
RMB-DPOP: Refining MB-DPOP by Reducing Redundant
Inferences

Ziyu Chen

College of Computer Science,

Chongqing University

Chongqing, China

chenziyu@cqu.edu.cn

Wenxin Zhang

College of Computer Science,

Chongqing University

Chongqing, China

wenxinzhang18@163.com

Yanchen Deng
∗

College of Computer Science,

Chongqing University

Chongqing, China

dyc941126@126.com

Dingding Chen

College of Computer Science,

Chongqing University

Chongqing, China

dingding@cqu.edu.cn

Qing Li

College of Electrical Engineering,

Chongqing University

Chongqing, China

qiangli.ac@gmail.com

ABSTRACT
MB-DPOP is an important complete algorithm for solving Dis-

tributed Constraint Optimization Problems (DCOPs) by exploiting

a cycle-cut idea to implementmemory-bounded inference. However,

each cluster root in the algorithm is responsible for enumerating all

the instantiations of its cycle-cut nodes, which would cause redun-

dant inferences when its branches do not have the same cycle-cut

nodes. Additionally, a large number of cycle-cut nodes and the

iterative nature of MB-DPOP further exacerbate the pathology. As

a result, MB-DPOP could suffer from huge coordination overheads

and cannot scale up well. Therefore, we present RMB-DPOP which

incorporates several novel mechanisms to reduce redundant infer-

ences and improve the scalability of MB-DPOP. First, using the

independence among the cycle-cut nodes in different branches, we

distribute the enumeration of instantiations into different branches

whereby the number of nonconcurrent instantiations reduces sig-

nificantly and each branch can perform memory bounded inference

asynchronously. Then, taking the topology into the consideration,

we propose an iterative allocation mechanism to choose the cycle-

cut nodes that cover a maximum of active nodes in a cluster and

break ties according to their relative positions in a pseudo-tree.

Finally, a caching mechanism is proposed to further reduce unnec-

essary inferences when the historical results are compatible with

the current instantiations. We theoretically show that with the same

number of cycle-cut nodes RMB-DPOP requires as many messages

as MB-DPOP in the worst case and the experimental results show

our superiorities over the state-of-the-art.

KEYWORDS
DCOP, complete algorithms, memory-bounded inference

ACM Reference Format:
Ziyu Chen, Wenxin Zhang, Yanchen Deng, Dingding Chen, and Qing Li.

2020. RMB-DPOP: Refining MB-DPOP by Reducing Redundant Inferences.

In Proc. of the 19th International Conference on Autonomous Agents and

∗
Corresponding author

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 9 pages.

1 INTRODUCTION
Distributed constraint optimization problems (DCOPs) are a fun-

damental framework for coordinated and cooperative multi-agent

systems. DCOPs have been successfully applied to model many real-

world problems including sensor networks [30], meeting scheduling

[26], smart grid [9], etc.

Incomplete algorithms for DCOPs [4, 8, 17, 19, 20, 30] aim to

find a good solution in an acceptable overhead, while complete

algorithms focus on finding the optimal one by employing either

search or inference to systematically explore the entire solution

space. SBB [14], AFB [11], PT-FB [16], ADOPT [18] and its variants

[12, 13, 27–29] are typical search-based algorithms that employ

distributed backtrack search to exhaust the search space. However,

these algorithms incur a prohibitively large number of messages

and can only solve the problems with a handful of variables.

On the other hand, inference-based complete algorithms like

DPOP [22] perform dynamic-programming on a pseudo-tree and

only require a linear number of messages. However, the mem-

ory consumption in DPOP is exponential to the induced width

[6], which makes it not applicable for the memory-limited sce-

narios where the optimal solution is desired [7, 15]. Therefore, a

number of algorithms [2, 21, 23–25] were proposed to trade either

solution quality or message number for smaller memory consump-

tion. Among these algorithms, MB-DPOP [25] iteratively performs

memory-bounded utility propagation to guarantee the optimality.

Specifically, given the dimension limit k , the algorithm first identi-

fies high-width areas (clusters) and cycle-cut nodes [6] to make the

maximal dimension of the utility tables propagated within clusters

no greater than k . For each cluster, the cluster root is responsible for
iteratively enumerating all the instantiations of its cycle-cut nodes,

and nodes in the cluster perform memory-bounded inferences by

conditioning utility tables on these instantiations. Once instantia-

tions are exhausted, the cluster root propagates the resulted utility

table to its parent.

However, a key limitation in MB-DPOP is the inability of exploit-

ing the structure of a problem. As a result, MB-DPOP suffers from a

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

249

severe redundancy in memory-bounded inference. First, since each

cluster root enumerates for all its cycle-cut nodes without consider-

ing the independence of cycle-cut nodes in different branches, each

branch in a cluster would have to perform redundant inferences

when there are cycle-cut nodes which have nothing to do with the

branch. Also, these nonconcurrent instantiations severely degen-

erate the parallelism among branches. Second, agents in a cluster

use heuristics to determine cycle-cut nodes locally, which would

results in a large number of cycle-cut nodes. Finally, MB-DPOP

ignores the validity of the inference results and a branch has to

perform inference even if the previous results are compatible with

the current instantiations.

In this paper, we aim to improve the scalability of MB-DPOP

by exploiting the structure of a problem. More specifically, our

contributions are listed as follows.

• By using the independence among the cycle-cut nodes in

different branches, we propose a distributed enumeration

mechanism where a cluster root only enumerates for cycle-

cut nodes in its separators and these instantiations are aug-

mented with branch-specific cycle-cut nodes dynamically

along the propagation. Accordingly, each branch can per-

form memory-bounded inferences asynchronously and the

number of nonconcurrent instantiations can be reduced sig-

nificantly.

