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ABSTRACT
Function approximation is a powerful approach for structuring

large decision problems that has facilitated great achievements in

the areas of reinforcement learning and game playing. Regression

counterfactual regret minimization (RCFR) is a simple algorithm for

approximately solving imperfect information games with normal-

ized rectified linear unit (ReLU) parameterized policies. In contrast,

the more conventional softmax parameterization is standard in the

field of reinforcement learning and yields a regret bound with a

better dependence on the number of actions. We derive approxima-

tion error-aware regret bounds for (Φ, f )-regret matching, which

applies to a general class of link functions and regret objectives.

These bounds recover a tighter bound for RCFR and provide a the-

oretical justification for RCFR implementations with alternative

policy parameterizations (f -RCFR), including softmax. We provide

exploitability bounds for f -RCFR with the polynomial and expo-

nential link functions in zero-sum imperfect information games

and examine empirically how the link function interacts with the

severity of the approximation. We find that the previously studied

ReLU parameterization performs better when the approximation er-

ror is small while the softmax parameterization can perform better

when the approximation error is large.
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1 INTRODUCTION
The dominant framework for approximating Nash equilibria in

sequential games with imperfect information is Counterfactual
Regret Minimization (CFR), which has successfully been used

to solve and expertly play human-scale poker games [4, 6, 7, 21].

This framework is built on the idea of decomposing a game into

a network of simple regret minimizers [9, 33]. Historically, large

games have been abstracted to smaller but strategically similar

games through a state-aggregation procedure [11, 16, 32, 33]. The

abstract game is solved with CFR and the resulting strategies are

translated so they apply to the original game.

Function approximation is a natural generalization of abstrac-

tion. In CFR, this amounts to estimating the regrets for each regret

minimizer instead of storing them all in a table [5, 19, 22, 28, 31].

Game solving with function approximation can be competitive with

domain specific state abstraction [5, 15, 22, 31], and in some cases

is able to outperform tabular CFR without abstraction if the players

are optimizing against their best responses [20]. Function approxi-

mation has facilitated many recent successes in game playing more

broadly [24, 25, 29].

Combining regression and regret-minimization with applica-

tions to CFR was initially studied by Waugh et al. [31], introducing
theRegression Regret-Matching (RRM) Theorem—giving a suf-

ficient condition for function approximator error to still achieve

no external regret. The extension to Regression Counterfactual
Regret Minimization (RCFR) yields an algorithm that utilizes

function approximation in a way similar to reinforcement learning

(RL), particularly policy-based RL. Action preferences—cumulative

counterfactual regrets—are learned and predicted, and these pre-
dictions parameterize a stochastic policy.

Conversely, some recent RL algorithms take a regret minimiza-

tion approach. Regret policy gradient (RPG) [27], exploitability

descent (ED) [20], Politex [1], and neural replicator dynamics

(NeuRD) [23] either have regret bounds or they are inspired by

tabular algorithms with regret bounds.

CFRwas originally introduced using regretmatching (RM) [14]
as its component learners. This learning algorithm generates poli-

cies by normalizing positive regrets and setting the weight of ac-

tions with negative regrets to zero. This truncation of negative

regrets is exactly the application of a rectified linear unit (ReLU)

function, which is used extensively in the field of machine learning

for constructing neural network layers. RCFR, following in CFR’s

lineage, had only theoretical guarantees with normalized ReLU

policies.
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However, most RL algorithms for discrete action spaces take a dif-

ferent approach: they exponentiate and normalize the preferences

according to the softmax function. The Hedge or Exponential
Weights learning algorithm [10] also uses a softmax function to

generate policies. It even has a regret bound with a log dependence

on the number of actions, rather than a square root dependence,

as RM does. This provides us with some motivation for general-

izing the RRM and RCFR theory to allow for alternative policy

parameterizations.

In fact, RM and Hedge can be unified. Greenwald et al. [12]
present (Φ, f )-regret matching, a general framework for con-

structing learners for minimizing Φ-regret—a set of regret metrics

that include external regret and internal regret when using a policy

parameterized by a link function f . Generalizing to internal re-

gret has an important connection to correlated equilibria in general

sum games [8].

In this paper, we first generalize the RRM Theorem to (Φ, f )-

regret matching by extending Greenwald et al. framework to the

case when the regret inputs to algorithms are approximate. This

new approximate (Φ, f )-regret matching framework allows for the

use of a broad class of link functions and regret objectives, and

provides a simple recipe for generating regret bounds under new

choices for both when estimating regrets. Our analysis, both due

to improvements previously made by Greenwald et al. [12] and
more careful application of conventional inequalities, tightens the

bound for RRM. The corresponding improvement to the RCFR

Theorem [22, 31] is magnified because the bound in this theorem

is essentially the RRM bound multiplied by the size of the game. In

addition, this framework provides insight into the effectiveness of

combining function approximation with regret minimization as the

impact of inaccuracy on the bounds vary between link functions

and parameter choices.

The approximate (Φ, f )-regret matching framework provides the

basis for bounds that apply to RCFR algorithms with alternative

link functions, thereby allowing the sound use of alternative policy

parameterizations, including softmax. We call this generalization,

f -RCFR. We provide regret and equilibrium approximation bounds

for this algorithm with the polynomial and exponential link func-

tions, and we test them in two games commonly used in games

research, Leduc hold’em poker [26] and imperfect informa-
tion goofspiel [17]. A simple but extensible linear representation

is used to isolate the effect of the link function and the degree of

approximation on learning performance. We find that the polyno-

mial link function performs better when the approximation error is

small while the exponential link function (corresponding to a soft-

max parameterization) can perform better when the approximation

error is large.

