
Increasing Evacuation During Disaster Events
Chris J. Kuhlman

University of Virginia

Charlottesville, Virginia

cjk8gx@virginia.edu

Achla Marathe

University of Virginia

Charlottesville, Virginia

achla@virginia.edu

Anil Vullikanti

University of Virginia

Charlottesville, Virginia

vsakumar@virginia.edu

Nafisa Halim

Boston University

Boston, Massachusetts

nhalim@bu.edu

Pallab Mozumder

Florida International University

Miami, Florida

mozumder@fiu.edu

ABSTRACT

Timely evacuation is a standard recommendation by local agen-

cies before disaster events such as hurricanes, which have enough

advance notice. However, it has been observed in many recent

disasters (e.g., Sandy), that only a small fraction of the population

evacuates in time. Recent work by social scientists has examined the

factors that influence household evacuation decisions; in addition

to individual factors it has been found that peer effect plays a role

in this decision but in two opposing ways. Specifically, households

are motivated to evacuate if their neighbors evacuate. However, if

too many neighbors leave then some households have concerns of

looting and crime, and they choose not to evacuate. This makes the

dynamics of evacuation very complex.

In this paper, we use a detailed agent based model to study

the dynamics of evacuation in Virginia’s coastal region. We use

data from a large survey and social contagion and collective action

theories to develop the model. We evaluate different strategies to

increase evacuation.
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1 INTRODUCTION

1.1 Background and Motivation

Households in coastal areas face the dilemma of evacuating during

a hurricane event to avoid life threatening risk posed by intense

wind and flood inundation versus staying put to safeguard their

assets and belongings and avoid looting. The longer one waits,

the more precise the information (about intensity and location of

landfall) that may be available to provide guidance for the need and

direction of evacuation. However, arranging related logistics with

more waiting may become challenging. As time passes, finding a
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place to stay may be more difficult, roads may be more congested,

and risk of getting stranded may be higher. In reality, the decision

to evacuate depends on a complex mix of sociodemographic factors,

risk perceptions, access to transportation, prior experiences, storm

intensity and peer behavior [21, 31, 35].

Many of these interacting factors coevolve as a hurricane ap-

proaches, and empirical agent-based models (ABM) powered with

real observations can offer novel insights to represent and simulate

human behavior in these contexts. There has been a large number

of works on developing ABMs [12, 27, 29, 37]. Some of the prior

ABM approaches use very limited to almost no observational data

from natural hazards [12, 16, 27, 29, 34, 36]. Some of these ABMs

[14, 16, 34, 36] use threshold functions to model peer effects, in

which a household is more likely to evacuate when its neighbors

evacuate. However, most prior studies miss an important compo-

nent in evacuation behavior, namely concerns about looting and

criminal activity, which social scientists have shown contribute to

reduced evacuation [10, 20, 30]. Specifically, these concerns work in

opposition to the above peer effects, and a household with such con-

cerns might not evacuate if its neighbors leave [14]. These factors

have not been taken into account in ABMs for evacuation behavior

in a data-driven manner. Our paper is the first to do so.

There have been many studies in the literature on the topic of

evacuation, some of which use statistical models [7, 23, 24], while

others use parameterized methods [4, 9, 17] and ABMs [12, 16, 27,

29, 34, 36]. Some researchers have even identified criminal activity

as a major issue in the evacuation decision [10, 20, 30, 32].

1.2 Contributions

1. Survey data and statistical analyses of evacuation. Survey

results from 1,212 Hurricane Sandy respondents were analyzed to

understand evacuation behavior of households. A detailed regression-

based analysis identifies the intrinsic (household-specific) as well

as exogenous factors (peer behavior) that significantly influence

households’ evacuation decision-making (see Section 2.3). Among

the significant observations from hurricane surveys is that neigh-

bors’ evacuation (peer influence) can have two competing effects

on a family: it can motivate a family to evacuate, and it can inhibit

a family from evacuating because of fear of crime and looting. Ours

is the first work to quantify these effects from surveys and then

incorporate them in an agent-based model to study interactions

between these effects with respect to evacuation behavior.

2. Evacuation Model. An ABM for evacuation decision (ABMed )

is constructed from the statistical model and the social network. It
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is a data- and theory-driven model: the data-driven model accounts

for within-family factors and the theory-driven model accounts for

exogenous factors that contribute to evacuation decisions. Specifi-

cally, the data-driven (survey-based) model accounts for a family’s

decision to evacuate, but does not account for the temporal effects

during the lead-up to a hurricane’s arrival. Also, the survey data

shows that a family factors neighbors’ evacuation decisions in its

own decision to evacuate, but does not provide requisite detail on

how neighborhood effects are incorporated. Thus, we use conta-

gion and collective action theories [2, 6, 13, 25, 26] to introduce

two parameters, ci,lev and ci,r em , that characterize the minimum

fraction (or number) of neighbors that have chosen to evacuate, in

order for that family to consider neighborhood effects relevant. The

first (respectively, second) parameter controls the neighborhood

states that a family deems important when considering evacuation

(respectively, remaining in place). The general modeling frame-

work in Section 2.1 is customized for these hurricane evacuation

phenomena in Section 2.4.