• We propose an iterative selection mechanism to determine

cycle-cut nodes by taking both their effectiveness and posi-

tions in a pseudo tree into consideration. Concretely, rather

than choosing highest/lowest separators as cycle-cut nodes,

we tend to choose the nodes that cover a maximum of active

nodes in a cluster and break ties according to their relative

positions. Moreover, we propose a caching mechanism to

exploit the historical inference results which are compatible

with the current instantiations to further avoid unnecessary

utility propagation.

• We theoretically show that the message number of our algo-

rithm is no more than the one in MB-DPOP. Our empirical

evaluation confirms the superiority of our algorithm over

the state-of-the-art on various benchmarks.

The rest of this paper is organized as follows. Section 2 gives the

background including DCOPs, pseudo tree, DPOP and MB-DPOP.

In Section 3, we give the motivation and describe the details of our

proposed algorithm. Finally, the experiments are shown in Section

4 and Section 5 concludes this paper.

2 BACKGROUND
In this section, we introduce the preliminaries including DCOPs,

pseudo tree, DPOP and MB-DPOP.

2.1 Distributed Constraint Optimization
Problems

A distributed constraint optimization problem [22] can be repre-

sented by a tuple ⟨A,X ,D, F ⟩ where

• A = {a1, . . . ,an } is a set of agents
• X = {x1, . . . , xm } is a set of variables

Figure 1: The constraint graph of a DCOP

Figure 2: A pseudo tree derived from Figure 1

• D = {D1, . . . ,Dm } is a set of domains that are finite and

discrete, each variable xi taking a value assignment from Di
• F = { f1, . . . , fq } is a set of constraint functions, each func-

tion fi : Di1 × · · · × Dik → R≥0 denoting the non-negative

cost for each assignment combination of xi1, . . . , xik .

For the sake of simplicity, we assume that each agent controls

a variable and all constraint functions are binary (i.e., fi j : Di ×

D j → R≥0). Here, the term "agent" and "variable" can be used

interchangeably. A solution to a DCOP is an assignment including

all variables that makes the minimum cost. That is

X ∗ = argmin

di ∈Di ,dj ∈D j

∑
fi j ∈F

fi j (xi = di , x j = dj)

A DCOP can be visualized by a constraint graph presented as Fig.

1, where the nodes represent the agents and the edges represent

the constraints, respectively.

2.2 Pseudo Tree
A pseudo tree [10] is a partial ordering among agents and can

be generated by depth-first search (DFS) traversal to a constraint

graph, where different branches are independent from each other.

Given a constraint graph and its spanning tree, the edges in the

spanning tree are tree edges and the other edges are pseudo edges

(i.e., non-tree edges). According to the relative positions in a pseudo

tree, the neighbors of an agent ai connected by tree edges are

categorized into parent P(ai) and children C(ai), while the ones
connected by pseudo edges are denoted as pseudo parents PP(ai)
and pseudo children PC(ai). For its parent and pseudo parents,

we denote them as AP(ai) = {P(ai)} ∪ PP(ai). We also denote

its descendants as Desc(ai). Finally, the separators Sep(ai) [23]

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

250

of ai refer to the ancestors which are constrained with ai or its
descendants. Fig. 2 gives a pseudo tree derived from the constraint

graph in Fig. 1, where tree edges and pseudo edges are denoted by

solid and dotted lines, respectively.

2.3 DPOP
DPOP [22] is an inference-based complete algorithm for DCOPs,

which implements the bucket elimination in a distributed manner

[5]. It performs two phases of propagation on a pseudo tree via

tree edges: a UTIL propagation phase to eliminate dimensions from

the bottom up, and a VALUE propagation phase to assign the opti-

mal value for each variable vice versa along the pseudo tree. More

specifically, in a UTIL propagation phase, an agent ai collects the
utility tables from its children and joins them with the local utility

table, then computes the optimal utilities for all possible assign-

ments of Sep(ai) to eliminate its dimension from the joint utility

table. Then, it sends the projected utility table to its parent. In a

VALUE propagation phase, once ai receives the assignments from

its parent, it plugs them into the joint utility table obtained in the

UTIL propagation phase to get the optimal assignment, and sends

the joint assignment to its children. Although DPOP only requires

a linear number of messages to solve a DCOP, its space complexity

is exponential in the induced width of the pseudo tree.

2.4 MB-DPOP
MB-DPOP [25] attempts to improve the scalability of DPOP by

trading the message number for smaller memory consumption.

Given the dimension limit k , MB-DPOP starts with a labeling phase

to identify the areas with the induced width [6] higher than k
(i.e., clusters) and the corresponding cycle-cut (CC) nodes. Each

cluster is bounded at the top by the lowest node in the tree that has

separators of size k or less, and such node is called the cluster root

(CR) node. For each clusters, CC nodes are determined such that

the cluster has the width no greater than k once they are removed.

In more detail, the CC nodes are selected and then aggregated in

a bottom-up fashion. That is, given the lists of CC nodes selected

by its children, ai first determines whether its width exceeds k
if |Sep(ai)| > k . If it is the case, ai needs to choose additional

CC nodes to enforce the memory limit k by a heuristic function.

Then, ai propagates all the CC nodes CClisti to its parent P(ai).
Otherwise, if |Sep(ai)| ≤ k and the lists received from children are

all empty, ai labels self as a normal node and propagates the utility

as in DPOP.

During the UTIL propagation phase normal nodes (i.e., the nodes

whose width is no greater than k) perform canonical utility prop-

agation while the other nodes in each cluster perform memory-

bounded inferences. Specifically, each cluster root (CR) enumerates

instantiations for its CC nodes and propagates them iteratively to

the other nodes in the cluster, and these nodes perform memory-

bounded inferences by conditioning the utility tables on the re-

ceived instantiation. The cluster root eliminates its dimension and

propagates the utility table to its parent after exhausting all the

combinations. Finally, a VALUE propagation phase starts. Differ-

ent from DPOP which only requires a round of value propagation,

MB-DPOP requires additional utility propagation to re-drive the

utilities corresponding to the assignments of CC nodes to get the

optimal values, since non-CC nodes in a cluster only cache the

utility table for the latest instantiation of CC nodes.