This paper is organized as follows. First, we define online deci-

sion problems and connect to relevant prior work in this area. We

then define approximate regret matching and provide regret bounds

for this new class of algorithms. Afterward, we begin our discussion

of RCFR and our new generalization by describing extensive-form

games and prior work on RCFR. Finally, we present f -RCFR along

with exploitability bounds and experiments in Leduc hold’em and

goofspiel.

2 ONLINE DECISION PROBLEMS
2.1 Background
We adopt the notation from Greenwald et al. [12] to describe an on-
line decision problem (ODP). AnODP consists of a set of possible
actions A and set of possible rewards R. In this paper we assume

a finite set of actions and bounded R ⊂ R where supx ∈R |x |= U .

The tuple (A,R) fully characterizes the problem and is referred to

as a reward system. Furthermore, let Π denote the set of reward

functions r : A → R.

At each round t an agent selects a policy, that is, a distribution

over actions σt ∈ ∆(A)
1
. The agent samples an action, at ∼ σt , and

subsequently receives a reward function, rt ∈ Π. The agent is able

to compute the rewards for actions that were not taken at time t , in
contrast to the bandit setting where the agent only observes rt (at ).

Crucially, each rt may be selected arbitrarily from Π. As a con-

sequence, this ODP model is flexible enough to encompass multi-

agent, adversarial interactions, and game theoretic equilibrium con-

cepts even though it is described from the perspective of a single

agent’s decisions.

A learning algorithm in an ODP selects σt using information

from the history of observations and actions previously taken. We

denote this information at time t as historyh ∈ Ht
.
= At ×Π

t
, where

H0

.
= {∅}. Formally, an online learning algorithm is a sequence of

functions {Lt }
∞
t=1

, where Lt : Ht−1 → ∆(A).

We denote the rectified linear unit (ReLU) function as x+
=

max {x , 0}, for all x ∈ R. Similarly for vectors x ∈ RN we define x+

to be the componentwise application of the ReLU function.

2.1.1 Action Transformations. To generalize the analysis to dif-

ferent performance metrics, it is useful to define action trans-
formations. Action transformations are functions of the form

ϕ : A → ∆(A), mapping each action a ∈ A to a policy. Let ΦALL
denote the set of all action transformations for the set of actions

A. Two important subsets of ΦALL are the external and internal

transformations.

External transformations, ΦEXT , transform all actions to the

same action. Formally, if δa ∈ ∆(A) is the distribution with full

weight on action a, then ΦEXT
.
= {ϕ : ∃a ∈ A∀x ∈ A ϕ(x) = δa }.

Note that there are |ΦEXT |= |A|-external transformations.

Internal transformations, ΦI NT , transform one action to another

action. Formally, the internal transformation from action a to ac-

tion b is defined piecewise as ϕ
(a,b)

I NT (a) = δb and ϕ
(a,b)

I NT (x) = δx
otherwise. Note that there are |ΦI NT |= |A|2−|A|+1-internal trans-

formations [12].

We define the policy induced by distribution σ and action trans-

formation ϕ as [ϕ](σ ) =

∑
a∈A σ (a)ϕ(a).

2.1.2 Regret. The regret for not following action transformation

ϕ when action a was chosen and reward function r was observed

is ϕ-regret, ρϕ (a, r ) = Ea′∼ϕ(a)
[r (a′)] − r (a). For a set of action

transformations, Φ, the Φ-regret vector is ρΦ
(a, r ) = (ρϕ (a, r ))ϕ∈Φ

.

The expected ϕ-regret for policy σ ∈ ∆(A) is Ea∼σ [ρϕ (a, r )].

For an ODP with observed history h at time t , composed of

reward functions {rs }
t
s=1

and actions {as }
t
s=1

selected by the agent

on each round, the cumulativeΦ-regret after t-rounds against action

1
∆(A) is the set of all probability distributions over actions in A.
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transformations Φ is RΦ

t (h) =

∑t
k=1

ρΦ
(ak , rk ). For brevity we will

omit the h argument, and for convenience we set RΦ

0

.
= 0.

We seek to bound the expected average maximum Φ-regret,

E[
1

t maxϕ∈Φ
R
ϕ
t ]. Choosing Φ to be ΦEXT or ΦI NT corresponds to

the well studied maximum external regret or maximum internal

regret objectives, respectively.

One can also interchange the max and the expectation. In RRM,

maxϕ∈ΦEXT E[
1

t R
ϕ
t ] is bounded [22, 31]. However, bounds for

E[
1

t maxϕ∈Φ
R
ϕ
t ] imply similar bounds when the expected regret,

E[ρΦ

t ], is observed after each round [12, Corollary 18]. The bounds

remain the same with the exception of replacing the observed ran-

dom regrets with their corresponding expected values.

