuator.2 The observation points specify the coordinates of
the POIs, which have a fixed location defined by the domain de-
signer. The robots’ sensory system is described by the robot_sensor.
The actuator defines the husky’s arms. Our work considers a set of
heterogeneous vehicles and the robots present differences in their

1Domain and problem instances are available in the MRGA repository at
https://github.com/YanielCarreno/MRGA.
2We will use ?r to denote a parameter of type robot, ?poi a parameter of type
observation_point, ?t_s (temperature sensor), ?p_s (pressure sensor) and ?camera
are parameters of type robot_sensor, and ?arm is a parameter of type actuator.
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Figure 2: Task Allocation and Planning framework.

sensory systems. PDDL actions and properties will typically be
related to the capabilities of the specific robot platforms, captured
by the following domain actions:

navigation(?r, ?from, ?to): a durative actionwhichmoves
the robot ?r from observation point ?from to ?to. We em-
ploy the semantic roadmap for autonomous point-to-point
navigation and collision-free planning defined in [35] to
compute navigation actions which meet the ?r kinematic
capabilities, and retrieve the corresponding action duration.

data_communication(?r, ?poi): a durative actionwhich al-
lows the robot ?r to communicate the data recorded at ob-
servation point ?poi.

refuel(?r, ?poi): a durative action for robot ?r to recharge
its battery at the closest recharging point ?poi, where it stays
during recharging time. We consider multiple recharging
points based on the scenario described in [7]. The recharging
point changes according to the robot’s position.

observation(?r, ?poi, ?camera): a durative action where
the robot ?r explores the structure located at ?poi from
different view points (multiple angles) using ?camera. The
drone records data to analyse the state of the structure.

take_image(?r, ?poi, ?camera): a durative action which
enables the robot ?r’s camera ?camera to capture images on
the observation point ?poi.

valve_inspection(?r, ?poi, ?camera): a durative action
which enables the robot ?r’s camera ?camera to identify the
state of the valve located at point ?poi.

check_temperature(?r, ?poi, ?t_s): a durative action
which enables the robot ?r’s temperature sensor ?t_s to
collect and store data at point ?poi.

check_pressure(?r, ?poi, ?p_s): a durative action which
enables the robot ?r’s pressure sensor ?p_s to collect and
store pressure data at point ?poi.

manipulate_valve(?rh, ?rd, ?poi, ?camera ?arm): a
durative action which enables the husky robot ?rh’s actuator
?arm to turn the valve, and drone ?rd’s camera ?camera to
record the action at point ?poi.

The properties of our offshore platform domain are encoded in
PDDL. Our encoding is based on adding capability and temporal
constraints to the domain. The domain actions consider robot ca-
pabilities to distribute the actions among the fleet. Table 1 shows

a list of the domain capabilities that each robot holds and the esti-
mated time that it takes to perform the action associated with the
capability. Action duration for essential capabilities is based on the
distance 𝑑 between the POIs, the energy 𝑒 and the recharging rate
𝑐ℎ𝑟 . We assume the domain actions are deterministic and there is
complete domain knowledge. The planner generates a plan for the
robot fleet distributing the goals based on the domain constraints.
The robots acting in the domain can execute actions concurrently.

4.3 System Architecture
There are multiple architectures that support the execution of multi-
robot missions. We use ROSPlan [11] which connects the widely
used Robot Operating System (ROS) [38] and PDDL2.1. ROSPlan
architecture allows the integration of high-level planning with
robot-level action implementation methods. Prior implementations
using ROSPlan have demonstrated good performance when dealing
with single-robot missions [9] and multi-robot approaches [6].

Figure 2 shows the MRGA framework which consists of the
Capabilities Analyser and Regions Delimiter ROS nodes. MRGA re-
ceives data from the robots (the number of robots and capabilities),
mission goals and the capabilities required to execute these tasks,
and generates a set of PDDL instances which populate the prob-
lem file. The system evaluates the capability constraints using the
Capabilities Analyser and defines the regions using the Regions De-
limiter. The problem file (see Mission Defn.) updates the Knowledge
Base node from ROSPlan. We use a centralised planning schema
to generate plan solutions. The planner attempts to optimise the
complete decision space and reduce the number of planning failures.
We assume a reliable communication between the acting agents
and the planning agent which allows plan repairs during mission
execution keeping total mission failure at low levels. However, the
approach can also be used with a decentralised architecture [6].
This work provides a generic solution using standard languages
and methods (PDDL and ROS), but is easily adaptable to a different
output structure or language.