3 PROPOSED METHOD
In this section, we present our proposed RMB-DPOP. We begin

with a motivation, and then present the details and the theoretical

claim of our algorithm, respectively.

3.1 Motivation
0 As stated earlier, MB-DPOP suffers from plenty of redundancies

in memory-bounded inference due to the inability of exploiting

a problem structure in both instantiation enumeration and the

selection of CC nodes. Consider the problem in Fig. 2, where a3
is the only cluster root with the dimension limit k = 2. Since

each agent in the cluster selects its CC nodes only with the local

knowledge, MB-DPOP would select a large number of CC nodes

and significantly increase the number of instantiations. In fact,

if we choose CC nodes with the highest level, the CC nodes of

a3 are CClist3 = {a1,a2,a3,a4,a5,a9}. It would be worse when

using the lowest heuristic which results in 9 CC nodes in this

case. Alternatively, instead of choosing both a3 and a9, we could
only choose a9 and still guarantee the memory budget. Besides,

the cluster root a3 has to enumerate all instantiations of CClist3,
which results in a large number of nonconcurrent instantiations and

redundant inferences. In fact, we could exploit the independence

between branch a4 and branch a9 by generating instantiations that

only contains the common CC nodes (i.e., a1,a2 and a3). In this

way, branch a4 and branch a9 can operate asynchronously and the

number of non-concurrent instantiations is significantly reduced.

In addition, all the bounded inference results are disposable in

MB-DPOP, which also leads to redundant inferences. In fact, some

inference results received from children in the previous iterations

are compatible with the current instantiation, since each branch

performs memory-bounded inference by conditioning only on a

subset of all cycle-cut nodes of a cluster. Thus, it is unnecessary to

perform a memory-bounded inference when the assignments of

corresponding CC nodes do not change.

Therefore, to take the structure of a problem into consideration,

we propose a novel algorithm named RMB-DPOP which incorpo-

rates a distributed enumeration mechanism to reduce the noncon-

current instantiations, an iterative selection mechanism to reduce

the number of CC nodes and a caching mechanism to avoid unnec-

essary inferences. Algorithm 1
1
presents the sketch of RMB-DPOP.

3.2 Distributed Enumeration Mechanism
Distributed enumeration mechanism (DEM) is adopted in each

cluster to perform asynchronous memory-bounded inference by

factorizing the instantiations. More specifically, since each branch

in a pseudo tree is independent, each CC node inside a cluster is

only related to a subproblem. Hence, instead of enumerating all

the instantiations of CC nodes by a cluster root, we only generate

instantiations for the CC nodes in the separators of the cluster

1
We omit the details of the value propagation phase due to its similarity to the one in

MB-DPOP. The source code is available in https://github.com/czy920/RMB-DPOP.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

251

Sample AAMAS Paper using the New ACM LaTeX Template

ACM Reference Format:
. 2020. Sample AAMAS Paper using the New ACM LaTeX Template. In ACM
Conference, Washington, DC, USA, July 2017, IFAAMAS, 1 pages.

ACM Conference, (eds.), July 2017, Washington, DC, USA. © 2020 Association for Com-
puting Machinery. . . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
. . . $15.00

Algorithm 1: RMB-DPOP for each agent ai
When Initialization:

1 start Labeling phase
When Labeling phase finished:

2 if TYPE(ai) = CR then
3 cur Insi ← the first instantiation of (Sep(ai) ∪ {ai }) ∩CClisti
4 Local_utili ← the join of local utilities w.r.t. AP (ai)
5 PropagateInstantiation()
6 else if TYPE(ai) = NORMAL ∧ isLeafAgent() then
7 ui ← the join of local utilities w.r.t. AP (ai)
8 ui ← minxi ui
9 send NORMAL_UTIL(ui) to P (ai)
When received NORMAL_UTIL(uc) from ac ∈ C(ai):

10 Normal_utilsi ← Normal_utilsi ∪ {uc }
11 if received utilities from all children then
12 if isRootAgent() then
13 start Value propagation phase
14 else if TYPE(ai) = NORMAL then
15 ui ←

⊗
uc ∈Normal_utilsi

uc
16 update ui with local utilities w.r.t. AP (ai)
17 ui ← minxi ui
18 send NORMAL_UTIL(ui) to P (ai)

When received INSTANTIATION(Ins) from P (ai):
19 Bounded_utilsi ← ∅, Insi ← Ins[CClisti]
20 Local_utili ← local utilities w.r.t. AP (ai) conditioned on Insi
21 if TYPE(ai) , CL then
22 if TYPE(ai) = CC then
23 curV aluei ← the first element in Di
24 PropagateInstantiation()
25 else if received utilities from all children then
26 send bounded utilities conditioned on Insi

via BOUNDED_UTIL(bui) to P (ai)
When received BOUNDED_UTIL(buc) from ac ∈ C(ai):

27 Bounded_utilsi ← Bounded_utilsi ∪ {buc }
28 if received utilities from all children then
29 if TYPE(ai) = CC then
30 bui ← Update(bui ,Bounded_utilsi ,

Local_utili ,Normal_utilsi)
31 if curV aluei .next () , null then
32 curV aluei ← curV aluei .next ()
33 PropagateInstantiation()
34 else
35 send BOUNDED_UTIL(bui) to P (ai)
36 if TYPE(ai) = CR then
37 ui ← Update(ui ,Bounded_utilsi ,

Local_utili ,Normal_utilsi)
38 if cur Insi .next () , null then
39 cur Insi ← cur Insi .next ()
40 PropagateInstantiation()
41 else
42 send NORMAL_UTIL(ui) to P (ai)
43 else
44 join all utilities conditioned on Insi into one utility table bui
45 send BOUNDED_UTIL(bui) to P (ai)

Function PropagateInstantiation():
46 if TYPE(ai) = CC then
47 Insi ← Insi ∪ (xi , curV aluei)
48 else if TYPE(ai) = CR then
49 Insi ← cur Insi
50 send INSTANTIATION(Insi) to ∀ac ∈ C(ai) s .t . CClistc , ∅

root and dynamically augment these instantiations with branch-

specific CC nodes. In the following, we present the details of the

mechanism.