2.2 Approximate Regret-Matching
Given a set of action transformations Φ and a link function f :

R |Φ | → R
|Φ |
+

, where RN
+

denotes the N -dimensional positive or-

thant, we can define a general class of online learning algorithms

known as (Φ, f )-regret-matching algorithms [12]. A (Φ, f )-regret-

matching algorithm at time t chooses σ ∈ ∆(A) that is a fixed point

of

Mt (σ )
.
=

∑
ϕ∈Φ

Y
ϕ
t [ϕ](σ )∑

ϕ∈Φ
Y
ϕ
t

,

when RΦ

t−1
∈ R

|Φ |
+

\ {0}, where YΦ

t
.
= (Y

ϕ
t )ϕ∈Φ

.
= f (RΦ

t−1
), and

arbitrarily otherwise. Note that Mt is a convex combination of

linear operators {[ϕ]}ϕ∈Φ
, hence the fixed point always exists by

the Brouwer Fixed Point Theorem. If Φ = ΦEXT then the fixed

point ofMt is a distribution σ ∝ YΦ

t [13]. Examples of (Φ, f )-regret-

matching algorithms include Hart’s algorithm [14]—typically called

“regret-matching”—and Hedge [10], with link functions f (x )i = x+

i
and f (x )i = e

1

τ xi with temperature parameter τ > 0, respectively.

A useful technique for bounding regret when estimates are used

in place of true values is to define an ϵ−Blackwell condition, as
was used in the RRM Theorem [31]. The analysis in RRM was

specific to Φ = ΦEXT and the polynomial link f with p = 2. To

generalize across different link functions and Φ ⊆ ΦALL we define

the (Φ, f , ϵ)-Blackwell condition.

Definition 2.1 ((Φ, f , ϵ)-Blackwell Condition). For a given reward

system (A,R), finite set of action transformations Φ ⊆ ΦALL , and

link function f : R |Φ | → R
|Φ |
+

, a learning algorithm satisfies the

(Φ, f , ϵ)-Blackwell condition if f (RΦ

t−1
(h)) · Ea∼Lt (h)

[ρΦ
(a, r )] ≤ ϵ .

The RegretMatching Theorem [12] shows that the (Φ, f )-Blackwell

condition (ϵ = 0) holds with equality for (Φ, f )-regret-matching

algorithms.

We seek to bound the expected average Φ-regret when an algo-

rithm at time t chooses the fixed point of M̃t
.
=

∑
ϕ∈Φ

Ỹϕ
t [ϕ]/

∑
ϕ∈Φ

Ỹϕ
t ,

when R̃Φ

t−1
∈ R

|Φ |
+

\ {0} and arbitrarily otherwise, where ỸΦ

t
.
=

f (R̃Φ

t−1
) and R̃Φ

t−1
is an estimate of RΦ

t−1
, possibly from a function

approximator. Such an algorithm is referred to as approximate
(Φ, f )-regret-matching.

Similarly to the RRM Theorem [22, 31], we show that the ϵ
parameter of the (Φ, f , ϵ)-Blackwell condition depends on the link

output approximation error,

YΦ

t − ỸΦ

t


1
.

Theorem 2.2. Given reward system (A,R), a finite set of action
transformations Φ ⊆ ΦALL , and link function f : R |Φ | → R

|Φ |
+

, then
an approximate (Φ, f )-regret-matching algorithm, {Lt }∞t=1

, satisfies
the (Φ, f , ϵ)-Blackwell Condition with ϵ ≤ 2U

YΦ

t − ỸΦ

t


1
, where

YΦ

t
.
= f (RΦ

t−1
), and ỸΦ

t
.
= f (R̃Φ

t−1
).

Omitted proofs are deferred to the appendix.
For a (Φ, f )-regret-matching algorithm, an approach to bound

the expected average Φ-regret is to use the (Φ, f )-Blackwell condi-

tion along with a bound on E[G(RΦ

t )] for an appropriate function

G [8, 12]. Bounding the regret for an approximate (Φ, f )-regret-

matching algorithm will be done similarly, except the bound on ϵ
from Theorem 2.2 will be used. Proceeding in this fashion yields

the following theorem:

Theorem 2.3. Given a real-valued reward system (A,R) a finite set
Φ ⊆ ΦALL of action transformations. If ⟨G,д,γ ⟩ is a Gordon triple2,
then an approximate (Φ,д)-regret-matching algorithm {Lt }

∞
t=1

guar-
antees at all times t ≥ 0

E[G(RΦ

t )] ≤ G(0)+t sup
a∈A,r ∈Π

γ (ρΦ
(a, r ))+2U

t∑
s=1

д(RΦ

s−1
) − д(R̃Φ

s−1
)


1

.

2.3 Bounds for Specific Link Functions
2.3.1 Polynomial. Given the polynomial link function f (x)i =

(x+

i )
p−1

we consider two cases 2 < p < ∞ and 1 < p ≤ 2. For

the following results it is useful to denote the maximal activation

µ(Φ) = maxa∈A |{ϕ ∈ Φ : ϕ(a) ̸= δa }| [12].
For the case p > 2 we have the following bound on the expected

average Φ-regret:

Theorem 2.4. Given an ODP, a finite set of action transformations
Φ ⊆ ΦALL , and the polynomial link function f with p > 2, then an
approximate (Φ, f )- regret-matching algorithm guarantees

E

[
max

ϕ∈Φ

1

t
R
ϕ
t

]
≤

1

t

√√
t (p − 1)4U 2

(µ(Φ))
2/p

+ 2U
t∑

k=1

д(RΦ

k−1
) − д(R̃Φ

k−1
)


1

,

where д : R |Φ | → R
|Φ |
+

and д(x)i = 0 if xi ≤ 0, д(x)i =
2(xi )p−1

∥x+ ∥
p−2

p

otherwise.