We demonstrate the approach in simulation with multiple het-
erogeneous robots equipped with temperature and pressure sen-
sors, cameras, and arms. We implement our experiments using the
ORCA Hub3 simulator [35] which presents a ROS-enabled oil rig
environment to execute tasks with multiple robots. The simulator
environment (see Figure 1) allows multiple instances of different
robotic platforms to coexist and implement complex missions with
large goal sets. The ORCAHub simulator offers access to a semantic
description of the oil rig structure which provides knowledge of
the environment such as the labels that describe the 3D coordinates
of the POIs (e.g., valve positions).

5 EXPERIMENTS AND RESULTS
We evaluate the MRGA algorithm in simulation in three experi-
ments. In the first experiment, we analyse the performance of the
goal distribution in a particular problem setting. The second exper-
iment examines the efficiency of the approach through the analysis
of the plan’s quality. We compare the performance of MRGA+TP
with the results of well-established benchmark planners and a port-
folio approach: LPG-TD, TFLAP, TFD, POPF, OPTIC, and TemPoRal
3https://orcahub.org/
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Figure 3: Goal allocation using TFLAP (left), OPTIC (middle) andMRGA+TP (right). Simulations evaluate the sequence of goals
implemented for a set of three heterogeneous ground robots using as a reference a top view of the oil platform scenario.

Figure 4: Planning time (top) and makespan performance
(bottom) using MRGA+TP and the benchmark planners.

which have been tested in multiple experiments in the past. We
evaluate the approach by considering fleets of three, four and six
heterogeneous robots supervising up to 8 regions. We use OPTIC
as our temporal planner, which we’ve found provides good plan
results in a large number of domains using domain-independent
heuristics and fast generation. We consider a set of 20 problems
of increasing complexity. Experiments were attempted 150 times
and the results show the mean and standard deviation of the data.
Finally, we evaluated the scalability performance of the strategy
using larger numbers of goals and robots. All experiments were
performed on a machine with a 4GHz processor, with the planner
limited to 30 minutes of CPU time and 8GB of memory.

Experiment 1: We evaluate the performance of TFLAP, OPTIC
and MRGA+TP using a fleet of three robots (𝑅1, 𝑅2, and 𝑅3). The
problem includes 31 goals (including three different types of goals
with different capabilities) distributed in four regions. The offshore
platform is concentrated in an area of almost a half square kilometre.
The robots must execute goals related to the capabilities in Table 1.
The initial position of the robots is at a corner of the environment
(see Figure 1). We only use husky robots in this experiment to
demonstrate the advantages of the allocation approach using the
Robot Distribution and Goal Allocation strategies.

Experiment 2: We analyse the performance of our approach
comparing the quality of the plans generated by the benchmark
planners and the plan results of combining the MRGA algorithm
with OPTIC (MRGA+TP). We evaluate the results of executing plans
for the 20 problems. The makespan and planning time metrics are
assessed for fleets of 3-6 robots.

Experiment 3:We evaluate the scalability performance of the
strategy for a large number of robots and goals. We generate mis-
sions with large numbers of goals (up to 150) and robot sets, increas-
ing the number of husky robots and drones in the same proportion
up to 30. We analyse the number of robots required to execute
a large number of goals. The experiment attempts to determine
the maximum number of goals a robot team can achieve without
intermediate battery recharging, to demonstrate the advantage of
using MRGA to optimise resource consumption.

5.1 Results and Analysis
In comparing MRGA+TP to TFLAP and OPTIC, we found that
MRGA+TP outperforms the other approaches in distributing goals
for the same number of robots. The results of the goal allocation
presented in Figure 3 improve the overall plans in Experiment 1.

MRGA+TP effectively distributes the goals among the robot set
while trying to maintain the agents at different regions to reduce
the possibility of robot collisions, the total distance travelled and
the energy consumed. However, robot capabilities influence the
allocation and can force the assignment of goals from different
regions to the same robot. For instance, r1 moves to the bottom-
right region to implement a goal with capability C as a consequence
of r2 not having the required capability. Experiments show that
the strategy takes advantage of the distance between the POIs
and makespan. We found the algorithm effectively considers the
makespan parameter to allocate a goal when the number of robots
is smaller than the number of regions. Robot r2 implements most
of the goals in two regions (bottom-right/left) since the time to
implement capability B is the smallest, making r2 the best option to
implement the goals. On the other hand, goal distribution in TFLAP
and OPTIC provide suboptimal plans with poor task allocation.
TFLAP allocates all tasks to a single robot (an agent with all the
capabilities) which affects the goal allocation and action schedule in
the plan, while OPTIC generates the best performance among the
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Figure 5: Task allocation results for multiple robot sets.

benchmark solvers. Results show that combining temporal planning
and MRGA can substantially improve the general performance of
the system and optimise the use of the robots and resources.