When the Labeling phase finishes, a CR node aj starts the it-
erative memory-bounded UTIL propagation by instantiating the

nodes in (Sep(aj) ∪ {aj }) ∩CClistj (line 2-5), where the CClistj is
a list of the CC nodes corresponding to the branch of aj . When a

CC node ai receives an instantiation Insi from its parent, it aug-

ments Insi by the first assignment from its domain and propagates

the extended instantiation to its children in the cluster (line 22-24,

46-50). Once ai receives all the utilities from its children, it updates

the cache and replaces self assignment with the next value in its

domain, and then propagates the new instantiation (line 29-33).

Until getting a complete bounded inference result corresponding

to Insi by a traversal of its domain, ai sends the result to its parent

via a BOUNDED_UTIL message (line 35).

Next, we theoretically show its superiority over MB-DPOP in

terms of the message number. Let us first introduce two notations.

For a cluster root aj , we denote CClistoutj = (Sep(aj) ∪ {aj }) ∩

CClistj as the set of CC nodes enumerated by aj , and the remaining

CC nodes as CClist inj = CClistj\CClist
out
j .

Lemma 3.1. For an agent ai in a cluster where aj is the CR node,
the number of instantiations it receives is exponential in the size of
(CClisti ∩ Sep(ai)) ∪CClistoutj .

Proof. According to line 2-5, the nonconcurrent instantiations

sent from aj is exponential in |CClistoutj |. Besides, each noncon-

current instantiation is augmented by the CC nodes along the path

from aj to ai (line 23, 32). Therefore, the number of instantiations

ai receives is exponential in |(CClisti ∩ Sep(ai)) ∪CClistoutj |. □

Theorem 3.2. Given the same CC lists of each node in each cluster,
the maximal message number of RMB-DPOP is no more than the one
in MB-DPOP.

Proof. It is enough to show the theorem by analyzing the total

number of instantiations received by each agent ai in a cluster,

since ai must respond with a bounded utility table to its parent

after receiving an instantiation. Without loss of generality, we

assume that each variable has a domain with the same size d . In MB-

DPOP each agent in a cluster will receive d |CClistj |
instantiations.

Whereas from Lemma 1, we have the number of instantiations sent

to ai as d
|(CClisti∩Sep(ai))∪CClistoutj |

, and

|CClistj | = |CClistoutj ∪CClist inj |

= |CClistoutj | + |CClist inj |

≥ |CClistoutj | + |CClisti ∩CClist inj ∩ Sep(ai) |

= |CClistoutj ∪ (CClisti ∩CClist inj ∩ Sep(ai)) |

= |(CClisti ∩ Sep(ai)) ∪CClistoutj |

Consequently, RMB-DPOP propagates a smaller number of instanti-

ations than MB-DPOP. And only when the cluster does not have the

CC nodes inside the cluster (i.e., CClist inj = ∅), the instantiations

for each agent in RMB-DPOP are equivalent to those in MB-DPOP.

Thus, the theorem holds. □

3.3 Iterative Selection Mechanism
Instead of selecting CC nodes based on the local knowledge in MB-

DPOPwhich would result in a large number of CC nodes, we choose

CC nodes by taking their effectiveness and their relative positions

into consideration through an iterative selection mechanism (ISM).

Specifically, in a cluster we measure the effectiveness of a node

by the number of active nodes it covers. Here, an active node is

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

252

Sample AAMAS Paper using the New ACM LaTeX Template

ACM Reference Format:
. 2020. Sample AAMAS Paper using the New ACM LaTeX Template. In ACM
Conference, Washington, DC, USA, July 2017, IFAAMAS, 1 pages.

ACM Conference, (eds.), July 2017, Washington, DC, USA. © 2020 International Founda-
tion for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights
reserved.

Algorithm 2: Labeling phase for each agent ai
When Initialization:

1 determine the node type via a bottom-up propagation
2 if TYPE(ai) = NORMAL then
3 terminate the Labeling phase
4 return
5 Ef fi ← ∅, dr ∗c ← 0,CClisti ← ∅
6 if TYPE(ai) = CL then
7 propagateSepInfo()
When received SEP_INFO(Ef fc , dr ∗c , cc) from ac :

8 if cc , null then
9 CClisti ← CClisti ∪ {cc }

10 curCC ← cc
11 if ai = cc then
12 mark ai as a CC node
13 Ef fi ←merдe(Ef fc , Ef fi)
14 dr ∗i ← max(dr ∗i , dr

∗
c)

15 if receive all SEP_INFO from the children in the cluster then
16 if TYPE(ai) = CR then
17 if Ef fi = ∅ then
18 terminate the Labeling phase
19 send TERMINATE to the children in the cluster
20 else
21 cc ← argmaxak Ef fi (ak)
22 send ALLOCATION(cc) to the children in the cluster
23 else
24 propagateSepInfo()

When received ALLOCATION(cc) from P (ai):
25 if cc ∈ Sep(ai) then
26 CClisti ← CClisti ∪ {cc }, curCC ← cc
27 else
28 curCC ← null
29 Ef fi ← ∅, dr ∗c ← 0
30 if TYPE(ai) , CL then
31 send ALLOCATION(cc) to the children in the cluster
32 else
33 propagateSepInfo()

When received TERMINATE from P (ai):
34 terminate the Labeling phase
35 if TYPE(ai) , CL then
36 send TERMINATE to the children in the cluster