Similarly for the case 1 < p ≤ 2 we have the following.

Theorem 2.5. Given an ODP, a finite set of action transformations
Φ ⊆ ΦALL , and the polynomial link function f with 1 < p ≤ 2, then
an approximate (Φ, f )- regret-matching algorithm guarantees

E

[
max

ϕ∈Φ

1

t
R
ϕ
t

]
≤

1

t

(
t (2U )

pµ(Φ) + 2U
t∑

k=1

д(RΦ

k−1
) − д(R̃Φ

k−1
)


1

)
1/p

where д : R |Φ | → R
|Φ |
+

and д(x )i = p(x+

i )
p−1.

In comparison to the RRM Theorem [22], the above bound is

tighter as there is no

√
|A| term in front of the errors and the |A| term

has been replaced by
3 |A|−1. These improvements are due to the

2
A Gordon triple ⟨G, д, γ ⟩ consists of three functions G : Rn → R, д : Rn → Rn ,
and γ : Rn → R such that for all x, y ∈ Rn , G (x + y) ≤ G (x ) + д(x ) · y + γ (y).

3
For Φ = ΦEXT , µ (Φ) = |A |−1.
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tighter bound in Theorem 2.2 and the original Φ-regret analysis [12],

respectively. Aside from these differences, the bounds coincide.

2.3.2 Exponential.

Theorem 2.6. Given an ODP, a finite set of action transformations
Φ ⊆ ΦALL , and an exponential link function f (x )i = e

1

τ xi with τ > 0,
then an approximate (Φ, f )- regret-matching algorithm guarantees

E

[
max

ϕ∈Φ

1

t
R
ϕ
t

]
≤

1

t

(
τ ln|Φ|+2U

t∑
k=1

д(RΦ

k−1
) − д(R̃Φ

k−1
)


1

)
+

2U 2

τ

where д : R |Φ | → R
|Φ |
+

and д(x )i = e
1

τ xi /
∑
j e

1

τ x j .

The Hedge algorithm corresponds to the exponential link func-

tion f (x)i = e
1

τ xi when Φ = ΦEXT , so Theorem 2.6 provides a

bound on a regression Hedge algorithm. Note that in this case, the

approximation error term is not inside a root function as it is under

the polynomial link function. This seems to imply that at the level

of link outputs, polynomial link functions have a better dependence

on the approximation errors. However, д in the exponential link

function bound is normalized to the simplex while the polynomial

link functions can take on larger values. So which link function

has a better dependence on the approximation errors depends on

the magnitude of the cumulative regrets, which depends on the

environment and the algorithm’s empirical performance.

3 EXTENSIVE-FORM GAMES
3.1 Background
A zero-sum extensive-form game (EFG) is a tuple

(H ,A,A,p,σc ,S, r1) .

H is the set of valid action sequences and chance outcomes called

histories, where an action is an element ofA, and the set of actions

available at each history is determined by A : H → A. The player

to act (including the chance “player”, c) at each non-terminal history

is determined by p : H\Z → {1, 2, c}, where terminal histories are

those with no valid actions, Z
.
= {h |h ∈ H ,A(h) = ∅}. σc is a fixed

stochastic policy assigned to the chance player that determines

the likelihood of random outcomes, like those from die rolls or

draws from a shuffled deck of cards. S
.
= S1 ∪S2 is the information

partition and it describes which histories players can distinguish

between. The set of histories where player i ∈ {1, 2} acts, Hi
.
=

{h |p(h) = i}, are partitioned into a set of information states, Si ,
where for each information state s ∈ Si , s ⊆ Hi , is a set of histories

indistinguishable to i . Since A(h) = A(h′) if h,h′ ∈ s ∈ S, we can

denote the actions at s as A(s). We require perfect recall so that

for all histories in an information state, the sequence of information

states admitted by the preceding histories must be identical. r1 :

Z → R is a reward or utility function for player 1. The game is

zero sum because player 2’s utility function r2

.
= −r1.

Player i’s policy or behavioral strategy, σi ∈ Σi defines a

probability distribution over valid actions at each of i’s information

states, and a joint policy or strategy profile is an assignment of

policies for each player, σ
.
= (σ1,σ2). We use ησ (z) to denote the

probability of reaching terminal history z ∈ Z under profile σ from

the beginning of the game and ησ (h, z) the same except starting

from history h ∈ H . We subscript η by the player to denote that

player’s contribution to these probabilities ησ (z) = ησi (z)ησ
−i (z). The

expected value to player i under profile σ is ri (σ ) = ri (σ1,σ2) =∑
z∈Z ησ (z)ri (z).

A best response for player i to another player’s strategy, σ−i , is
a policy that achieves the maximum reward against σ−i , r

∗
i (σ−i ) =

maxσi ∈Σi ri ((σi ,σ−i )). A profile, σ , is an ε-Nash equilibrium if

neither player can unilaterally deviate from their assigned policy

and gain more than ε . That is, if ri (σ ) + εi ≥ r∗i (σ−i ), for each player

i ∈ {1, 2}, then σ is a max {ε1, ε2}-equilibrium, and the smallest

approximation error is achievedwhen ri (σ )+εi = r∗i (σ−i ). Therefore,
in a zero-sum game, all strategies that are part of ε-Nash equilibria

are at most ε-utility away from being minimax optimal.