3. Dynamics of evacuation decisions, and interventions. We

use ABMed on a realistic synthetic population of VA Beach, VA,

constructed using the methods of [3, 5, 11]; see Section 2.2. We

study the effects of two types of interventions: (a) seeding, which

involves convincing a subset S of nodes to evacuate, and (b) provid-

ing security to a subset S ′ of nodes, which corresponds to setting

ci,r em = 1. Our main results on the dynamics ofABMed are: (i)We

show that planning these interventions within a given budget, so

that the expected number of evacuations is maximized within T
steps, has a large inapproximability factor. For T = 1, we design

an algorithm with a rigorous worst case guarantee, relative to the

optimal. Due to its computational hardness for higherT , we instead
design an algorithm to maximize the number of nodes which are

provided security (so ci,r em becomes 1 for them), by a tour of cost

bounded by a given budget. These results are in Section 3. (ii) In
practice, we find through simulation that seeding does not make a

big difference in the overall evacuation rate, and households can

decide to evacuate based on intrinsic factors alone—this is in con-

trast with the classic studies of contagion, where seeding must be done

to achieve diffusion [13]. (iii) Network effects and incentives can

be effective in increasing evacuation rates, based on our simula-

tion results (Section 4.2). We model police going door-to-door to

reduce families’ concerns of crime and looting, which corresponds

to increasing ci,r em in our model. We find that this has a signif-

icant effect on simulation results—the removal of fear of looting

can increase the fraction of families evacuating by up to 50%. The

effect of ci,lev (for controlling the neighborhood effect to encour-

age evacuation) is dwarfed by that of ci,r em (for controlling the

influence of crime to remain in place).

Novelty of our work. Our paper is the first ABM for evacuation

decisions that combines a detailed surveywith a realistic population.

Our model is the first to account for the evacuation-inhibiting effect

of concerns over looting and other crime, with increasing numbers

of evacuating neighbors.

Organization. Our model is presented in Section 2. Results on the

complexity of intervention design problems are in Section 3, and

simulation results are in Section 4. We conclude in Section 5.

2 MODELS

The graph dynamical systems (GDS) model [1, 22] provides a formal

framework for specifying and reasoning about models of human

behavior and the resulting dynamics of a system. GDS is presented

in Section 2.1. This general model is applied to our particular case

of hurricane evacuations, and the details of these modeling efforts

are presented in the sections specified in Figure 1.

GDS Network 
model

Statistical 
model

ABM for 
simulation= + +

Figure 1: The GDS model of Section 2.1 is composed of the

three elements on the RHS, which are represented below:

Section 2.2 contains the networkmodel, Section 2.3 contains

the statistical model, and Section 2.4 contains the ABM.

2.1 A Graph Dynamical Systems Framework

Graph dynamical system description.We use the framework of

graph dynamical systems (GDS) to abstract our agent based model,

which is used to study evacuation behavior. Let V denote the set

of agents. Each node vi ∈ V can be associated with a state xi (t) ∈
{0, 1} at time t , with xi (t) = 1 (resp., 0) indicating that agent vi has
evacuated (resp., not evacuated). Let x(t) ∈ {0, 1}n denote the vector

of agent states at time t . A GDSS consists of two components: (1) an

interaction networkG = (V ,E), whereV represents the set of agents

(in our case, the households which are deciding whether or not to

evacuate), and E represents a set of edges, with e = {vi ,vj } ∈ E if

agents vi and vj can influence each other; and (2) a set F = { fi :

vi ∈ V } of local functions fi : {0, 1}
deд(vi ) → {0, 1} for each node

vi ∈ V , which determines the next state of node vi in terms of

the states of N (i), the set of neighbors of vi ; deд(vi ) = |N (i)|. The
model is a progressive model [18] in that the only state transition is

0 → 1; once a node is in state 1, it remains in state 1. (Once a family

decides to evacuate, it does not then change its mind to remain

in place.) Given a vector x(t) describing the states of all agents at
time t , the vector x(t + 1) at the next time is obtained by updating

xi (t + 1) using its local function fi (·) for all vi ∈ V .

The EvacThresh local functions: modeling evacuation be-

havior. The EvacThresh function fi (·) is probabilistic, and de-

pends on the probability of evacuation (the y-axis variable in Fig-

ure 2), in order to capture the qualitative aspects of the results of

[15]. For each nodevi , we have parametersai ,bi , ci,lev , ci,r em ,p
init
i ,

and p
f inal
i . Let ni (t) =

∑
j ∈N (i) x j (t) denote the number of neigh-

bors of node vi in state 1. At each time step t , we have

Pr[xi (t) = 1|xi (t−1) = 0] =

{
piniti = 1

1+exp(−ai )
, if ni (t) < ci

p
f inal
i = 1

1+exp(−ai−bi )
, if ni (t) ≥ ci

(1)

where ci may represent ci,lev (Figure 2 (Left)) or ci,r em (Figure 2

(Middle)) or both (Figure 2 (Right)), and where we also denote the

LHS above as pi,evac for node vi . Definitions for ci,r em and ci,lev
are given in Section 1.2, Contribution 2. The parameter bi combines

both peer effects, as well as concerns of looting. If node vi has no

looting concern, we have bi ≤ 0, and p
f inal
i ≥ piniti ; otherwise,

we have bi ≥ 0, and p
f inal
i < piniti . This is illustrated in Figure 2.
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Figure 2: The EvacThresh model, for an arbitrary vi , illustrat-
ing the probability of evacuation pi,evac (y-axis) vs the fraction

ni (t ) of neighbors who have already evacuated (x -axis), in three

different cases. (Left) There is concern only for evacuating, and

p f inali > piniti . (Middle) There is concern for only looting, and

p f inali < piniti . (Right) There is concern for both evacuating and

looting, and p f inali < piniti .