Function propagateSepInfo():
37 R_Sepi ← Sepi \CClisti
38 if |R_Sepi | > k then
39 foreach aj ∈ R_Sepi do
40 if aj ∈ Ef fi then
41 increase Ef fi (aj) by 1
42 else
43 Ef fi ← Ef fi ∪ {(aj , 1)}
44 if ai ∈ Ef fi then
45 Ef f Desc ← keys(Ef fi) ∩ Desc(ai)
46 if Ef fi (ai) > dr ∗i then
47 dr ∗i ← Ef fi (ai)
48 remove ∀aj ∈ Ef f Desc from Ef fi
49 else
50 remove ai from Ef fi
51 ak ← argmaxak ∈Ef f Desc Ef fi (ak)
52 remove ∀aj ∈ Ef f Desc ∧ aj , ak from Ef fi
53 send SEP_INFO(Ef fi , dr ∗c , curCC) to P (ai)

the one whose width is still greater than k given the selected CC

nodes. Besides, to facilitate DEM, we tend to select nodes in different

branches of a cluster. Therefore, we propose to break ties among

the nodes with the same effectiveness by their positions in a pseudo

tree. Algorithm 2 gives the sketch of Labeling phase.

In more detail, a CC node is selected through two phases of

message-passing. In the first phase, the effectiveness of each CC

node candidate is aggregated in a bottom-up fashion via SEP_INFO

Table 1: The first round of effectiveness aggregation

step message SEP_INFO

1

a8 → a7 Ef f8 = {(a1, 1), (a2, 1), (a4, 1), (a5, 1), (a6, 1), (a7, 1)}
a14 → a13 Ef f14 = {(a9, 1), (a10, 1), (a13, 1)}
a11 → a10 Ef f11 = {(a3, 1), (a9, 1), (a10, 1)}

2

a7 → a6 Ef f7 = {(a1, 2), (a2, 2), (a4, 2), (a5, 2), (a6, 2), (a7, 1)}
a13 → a12 Ef f13 = {(a9, 2), (a10, 2), (a12, 1), (a13, 1)}

3

a6 → a5 Ef f6 = {(a1, 3), (a2, 3), (a4, 3), (a5, 3), (a6, 2)}
a12 → a10 Ef f12 = {(a9, 3), (a10, 3), (a13, 1)}

4

a5 → a4 Ef f5 = {(a1, 4), (a2, 4), (a4, 4), (a5, 3)}
a10 → a9 Ef f10 = {(a2, 1), (a3, 2), (a9, 5), (a10, 4)}

5

a4 → a3 Ef f4 = {(a1, 5), (a2, 5), (a3, 1), (a4, 4)}
a9 → a3 Ef f9 = {(a1, 1), (a2, 2), (a3, 3), (a9, 5)}

6 N/A Ef f3 = {(a1, 6), (a2, 7), (a3, 4), (a4, 4), (a9, 5)}

messages. Specifically, each agent ai maintains a data structure

E f fi to record the effectiveness of candidates. When receiving

a SEP_INFO message from a child ac , it updates E f fi by E f fc
according to

E f fi (ak) =

{
Ef fc (ak) , ak < keys (Ef fi)
Ef fi (ak) + Ef fc (ak) , otherwise

,∀ak ∈ keys (E f fc)

If ai is an active node (i.e., satisfying line 38), for each CC node

candidate ak ∈ R_Sepi it increases the effectiveness E f fi (ak) by
1 (line 39-43). Then ai removes all the CC candidates that have a

suboptimal effectiveness in its descendants from E f fi (line 45-52),
since they cannot produce the highest effectiveness. The phase ends

when the cluster root aj receives all the SEP_INFO messages from

the children in the cluster.

In the second phase, the cluster root aj chooses the CC node

with the maximal effectiveness (line 21) and propagates it into the

cluster via ALLOCATION messages. According to Lemma 3.1 and

Theorem 3.2, our algorithm can take the advantage of the CC nodes

inside the cluster through the DEM. Therefore, we propose to break

ties according to the height of the candidates when choosing a CC

node, i.e., we tend to choose the lowest CC node since it is more

likely to be inside the cluster. The phase ends after each cluster

leaf (CL) starts a new phase of effectiveness propagation (line 33).

The Labeling phase terminates when there is no active nodes (i.e.,

satisfying line 17).

It is worth noting that our selection mechanism only incurs mi-

nor messages. Specifically, to determine a CC node in the cluster

with CR aj , agents need to propagate bottom-up SEP_INFO mes-

sages and top-down ALLOCATION messages via tree edges, which

requires O(m) messages. Here,m is the total number of nodes in

the cluster. Thus, the total messages exchanged in the Labeling

phase in a cluster is O(|CClistj | ∗m) and the overall complexity is

O(N 2) where N is the total number of agents.

3.4 Caching Mechanism
The caching mechanism attempts to reduce unnecessary inferences

by exploiting the historical results when they are compatible with

the current instantiations. To do this, before ai propagates an in-

stantiation to a child ac , it projects the instantiation on CClistc
and stores the projected one. When ai receives a new instantiation,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

253

18 22 26 30 34
Agent Number

103

104

105

106

of

 M
es

sa
ge

s

(a) Number of Messages

18 22 26 30 34
Agent Number

10−2

10−1

100

101

102

103

Ne
tw

or
k

Lo
ad

 (M
B)

(b) Network Load

18 22 26 30 34
Agent Number

102

103

104

105

Ru
nt

im
e

(m
s)

MB-DPOP (k= 3)
RMB-DPOP (k= 3)
MB-DPOP (k= 6)
RMB-DPOP (k= 6)
MB-DPOP (k= 9)
RMB-DPOP (k= 9)
DPOP
PT-FB

(c) Runtime

Figure 3: Performance comparison under different agent numbers

Table 2: The CClist of each node in the cluster

ai CClisti
a3 {a2, a9, a5, a6, a7 }
a4 {a2, a5, a6, a7 }
a5 {a2, a5, a6, a7 }
a6 {a2, a5, a6, a7 }
a7 {a2, a5, a6, a7 }
a8 {a2, a5, a6, a7 }
a9 {a2, a9 }
a10 {a2, a9 }
a11 {a2, a9 }
a12 {a2, a9 }
a13 {a2, a9 }
a14 {a2, a9 }

for each child it checks whether the instantiation is compatible

with the cached one associated with the child. If it is the case, the

results cached in the previous iteration is valid and there is no need

to perform a memory-bounded inference. Otherwise, the results

from the child is no longer valid and ai propagates the (augmented)

instantiation to the child to initiate a new memory-bounded infer-

ence.