Since the game is zero-sum, the average of best response values

is equal to (ε1+ε2)/2. This is the exploitability of the profile σ . We

use profile exploitability to measure equilibrium approximation

error.

The exploitability of a profile σ is related to RΦEXT
(abbreviated

to REXT ) in a fundamental way. First consider the induced normal

form of an EFG, where actions taken by a player consists of spec-

ifying an action at each information state. That is, from an ODP

perspective, the set of actions available to player i (the learning
algorithm) is Ã =

∏
s ∈Si A(s). We can then define the expected

regret at time t for player i with respect to action a′ ∈ Ã when

selecting a policy σ ∈ ∆(Ã) as the difference

ρti,a′
.
= Ea∼σ

[
ri (a

′,σ−i ) − r (a,σ−i )
]
.

We can then define the cumulative external regret of player i at time

t as REXTi,t
.
= maxa∗∈Ã

∑t
k=1

ρki,a∗ . Note that this is an instance of an

ODP problem where the sequence of reward functions for player i
is induced by the opponent’s sequence of policies. Furthermore, the

external regret defined here is with respect to player i’s expected
reward (i.e., interchanging the expectation and maximum in the

previously described Φ-regret objective). The connection between

REXTi,t and Nash equilibria then follows from the well-known folk

theorem.

Theorem 3.1. If two ODPs are enmeshed so that the rewards of the
learners always sum to zero and the action of one learner influences
the reward function of the other, then they represent a repeated zero-
sum game. If neither learner, i ∈ {1, 2}, suffers more than εi external
regret after t-rounds, 1

t R
EXT
i,t ≤ εi , then the profile formed from their

average policies, σ̄i,t =
1

t
∑t
k=1

σi,k , is an (ε1 + ε2)-Nash equilibrium.

See, for example, Blum and Mansour [3] for a proof.

3.2 Counterfactual Regret Minimization
The idea of counterfactual regret minimization (CFR) [33] is
that we can decompose an EFG into multiple ODPs, one at each

information state. We define the reward for action a ∈ A(s) in the

ODP at s ∈ Si as the counterfactual value of playing a, which
is the expected value of playing a assuming that player i plays to
reach s . Formally,

vσi (s,a) =

∑
h∈s,z∈Z

ησi (ha, z)ησ−i (z)ri (z),

where ha ∈ H is the history that results from taking action a at

history h, and ησi (h, z) = 0 whenever z is unreachable from ha.
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Accordingly, the regret, also referred to as instantaneous regret,

of the ODP learner at s ∈ Si for not committing to a ∈ A(s) is

ρσi (s,a) = vσi (s,a) −
∑

a′∈A(s )

σi (s,a
′
)vσi (s,a′).

We denote the cumulative counterfactual regret of an information

state s and action a as Ri,t (s,a) =

∑t
k=1

ρσ
k

i (s,a), where we denote

the profile at time k as σk
.
=

(
σ

1,k ,σ2,k
)
, and that of s alone as

Ri,t (s) = maxa∈A(s )
Ri,t (s,a).

Zinkevich et al. [33] showed:

Theorem 3.2 (CFR). For both players, i ∈ {1, 2}, the regret of i’s
policies constructed from their ODP learners after t iterations of CFR
is 1

t R
EXT
i,t ≤ εi,t where εi,t =

1

t
∑
s ∈Si

(
Ri,t (s)

)
+. Furthermore, the

profile of average sequence weight policies, σ̄ t .=
(
σ̄1,t , σ̄2,t

)
, is an

(ε1,t + ε2,t )-Nash equilibrium, where

σ̄i,t (s) ∝
t∑

k=1

∑
h∈s,a∈A(h)

ησ
k

i (h)σi,k (s,a).

See Farina et al. [9] for the sketch of an alternative proof using

the regret circuits framework that is perhaps more intuitive than

the proof in the original work.

3.3 f -RCFR
Games that humans are interested in playing, or those that model

problems of practical importance, typically have an immense num-

ber of information states or actions. But such games often con-

tain structure that can be recovered by endowing information

state-action pairs (sequences) with a feature representation, φ :

S × A → Rd ,d > 0. A function approximator, y : Rd → R, could
then make use of shared properties between sequences to allow

more efficient learning. RCFR [31] uses a function approximator to

predict cumulative counterfactual regrets at each information state

and generates policies with a normalized ReLU transformation.

Thanks to our new analysis of approximate regret matching,

we now know that any link function that admits a no-ΦEXT-regret

regret matching algorithm also has an approximate version. Rather

than restricting ourselves to the polynomial link function with

parameter p = 2, we can consider alternate parameter choices or

alternative link functions, like the exponential function. So instead

of a normalized ReLU policy, we employ a policy generated by the

external regret fixed point of link function f : R |A | → R
|A |
+

with

respect to approximate regrets predicted by a functional regret es-

timator, R̃(s) = (y (φ(s,a)))a∈A(s )
, for all s ∈ S. More formally, the

f -RCFR policy for player i given functional regret estimator R̃ is

σ (s) ∝ f (R̃(s)) when R̃(s) ∈ R
|A(s ) |
+

\ {0} and arbitrarily otherwise,

for all s ∈ Si . Since the input to any link function in an approximate

regret matching algorithm is simply an estimate of the counterfac-

tual regret, we can reuse all of the techniques previously developed

for RCFR-like methods to train regret estimators [5, 19, 22, 28, 31].