In Experiment 2, we evaluate plan performance by considering
planning time and makespan. Figure 4 shows planning time (top)
and plan makespan (bottom) for 20 problems. We found MRGA+TP
generates solutions for all problems in less than 5 minutes of plan-
ning time. Since planning time influences the capacity of the robotic
system to react optimally during time-sensitive tasks, minimising
planning time is essential for optimising the performance of the
system. The results show that MRGA+TP substantially reduces the
planning time over all problems compared with the benchmark
planners. Thus, task allocation in multi-agent domains can sig-
nificantly speed up the planning time. Solvers such as POPF and
OPTIC (the second and third best results, respectively) have longer
planning times which are not desirable in many real-world appli-
cations. The performance of MRGA also provides evidence that
the strategy improves plan generation for a heterogeneous fleet
by acting as a decision maker which reduces the complexity of
the resulting planning problem, thereby facilitating the temporal
planner’s work. In addition, the simulations illustrate the advantage
of using MRGA+TP for multi-vehicle strategies, and provide a tool
for temporal planning to optimise complex mission planning with
large numbers of goals and constraints. MRGA also improves the
capacity of the robotic fleet to react to replanning situations. The
performance of benchmark planners is particularly poor for prob-
lems where the planning time exceeds the time limit of 30 minutes.
We also ran simulations using TDF and TemPorAl, however, these
solvers did not generate solvable plans in the required time.

We also evaluated plan makespan performance as part of Exper-
iment 2. The makespan results for MRGA+TP are similar to the
values obtained by the other planners in most of the problem in-
stances. However, the strategy optimises the number of robots used
during the mission leading to implementations where MRGA+TP
uses a smaller number of vehicles compared with the benchmark
solvers to achieve the same goals. The results demonstrate MRGA
supports the generation of plans with higher quality and similar
mission times but using fewer resources.

In Experiment 3, we analyse the scalability performance of the
MRGA+TP approach. Figure 5 shows the results of generating plans

with different robot sets. The results indicate that MRGA+TP is
capable of generating plans with a large number of goals using
smaller robot sets compared with the planners evaluated. In some
cases, the approach reaches the maximum number of goals using
half the number of robots that most benchmark planners need to
execute the missions without refuelling.

In general terms, our method distributes goals while trying to
optimise the number of robots used for mission execution. MRGA is
a planner agnostic approach which support plan generation using
different solvers depending on the domain definition and problem
requirements. This strategy works for special cases such as prob-
lems that have lower numbers of goals than robots. The algorithm
attempts to optimise the number of robots used to implement a
mission by considering their capabilities. In practice, the algorithm
tends to use the robots with more capabilities to solve multiple
goals. The method improves the performance of benchmark plan-
ners for all problem types we explored (using heterogeneous robots).
However, the strategy can fail to optimise the results if the fleet
is homogeneous, there is one region, and the goal makespans are
similar. This case is very specific and quite unlikely in missions
with heterogeneous robot teams. In addition, the definition of the
weighting factors 𝛾 , 𝛼 , and 𝛽 is an element to consider in order to
achieve the best possible goal distribution.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we investigated task allocation and planning for mis-
sions involving multiple heterogeneous robots and complex models
of the environment. We presented a novel task allocation strategy
called Multi-Role Goal Assignment which improves the efficiency
of plan generation in many situations using temporal planning. The
approach attempts to decompose mission goals by considering their
position in the environment, the task implementation time, the ro-
bot capabilities, and the redundancy of the robot sensory system.
We demonstrate the applicability of our approach with multiple
robots in a simulated offshore environment. Results from the experi-
ments indicate that MRGA is a flexible strategy which improves the
quality of goal allocation with respect to the underlying benchmark
planners. An analysis of plan makespan and planning time validates
the robustness of the approach. The method substantially reduces
planning time with similar makespans compared with the tested
temporal planners for small robot fleets. In addition, MRGA+TP
shows good performance in terms of scalability for situations with
a large number of goals and heterogeneous robots.

Future work involves studying plan deviation analysis to eval-
uate plan performance during execution. We intend to introduce
multiple replanning strategies that improve the mission solvability
rate. We are also working to introduce an online version of the
strategy. We aim to adapt this approach to a more flexible online
execution context. Finally, we aim to evaluate the performance of
the approach using real robot platforms.
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