3.5 Execution Example
For better understanding, we take Fig. 2 as an example to illustrate

our algorithm. Assuming the dimension limit k = 2, there is only

a cluster whose CR node is a3. The labeling phase begins with CL

nodes a8 and a14 which send SEP_INFO messages to their parents

and Table 1 presents the trace of effectiveness aggregation in the

first round in a chronological order.

It can be seen that node a2 has the highest effectiveness and we

should choose it as a CC node. Then a top-down phase is initiated

to apply ai into the cluster. These two phases are performed alter-

natively until all the nodes in the cluster have a width less than k .
The final CC nodes for each agent is listed as Table 2.

Then, the DEM begins with a3 which sends the first instantiation
w.r.t. CClistout

3
= {a2} to its children a4 and a9. When receiving

Table 3: The first round of instantiation propagation

step message INSTANTIATION

1

a3 → a4 {a2 = 0}

a3 → a9 {a2 = 0}

2

a4 → a5 {a2 = 0}

a9 → a10 {a2 = 0, a9 = 0}

3

a5 → a6 {a2 = 0, a5 = 0}

a10 → a11 {a2 = 0, a9 = 0}

a10 → a12 {a2 = 0, a9 = 0}

4

a6 → a7 {a2 = 0, a5 = 0, a6 = 0}

a12 → a13 {a2 = 0, a9 = 0}

5

a7 → a8 {a2 = 0, a5 = 0, a6 = 0, a7 = 0}

a13 → a14 {a2 = 0, a9 = 0}

an instantiation, a CC node appends its assignment into the instan-

tiation. Table 3 gives the trace of the first round of instantiation

propagation.

4 EXPERIMENTAL EVALUATION
In this section, we compare our proposed RMB-DPOP with the

state-of-the-art on various benchmarks, and present an ablation

study to demonstrate the effectiveness of each mechanism.

4.1 Experimental Configuration
We empirically evaluate RMB-DPOP, PT-FB, DPOP and MB-DPOP

on two types of problems, i.e., random DCOPs and scale-free net-

works [1]. In the first configuration, we consider the randomDCOPs

with the graph density of 0.2, the domain size of 3 and the agent

number varying from 18 to 34. The second configuration is the

DCOPs with 20 agents, the graph density of 0.2 and the domain

size varying from 3 to 6. In addition, we present the ratio of the

problems successfully solved within limited time on the second

configuration where the graph density is set to 0.5. In the third

configuration, we consider the scale-free networks generated by

Barabási-Albert model where we set the agent number to 26, the

domain size to 3 andm0 to 10 and varym1 from 2 to 10.

In our experiments, we use the message number and network

load (i.e., the size of total information exchanged) to measure the

communication overheads. Also, we use wall clock time to measure

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

254

0.1 0.2 0.3 0.4 0.5
Density

103

104

105

106

of

 M
es

sa
ge

s

(a) Number of Messages

0.1 0.2 0.3 0.4 0.5
Density

10−3

10−2

10−1

100

101

102

103

Ne
tw

or
k

Lo
ad

 (M
B)

(b) Network Load

0.1 0.2 0.3 0.4 0.5
Density

102

103

104

105

106

Ru
nt

im
e

(m
s)

MB-DPOP (k= 3)
RMB-DPOP (k= 3)
MB-DPOP (k= 6)
RMB-DPOP (k= 6)
MB-DPOP (k= 9)
RMB-DPOP (k= 9)
DPOP
PT-FB

(c) Runtime

Figure 4: Performance comparison under different graph densities

3 6 9 12 15
Time (min)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

MB-DPOP (k= 9)
RMB-DPOP (k= 9)

Figure 5: Success rate within limited time

the runtime. For each experiment, we generate 50 random instances

and report the medium over all the instances. The experiments are

conducted on an i7-7820x workstation with 32GB of memory and

we set the timeout to 30 minutes for each algorithm. To demonstrate

the effects of different k , we benchmark RMB-DPOP with different

k varying from 3 to 9. Finally, for fairness, we set the maximal

number of dimensions for DPOP to 9.

4.2 Experimental Results
Fig. 3 presents the experiment results under different agent numbers.

It can be seen from the figure that PT-FB cannot solve the problems

with the agent number greater than 22. That is due to the fact that

the search-based solvers need to explicitly exhaust the solution

space by message-passing, which is quite expensive when solving

the problems with the large agent number. Similarly, given the

memory budget, DPOP also fails to scale up to the problems with

the agent number more than 22. On the other hand, the scalability

of the memory-bounded inference solvers depends on the size of k .
For example, MB-DPOP (k = 3) can only scale up to the problems

with 26 agents while MB-DPOP (k = 9) can solve the ones with

30 agents. This is because a large k leads to fewer cycle-cut nodes

and can significantly reduce the number of the memory-bounded

inferences. Among these memory-bounded inference algorithms,

given the same k , RMB-DPOP substantially outperforms MB-DPOP

in both communication overheads and runtime. Besides, except for

k = 6, RMB-DPOP (k) can solve the problems with the larger agent

number than MB-DPOP (k), which demonstrates our proposed

mechanisms can improve the scalability of MB-DPOP. It is worth

noting that the network load of RMB-DPOP (k = 3) is less than

MB-DPOP (k = 6) when solving the problems with 30 agents, which

indicates the merit of our proposed ISM.