Using Theorem 2.3 and the CFR Theorem 3.2, we can derive an

improved regret bound with the polynomial link and a new bound

with the exponential link.

Corollary 3.3 (polynomial (p > 2)). Given the polynomial
link function f with p > 2, let σi,k (s) ∝ f (R̃k (s)) be the policy
that f -RCFR assigns to player i at iteration k in information state

s ∈ Si and denote the cumulative approximation error in s as ϵi (s) =∑t
k=1

д(Rk−1
(s)) − д

(
R̃k−1

(s)
)

1

, where д : R |A(s ) | → R
|A(s ) |
+

and

д(x )i = 0 if xi ≤ 0, д(x )i =
2(xi )p−1

∥x+ ∥
p−2

p
otherwise. Then after t-iterations,

f -RCFR guarantees, for both players, i ∈ {1, 2}, 1

t R
EXT
i,t ≤ εi,t , where

εi,t =

1

t

∑
s ∈Si

√
t (p − 1)4U 2

(|A(s)| − 1)
2/p

+ 2Uϵi (s).

Noticing that |A(s)| ≤ |A| and letting ϵ∗i = maxs ∈Si ϵi (s), we have

εi,t ≤
1

t
|Si |

√
t (p − 1)4U 2

(|A| − 1)
2/p

+ 2Uϵ∗i .

Furthermore, the profile of average sequence weight policies, σ̄ t , is an
(ε1,t + ε2,t )-Nash equilibrium.

Proof. This result follows directly from Theorem 3.2. The coun-

terfactual regret, Ri,t (s), at each information state corresponds to

ΦEXT regret for an online ODP with µ(ΦEXT ) = |A(s)| − 1. There-

fore, playing an approximate (ΦEXT , f )-regret matching algorithm

at each state with a polynomial link funciton with p > 2 results in

the regret bound presented in Theorem 2.4 for each state specific

ODP. Although Theorem 2.4 is stated with respect to random re-

grets and counterfactual regret is an expected regret, the analysis

of Greenwald et al. [12, Corollary 18] allows us to trivially extend

our bounds from Section 2.3 to this case. The result then follows

trivially from Theorem 3.2. □

The proofs for the polynomial link with p ≤ 2 and the exponen-

tial link are very similar and omitted for brevity.

Corollary 3.4 (polynomial (p ≤ 2)). Given the polynomial
link function f with p ≤ 2, let σi,k (s) ∝ f (R̃k (s)) be the policy
that f -RCFR assigns to player i at iteration k in information state
s ∈ Si and denote the cumulative approximation error in s as ϵi (s) =∑t
k=1

д(Rk−1
(s)) − д

(
R̃k−1

(s)
)

1

,whereд : RN → RN
+
, andд(x )i =

p(x+

i )
p−1. Then after t-iterations, f -RCFR guarantees, for both players,

i ∈ {1, 2}, 1

t R
EXT
i,t ≤ εi,t , where

εi,t =

1

t

∑
s ∈Si

(
t (2U )

p
(|A(s)| − 1) + 2Uϵi (s)

)
1/p
.

Noticing that |A(s)| ≤ |A| and letting ϵ∗i = maxs ∈Si ϵi (s), we have

εi,t ≤
1

t
|Si |

(
t (2U )

p
(|A| − 1) + 2Uϵ∗i

)
1/p
.

Furthermore, the profile of average sequence weight policies, σ̄ t , is an
(ε1,t + ε2,t )-Nash equilibrium.

The above theorem provides a tighter bound for RCFR (p = 2)

than what exists in the literature. The improvement is a direct

consequence of the tighter bound for RRM presented in Theorem

2.5 in Section 2.3. Given the application of the RRM Theorem by

Brown et al. [5], these results should lead to a tighter bound when

a function approximator learns from sampled counterfactual regret

targets.

Corollary 3.5 (exponential). Given the exponential link func-
tion f with τ > 0, let σi,k ∝ f (R̃k (s)) be the policy that f -RCFR
assigns to player i at iteration k given functional regret estimator
yk : Rd → R and denote the cumulative approximation error in s
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as ϵi (s) =

∑t
k=1

д(Rk−1
(s)) − д

(
R̃k−1

(s)
)

1

, where д : RN → RN
+
,

and д(x )i = e
1

τ xi /
∑
j e

1

τ x j . Then after t-iterations, f -RCFR guaran-
tees, for both players, i ∈ {1, 2}, 1

t R
EXT
i,t ≤ εi,t , where

εi,t =

1

t

∑
s ∈Si

(
1

t
(τ ln|A(s)| + 2Uϵi (s)) +

2U 2

τ

)
.

Noticing that |A(s)| ≤ |A| and letting ϵ∗i = maxs ∈Si ϵi (s), we have

εi,t ≤

(
1

t

(
τ ln|A| + 2Uϵ∗i

)
+

2U 2

τ

)
.

Furthermore, the profile of average sequence weight policies, σ̄ t , is an
(ε1,t + ε2,t )-Nash equilibrium.

This bound shares the same advantage with respect to the action

set size dependence over the polynomial RCFR bounds as the bound

of Theorem 2.6 has over the bounds of Theorems 2.5 and 3.4.

With the exponential link function, f -RCFR is approximately

Hedge applied to each information state with function approxima-

tion. To make a connection with the field of reinforcement learning,

we can compare f -RCFR with two recently developed algorithms

that also generalize Hedge to sequential decision problems and

utilize function approximation: Politex [1] and neural replicator

dynamics (NeuRD) [23].

