
Multimodal Representation Learning
for Robotic Cross-Modality Policy Transfer

Doctoral Consortium

Miguel Vasco
INESC-ID & Instituto Superior Técnico, University of Lisbon

Lisbon, Portugal
miguel.vasco@tecnico.ulisboa.pt

ABSTRACT
In this thesis, we aim at endowing robots with mechanisms to learn
multimodal representations from sensory data and to allow them to
execute tasks considering different subsets of available perceptions.
We address the learning of these representations from supervised,
unsupervised and reinforcement learning methodologies in the
context of virtual agents and robots. We hope that, by achieving
the proposed goals, the contributions of this thesis might prompt
future research on applications of multimodal representations in
robots and other artificial agents.
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1 INTRODUCTION
Humans are provided with a remarkable cognitive framework
which allows them to create a rich representation of their internal
and external reality. These representations may be of a concep-
tual nature, regarding the categorization and interplay of abstract
models of existing (or non-existing) entities, or of a perceptual
nature [2, 6]. Perceptual representations are the result of multiple
levels of processing of multimodal information provided by the
environment, captured by the different sense organs [3, 19].

Perceptual representations play a fundamental role in the plan-
ning and execution of tasks [12]. Here we distinguish two different
categories of tasks:modality-specific tasks, in which the information
of a given modality or subset of modalities is fundamental for its
execution (e.g., sorting objects by color), and modality-independent
tasks, which can be executed by considering redundant informa-
tion from different modalities (e.g., navigating within a room). An
example of the latter class is shown in Figure 1.

Humans are able to plan and perform modality-independent
tasks even if the environment does not provide modality-specific
information (e.g., absence of light in a dark room) or if a given
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Figure 1: An example of the importance of multimodal
representation learning for the execution of modality-
independent tasks: in the absence of light, humans can nav-
igate their environment by employing perceptual informa-
tion from other modalities (such as sound) to generate the
absent visual perceptual experience. Image adapted from
George Morland’s painting "Blind Man’s Buff".

sensor is malfunctioning (e.g., blindness), albeit with reduced per-
formance. Indeed, multimodal perceptual representations allow for
the inference of the perceptual experiences of missing modalities
from available ones [18, 23, 27].

Artificial agents, such as robots, often disregard the relationships
between the different modalities that compose their perceptual in-
put. Robots often limit themselves to creating internal representa-
tions solely from visual information [5, 21] or from the fusion of
different modalities [9, 15]. Such disregard results in the inability of
the robot to perform modality-independent tasks when modality-
specific information is unavailable, or in the (frequent) case of
sensory malfunction. If we aim at having artificial agents, such as
service robots or autonomous vehicles, acting reliably in their envi-
ronments, they must be provided with mechanisms to overcome
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these issues. This thesis aims at endowing robots with mechanisms
to learn multimodal representations of their environment and to
allow them to execute modality-independent tasks considering dif-
ferent subsets of available perceptions.

2 LEARNING MULTIMODAL
REPRESENTATIONS

With that goal in mind, the question of the learning methodol-
ogy of such representations naturally emerges. Human perceptual
representations are continuously learnt and shaped by different
learning mechanisms, including supervised and unsupervised and
reinforcement learning [4].

In previous work, we addressed the question of creating multi-
modal representations through supervised learning in the context
of human action recognition [25, 26]. Indeed, in human infancy,
supervised learning plays a fundamental role in object categoriza-
tion from few labels provided by a teacher [13]. Our goal was to
access if, by considering the multimodal nature of the information
provided by a human teacher, the agent could distinguish between
different action classes from few training examples. We introduced
the notion of motion concept, a representation of the kinematics of
the action, along with the contextual background of the action (the
location and the objects used during the action). We proposed an
online algorithm to learn motion concepts by demonstration and
evaluated its performance in both offline [26] and online [25] recog-
nition tasks. The results showed the importance of considering
multimodal information in building action representations.

Unsupervised learning also plays a fundamental role in the learn-
ing process of human multimodal representations. In particular, in-
fants apply unsupervised learning to leverage statistical regularities
in perceptual data to learn the distribution of sounds in their native
language [11, 28], to discover simple visual categories [1, 30, 31], and
to refine sensory-motor maps [16]. In a work accepted at AAMAS
2020, we address the challenge of building multimodal representa-
tions through unsupervised learning in Atari games [22]. In this
work, we introduced and formalised the novel problem of modality
transfer in deep reinforcement learning. We proposed a three-stage
architecture that allows a reinforcement learning agent trained over
a given sensory modality to execute its task on a different sensory
modality, as presented in Figure 2. In a first stage, we employed
multimodal variational auto-encoders [10, 24, 29] to learn a repre-
sentation of the game scenario in an unsupervised way, considering
both the image and sound generated by the game. We evaluated
the proposed approach in domains of increasing complexity and
showed that the policies learned by our approach were robust to
different subsets of available input modalities.

3 FUTUREWORK
So far we addressed how artificial agents can learn multimodal
representations through supervised and unsupervised learning. As
such, our future work will focus on two different goals:

(1) Understand how reinforcement learning can augment multi-
modal perceptual representation learning of artificial agents
in goal-oriented, modality-independent tasks.

(2) Extend multimodal perceptual representation learning to
robotic agents in a situated environment with humans.
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Figure 2: Proposed architecture to addressmodality transfer
inAtari games: using unsupervised learning, we build amul-
timodal representation zc from images and sounds collected
from the game. Subsequently, we train a policy π of a rein-
forcement learning agent using rewards R obtained consid-
ering zc as states of the world. This allows us apply the same
policy π for different subsets of available input modalities.

Reinforcement learning plays a significant role in the shaping of
human mental representations constructed from perceptual data
through unsupervised learning [14]. However, such mechanisms
have yet to be translated to a computational setting. Several ap-
proaches have been proposed that consider unsupervised algo-
rithms to learn single-modality [7, 8] or multimodal [22] represen-
tations of the world and, subsequently, learn a task-policy over
that fixed representation. However, none have considered the fun-
damental importance that reward signals have on the represen-
tation of the world itself. We aim at exploring methodologies to
enhance unsupervised multimodal representation learning with re-
ward signals obtained from the environment, such as self-attention
mechanisms [17, 20].

The second goal of our future work concerns the extension of
the multimodal transfer reinforcement learning problem to robotic
agents. We are interested in addressing indoor navigation tasks
in which a mobile robot is equipped with both camera and laser
sensors. Our goal is to access both the limitations of multimodal
representation learning from real-life sensory data and the potential
for cross-modality policy transfer in robotic agents (e.g., executing
a policy trained on visual perceptions when only laser readings
are available). We hope that, by achieving the proposed goals, the
contributions of this thesis might prompt further research on multi-
modal representation learning for robots and other artificial agents.
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