Fig. 4 presents the results when solving the problems with differ-

ent graph densities. It can be concluded from the figure that DPOP

can only solve the problems with the density of 0.1 under this

configuration. Besides, given the same k , RMB-DPOP (k) outper-
forms MB-DPOP (k) on all the metrics. Moreover, the gaps between

RMB-DPOP and MB-DPOP are widen as the density grows, which

demonstrates the potential of RMB-DPOP for reducing redundant

inferences. Besides, it is noteworthy that RMB-DPOP with stricter

memory budget can still outperform MB-DPOP with relatively

large k in terms of network load. For example, the network load of

RMB-DPOP (k = 6) is even less than the one of MB-DPOP (k = 9)

when solving dense problems. The same phenomenon also appears

in solving the problems with the density of 0.3. The phenomena

indicate that the redundant inference in MB-DPOP grows quickly

as growing the graph density, while our proposed algorithm can

effectively reduce unnecessary inferences. Fig. 5 shows the ratio

of the problems successfully solved within different time limits on

this configuration where the graph density is 0.5. It can be seen

that RMB-DPOP (k = 9) solves over 90% of the problems in 15

minutes, while the success rate of MB-DPOP (k = 9) is less than

80%. Besides, RMB-DPOP (k = 9) solves 60% problems in 6 minutes,

while MB-DPOP (k = 9) needs another 3 minutes (i.e., 9 minutes)

to make that rate, which demonstrates the great superiority of the

proposed algorithm again.

Fig. 6 shows the performance comparison when solving scale-

free network problems with differentm1. PT-FB still cannot scale up

due to prohibitively large search space. And it is worth mentioning

that DPOP fails to solve all these problems, which demonstrates

the poor scalability of DPOP under memory-limited scenarios. The

reason is because the pseudo trees of scale-free network problems

have induced width greater than 9 when m1 = 2. On the other

hand, our algorithm exhibits great advantage over MB-DPOP on all

the metrics. The results show that RMB-DPOP (k = 9) successfully

solves all the problems, and except for k = 6, RMB-DPOP (k) can
solve the problems with largerm1 than MB-DPOP (k). Although

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

255

2 4 6 8 10
m1 (m0 = 10)

103

104

105

106

of

 M
es

sa
ge

s

(a) Number of Messages

2 4 6 8 10
m1 (m0 = 10)

10−2

10−1

100

101

102

103

Ne
tw

or
k

Lo
ad

 (M
B)

(b) Network Load

2 4 6 8 10
m1 (m0 = 10)

102

103

104

105

106

Ru
nt

im
e

(m
s)

MB-DPOP (k= 3)
RMB-DPOP (k= 3)
MB-DPOP (k= 6)
RMB-DPOP (k= 6)
MB-DPOP (k= 9)
RMB-DPOP (k= 9)
PT-FB

(c) Runtime

Figure 6: Performance comparison on scale-free networks

0.1 0.2 0.3 0.4 0.5
Density

102

103

104

105

106

Ru
nt

im
e

(m
s)

MB-DPOP (k= 6)
MB-DPOP+DEM (k= 6)
MB-DPOP+ISM (k= 6)
MB-DPOP+CACHE (k= 6)
MB-DPOP+DEM+ISM (k= 6)
RMB-DPOP (k= 6)

Figure 7: Performance of different mechanisms

the scalability of RMB-DPOP (k = 6) seem to be the same with the

one of MB-DPOP (k = 6), it can be seen that RMB-DPOP (k = 6)

incurs less network load than MB-DPOP (k = 9) and its runtime

closes to MB-DPOP (k = 9) whenm1 ≥ 6. It also demonstrates the

scalability of our algorithm.

Fig. 7 presents an ablation study on the second configuration

with k = 6 to demonstrate the effectiveness of each mechanism. It

can be seen that the performance of MB-DPOP can be improved by

each single mechanism when solving the dense problems, and can

be further enhanced via the combinations of DEM and ISM. That

is because ISM tends to choose the CC nodes inside clusters and

DEM can effectively exploit these CC nodes to reduce the noncon-

current instantiations. Without DEM and ISM, the contribution of

caching mechanism is quite limited, but the combination of all the

mechanisms achieves the best performance.

5 CONCLUSIONS
MB-DPOP suffers from a severe redundancy in memory-bounded

inference due to the inability of exploiting the structure of a prob-

lem. In this paper, we propose a novel algorithm named RMB-DPOP

which incorporates three mechanisms to reduce the redundancy in

memory-bounded inference. First, we propose a distributed enumer-

ation mechanism to make use of the independence among different

branches to reduce the number of nonconcurrent instantiations.

Second, we propose an iterative selection mechanism to refine the

cycle-cut node selection, which aims to make each cycle-cut node

to cover a maximum of the nodes with the width greater than k
in a cluster. Finally, a caching mechanism that exploits the histor-

ical inference results is introduced to further avoid unnecessary

inferences. We theoretically prove that the distributed enumeration

mechanism can reduce the message number if there is at least one

cycle-cut node inside the clusters. Our experimental evaluations

demonstrate the superiority of RMB-DPOP.

We note that our proposed mechanisms can be adapted to other

algorithms as well. In more detail, the caching mechanism could

be applied to an iterative process with recurrent combinations.

Moreover, the selection mechanism could be used in other memory-

bounded inference like ADPOP[21] and HS-CAI[3] to choose more

appropriate variables to approximate or decimate. Also, this mech-

anism is highly customizable when combining with other algo-

rithms. For example, we could easily implement different heuristics

by changing the definition of E f fi for each candidate. Therefore,

we envisage that these mechanisms not only advance the develop-

ment of MB-DPOP, but also contribute to the algorithmic design of

DCOPs.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable

comments and helpful suggestions. This work is partially supported

by the Chongqing Research Program of Basic Research and Frontier

Technology under Grant No.: cstc2017jcyjAX0030, the National

Natural Science Foundation of China under Grant No.: 51608070 and

the Graduate Research and Innovation Foundation of Chongqing,

China under Grant No.: CYS18047.