In contrast to f -RCFR, Politex trains models to predict cumula-

tive action values. An action value is proportional to a counterfac-

tual value where the constant depends on the policies of the other

players and chance [27, 33]. If Politex instead trains on counterfac-

tual regrets, then we arrive at an f -RCFR instance with a softmax

parameterization and a regret estimator updated in a two-step pro-

cess: construct an instantaneous regret estimator and combine it

with the previous estimator to predict cumulative regrets. In fact,

our implementation of f -RCFR for the experiments that follow uses

the same two-step update procedure.

Instead of training a model of instantaneous regrets, NeuRD

performs a gradient descent step on the squared loss between the

current policy logits and a target constructed by adding the logits

to the instantaneous regret after each iteration. We can see this as

a “bootstrap” regret target, as described by Morrill [22], where the

policy logits are approximate. NeuRD is therefore an instance of

f -RCFR with a softmax parameterization and a regret estimator

trained on bootstrap regret targets.

4 EXPERIMENTS
To examine the impact of the link function, choices for their pa-

rameters, and the interaction between link function and function

approximation, we test f -RCFR in two games commonly used as

research testbeds, Leduc hold’em poker [26] and imperfect infor-

mation goofspiel [17] with linear function approximation.

4.1 Algorithm Implementation
Our regret estimators are independent linear function approxima-

tors for each player, i ∈ {1, 2}, and action a ∈
⋃
s ∈Si A(s). Our

features are built on tug-of-war hashing features [2].

We randomly partition the information states that share the

same action into m-buckets and repeat this n-times to generate

n-sparse indicator features of lengthm. The sign of each feature is
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Figure 1: The cumulative counterfactual regret estimation
error accumulated over time and information states for se-
lect f -RCFR instances in Leduc hold’em poker, goofspiel,
and random goofspiel. For each game and setting of the
number of partitions, we select the link function and the pa-
rameter with the smallest average exploitability over 5-runs
at 100K-iterations. The solid lines connect the average error
across iterations and dots show the errors of individual runs.

randomly flipped to -1 independently to reduce bias introduced by

collisions. The expected sign associated with all other information

states that share a non-zero entry in their feature vector is, by

design, zero. We use the number of partitions, n, to control the

severity of approximation in our experiments.

We do ridge regression on counterfactual regret targets to train

our regret estimators. After the first iteration, we simply add this

new vector of weights to our previous weights. Since the coun-

terfactual regrets are computed for each information state-action

sequence on every iteration, the same feature matrix is used during

training after each iteration. Therefore, the ridge regression solu-

tion is a linear function of the targets and the sum of the optimal

weights for predicting counterfactual regret yields the ridge regres-

sion solution weights for predicting the sum. Beyond training the

weights at the end of each iteration, the regrets do not need to be

saved or reprocessed.

Since we are most interested in comparing the performance of

f -RCFR with different link functions and parameters, we track the

average policies for each instance exactly in a table. While this is

less practical than other approaches, such as learning the average

policies from data, it removes another variable from the analysis

and allows us to examine the impact of different link functions in

relative isolation. Equivalently, we could have saved copies of the

regret estimator weights across all iterations and computed the

average policy on demand, similarly to Steinberger [28].

4.2 Games
In Leduc hold’em poker [26], the deck consists of 6 cards, two suits

each with 3 ranks (e.g., king, queen, and ace), and played with

two players. At the start of the game each player antes 1 chip and

receives one private card. Betting is restricted to two rounds with a

maximum of two raises each round, and bets are limited to 2 and 4
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Figure 2: (top) The exploitability of the average strategy profile of tabular CFR and f -RCFR instances during the first 100K-
iterations in Leduc hold’em (top left), goofspiel (top center), and random goofspiel (top right). For each setting of the number
of partitions, we show the performance of the f -RCFR instance with the link function and parameter that achieves the lowest
average final exploitability over 5-runs. The mean exploitability and the individual runs are plotted for the chosen instances
as lines and dots respectively. (bottom) The final average exploitability after 100K-iterations for the best exponential and
polynomial link function instances in Leduc hold’em (left), goofspiel (center), and random goofspiel (right).

chips. Before the second round of betting a public card is revealed

from the deck. Provided no one folds, the player with a private card

matching the public card wins, if no players match, the winnings

go to the player with the private card of highest rank. This game

has 936 states.

Goofspiel is played with two players and a deck with three suits.

Each suit consists of N cards of different rank. Two of the suits form

the hands of the players. The third is used as a deck of point cards.

At each round a card is revealed from the point deck and players

simultaneously bid by playing a card from their hand. The player

with the highest bid (i.e. highest rank) receives points equal to the

rank of the revealed card. The player with the most points when

the point deck runs out is the winner and receives a utility of +1.

The loser receives a utility of -1. We use an imperfect information

variant of goofspiel where the bidding cards are not revealed [17].

We use two variants of goofspiel: one with a shuffled point deck

and four ranks that we call “random goofspiel” and a second with

a sorted point deck in decreasing order but five ranks that we call

“goofspiel”. Goofspiel is roughly twice as large as Leduc hold’em

at 2124-information states, while random goofspiel is larger still at

3608-information states.

Our experiments use theOpenSpiel [18] implementations of these

games.