REFERENCES
[1] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509–512.
[2] Ismel Brito and Pedro Meseguer. 2010. Improving DPOP with function filtering.

In AAMAS. 141–148.
[3] Dingding Chen, Yanchen Deng, Ziyu Chen, Wenxin Zhang, and Zhongshi He.

2019. HS-CAI: A Hybrid DCOP Algorithm via Combining Search with Context-

based Inference. CoRR abs/1911.12716 (2019). arXiv:1911.12716

[4] Ziyu Chen, Yanchen Deng, Tengfei Wu, and Zhongshi He. 2018. A class of

iterative refined Max-sum algorithms via non-consecutive value propagation

strategies. Autonomous Agents and Multi-Agent Systems 32, 6 (2018), 822–860.
[5] Rina Dechter. 1999. Bucket elimination: A unifying framework for reasoning.

Artificial Intelligence 113, 1-2 (1999), 41–85.
[6] Rina Dechter, David Cohen, et al. 2003. Constraint processing.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

256

http://arxiv.org/abs/1911.12716

[7] Peibo Duan, Changsheng Zhang, Guoqiang Mao, and Bin Zhang. 2018. Applying

Distributed Constraint Optimization Approach to the User Association Problem

in Heterogeneous Networks. IEEE Trans. Cybernetics 48, 6 (2018), 1696–1707.
[8] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. 2008.

Decentralised coordination of low-power embedded devices using the max-sum

algorithm. In AAMAS. 639–646.
[9] Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, and Satishkumar J

Ranade. 2017. A distributed constraint optimization (DCOP) approach to the

economic dispatch with demand response. In AAMAS. 999–1007.
[10] Eugene C. Freuder and Michael J. Quinn. 1985. Taking Advantage of Stable Sets

of Variables in Constraint Satisfaction Problems. In IJCAI. 1076–1078.
[11] Amir Gershman, Amnon Meisels, and Roie Zivan. 2009. Asynchronous forward

bounding for distributed COPs. Journal of Artificial Intelligence Research 34 (2009),
61–88.

[12] Patricia Gutierrez and Pedro Meseguer. 2012. Removing redundant messages in

n-ary BnB-ADOPT. Journal of Artificial Intelligence Research 45 (2012), 287–304.

[13] Patricia Gutierrez, Pedro Meseguer, and William Yeoh. 2011. Generalizing adopt

and bnb-adopt. In IJCAI. 554–559.
[14] Katsutoshi Hirayama and Makoto Yokoo. 1997. Distributed partial constraint

satisfaction problem. In CP. 222–236.
[15] Shijie Li, Rudy R. Negenborn, and Gabriël Lodewijks. 2016. Distributed constraint

optimization for addressing vessel rotation planning problems. Engineering
Applications of Artificial Intelligence 48 (2016), 159–172.

[16] Omer Litov and Amnon Meisels. 2017. Forward bounding on pseudo-trees for

DCOPs and ADCOPs. Artificial Intelligence 252 (2017), 83–99.
[17] Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. 2004. Distributed

Algorithms for DCOP: A Graphical-Game-Based Approach.. In ISCA PDCS. 432–
439.

[18] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. 2005.

ADOPT: Asynchronous distributed constraint optimization with quality guaran-

tees. Artificial Intelligence 161, 1-2 (2005), 149–180.

[19] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. 2019.

Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm. Journal of
Artificial Intelligence Research 64 (2019), 705–748.

[20] Jonathan P Pearce and Milind Tambe. 2007. Quality Guarantees on k-Optimal

Solutions for Distributed Constraint Optimization Problems.. In IJCAI. 1446–
1451.

[21] Adrian Petcu and Boi Faltings. 2005. Approximations in distributed optimization.

In CP. 802–806.
[22] Adrian Petcu and Boi Faltings. 2005. A scalable method for multiagent constraint

optimization. In IJCAI. 266–271.
[23] Adrian Petcu and Boi Faltings. 2006. ODPOP: An algorithm for open/distributed

constraint optimization. In AAAI. 703–708.
[24] Adrian Petcu and Boi Faltings. 2007. A hybrid of inference and local search for

distributed combinatorial optimization. In ICIAT. 342–348.
[25] Adrian Petcu and Boi Faltings. 2007. MB-DPOP: A New Memory-Bounded

Algorithm for Distributed Optimization. In IJCAI. 1452–1457.
[26] Evan Sultanik, Pragnesh Jay Modi, and William C Regli. 2007. On Modeling

Multiagent Task Scheduling as a Distributed Constraint Optimization Problem..

In IJCAI. 1531–1536.
[27] William Yeoh, Ariel Felner, and Sven Koenig. 2010. BnB-ADOPT: An asyn-

chronous branch-and-bound DCOP algorithm. Journal of Artificial Intelligence
Research 38 (2010), 85–133.

[28] William Yeoh, Xiaoxun Sun, and Sven Koenig. 2009. Trading off solution quality

for faster computation in DCOP search algorithms. In IJCAI. 354–360.
[29] William Yeoh, Pradeep Varakantham, and Sven Koenig. 2009. Caching schemes

for DCOP search algorithms. In AAMAS. 609–616.
[30] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. 2005. Dis-

tributed stochastic search and distributed breakout: Properties, comparison and

applications to constraint optimization problems in sensor networks. Artificial
Intelligence 161, 1-2 (2005), 55–87.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

257

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problems
	2.2 Pseudo Tree
	2.3 DPOP
	2.4 MB-DPOP

	3 Proposed Method
	3.1 Motivation
	3.2 Distributed Enumeration Mechanism
	3.3 Iterative Selection Mechanism
	3.4 Caching Mechanism
	3.5 Execution Example

	4 Experimental Evaluation
	4.1 Experimental Configuration
	4.2 Experimental Results

	5 Conclusions
	Acknowledgments
	References