Convergence to a Nash equilibrium in each game is measured by

the exploitability of the average strategy profile after each f -RCFR
iteration. Exploitability in Leduc hold’em is measured in milli-big

blinds. Exploitability in goofspiel and random goofspiel is measured

in milli-utils.

4.3 Parameters
From Theorems 3.2 and 3.1, any network of external regret mini-

mizers (one at each information state) can be combined to produce

an average strategy profile with bounded exploitability. Therefore,

the bounds presented in Section 2.3 provide an exploitability bound

for f -RCFR algorithms where f is a polynomial or exponential link

function, and estimates of counterfactual regrets are used at each

information state in place of true values (Corollaries 3.3, 3.4, and

3.5).

Most notably, the appearance of function approximator error

within the regret bounds in Section 2.3 appear in different forms

depending on the link function f . For the polynomial link func-

tion, the bounds vary with the p parameter and similarly the expo-

nential link with the τ parameter. We tested the polynomial link

function with p ∈ {1.1, 1.5, 2, 2.5, 3} to test values around the com-

mon choice (p = 2). The exponential link function was tested with

τ ∈ {0.01, 0.05, 0.1, 0.5, 1} in Leduc hold’em and random goofspiel,

and τ ∈ {0.1, 0.5, 1, 5, 10} in goofspiel.

To examine the relationships between a link function, link func-

tion specific parameters, and function approximator error, we ex-

amine the empirical exploitability of f -RCFR with different levels

of approximation. The degree of approximation is adjusted via the

quality of features. In particular, we vary the number of partitions,

n. Increasing n increases discriminative power and reduces approx-

imation error (Figure 1).

The number of buckets in each partition is fixed atm = 10. If

the number of information states that share an action is not evenly

divisible by ten, a subset of the buckets are assigned one more

information state than the others. Thus, adding a partition adds
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Figure 3: Exploitability of the average strategy profile for all
configurations and runs with the exponential and polyno-
mial link functions. The exponential link function achieves
a lower exploitability than the polynomial link function
when a moderate number of partitions (30 or 40) are used in
Leduc hold’em (top). The same occurs in random goofspiel
with 60 or 90-partitions (bottom). Both link functions per-
form similarly in goofspiel with 40 or 50-partitions (center).

ten features. Only one feature per partition is non-zero for any

given information set, so the prediction cost grows linearly with

the number of partitions. The ridge regression update cost however,

grows quadratically with the total number of features.

4.4 Results and Analysis
Figure 2 shows the average exploitability of the best link function

and hyper-parameter configuration during learning (top) and after

100k-iterations (bottom). The best parameterization was selected

according to the average final exploitability after 100K-iterations

over 5-runs. Notice that the exploitability of the average strategy

profile decreases as the number of partitions increases, as predicted

by the f -RCFR exploitability bounds given the decrease in the

prediction error associated with increasing the number of partitions

(Figure 1).

With 30 and 40-partitions in Leduc hold’em, and 60 and 90 in ran-

dom goofspiel, the best instance with an exponential link function

outperforms all of those with polynomial link functions, includ-

ing RCFR (polynomial link with p = 2) (Figure 3, top and bottom).

These feature parameters correspond to a moderate amount of

function approximation error. In addition, this performance differ-

ence was observed across all configurations of the exponential and

polynomial link in Leduc hold’em. i.e., all of the instances with the

exponential link function plateau to a final average exploitability

lower than that of all those with polynomial link functions.

The exponential link function does not outperform the polyno-

mial link function in goofspiel or when the number of partitions is

large, however (Figure 3, center and Figure 2, bottom). Thus, the

relative performance of different link functions is dependent on the

game and the degree of function approximation error.

Among the different choices ofp for the polynomial link function,

p = 2 (RCFR) performs well with respect to the other polynomial

instances across all partition numbers and in all three games (Figure

2 (bottom)). It is outperformed only byp = 1.1 andp = 1.5 in random

goofspiel with many partitions, n = 90 and n = 120 respectively.

5 CONCLUSIONS
In this paper, we generalize the RRM Theorem in two dimensions—

the link function, including the polynomial and exponential link

functions—and regret metrics, including external and internal re-

gret. The generalization to different link functions allows us to con-

struct regret bounds for a general f -RCFR algorithm. The f -RCFR
algorithm can approximate Nash equilibria in zero-sum games

with imperfect information using alternative functional policy pa-

rameterizations beyond the previously studied normalized ReLU

parameterization.

We then examine the performance of f -RCFR with the polyno-

mial and exponential link functions under different hyper-parameter

choices and different levels of function approximation error in

Leduc hold’em poker and imperfect information goofspiel. f -RCFR
with the polynomial link function and p = 2 often achieves an

exploitability competitive with or lower than other choices, but the

exponential link function can outperform all polynomial parame-

ters when the functional regret estimator has a moderate degree of

approximation.

This work focuses primarily on the benefits of alternatives to

the ReLU policy parameterization. However, extending the RRM

Theorem to a more general class of regret metrics that includes in-

ternal regret also suggests future directions, particularly the approx-

imation of correlated equilibria [8] or extensive-form correlated

equilibria [30] with function approximation.

NeuRD [23] and Politex [1] demonstrate that benefits can be

gained by adapting a regret-minimizing method to the function

approximation case in RL settings. These algorithms are also partic-

ular ways of implementing approximate Hedge, utilizing softmax

policies. Since ReLU policies outperform softmax policies in some

cases, it would be worthwhile to investigate their performance in

RL applications.
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