Interventions. We consider two kinds of interventions, both of

which involve selecting a subset S ⊂ V of nodes: (1) Seeding, in

which the nodes in S are convinced to evacuate, i.e., xi (0) = 1 for

allvi ∈ S . (2) Providing security, in which the neighborhoods where

nodes in S live are provided security, so that the local function fi (·)
for each vi ∈ S is as in Figure 2(Left). We use c1(S) and c2(S) to
denote the costs of set S in these two cases. In general, the costs

are sub-additive, since they typically involve logistical costs. For

instance, in case (2), a law enforcement official has to come to

the location where v stays, so we model c1(S) as the cost of the
minimum tour connecting the nodes in S .

Problems of interest. For a GDS abstraction Sevac , and inter-

ventions S1, S2, we define evac(Sevac , S1, S2,T ) as the expected

number of nodes who choose to evacuate, for interventions S1, S2,
during T time steps. We study the following questions:

(1) What are the dynamics of evacuation? How many and what

kind of people end up evacuating?

(2)MaxEvac problem: given a budget B, design interventions S1, S2,
such that c(S1)+c(S2) ≤ B, and evac(Sevac , S1, S2,T ) is maximized.

(3) MinCostEvac problem (complement of MaxEvac): given a tar-

get evacuation factor s , choose an intervention S1, S2, such that

evac(Sevac , S1, S2,T ) ≥ s |V |, and c(S1) + c(S2) is minimized.

Example. Figure 3 shows an example of a GDS Sevac with lo-

cal functions as in Figure 2. For node 3, we have p
f inal
3

< pinit
3

because of looting concern, but for all the remaining nodes, we

have p
f inal
i > piniti . As shown in the figure, the probability of the

transition x(1) → x(2) is 0.189. There are 8 possible configurations
to which the system can transition in one step from x(1), each
corresponding to a subset of the three nodes 2, 3, 4 switching to

state 1 (including the configuration in which none of them switches

to 1). Starting from the configuration x(1), and with S1 = {1, 5}

as the seed set, it is easy to verify that the expected number of

nodes which evacuate, i.e, switch to state 1, is 2.7 (this includes the

nodes 1 and 5, which are already in state 1), i.e., evac(Sevac , S1 =
{1, 5}, S2 = ∅) = 2.7.

2.2 Synthetic Population and Social Networks

Synthetic population.We develop a synthetic population for the

Virginia Beach region of Virginia that was impacted by Hurricane

1

2 3

!(#)
4

5

1

2 3

4
5!(%)

Figure 3: An example showing the transitions in a Sevac
model on a graph with five nodes, and EvacThresh local

functions, with parameters θi = 0.5 and piniti = 0.2 for all

vi , p
f inal
2

= p
f inal
4

= p
f inal
5

= 0.3, and p
f inal
3

= 0.1. The

system starts in configuration x(1) with x1(1) = x5(1) = 1

(they are colored blue), and xi(1) = 0 for all vi = 2, 3, 4 (they

are colored white). The probability of transition x(1) → x(2)
(i.e., the probability that the system state at left at time

t = 1 will transition to the state shown at right at t = 2)

is p
f inal
2

(1−p
f inal
3

)(1−p
f inal
4

) = 0.3 · (1− 0.1) · (1− 0.3) = 0.189.

In this calculation, a node vi that does not change state re-

mains in its current state with probability (1 − p
f inal
i ). See

Section 2.1 for definitions of x(t) [vector of agent states] and
xi (t) [an agent vi ’s state].

Sandy. This region has a population of over 450,000 that is dis-

tributed over 167,722 households. Households (i.e., families) are

nodes in our social networks and agents in our ABM. Our synthetic

representation of this population is statistically indistinguishable

from the Census data for this region, at a block group level. Addi-

tionally, it is geographically situated based on land-use data, with a

real geo-location which invokes the concept of neighbors and long

range connections [3]. For each family, we generate attributes such

as its geographic (longitude, latitude) house structure coordinates,

household income, household size, and whether a family has inter-

net access. We also use individual characteristics (most often, those

of head of household) such as race, gender, and age. (The statistical

analysis, Section 2.3, has more detail.) Hence, the households are

heterogeneous.

Social networks and their structures. We add edges between

households based on the Kleinberg small world (KSW) model [19].

In particular, we specify the short-range distance dsr over which lo-

cal interactions take place among neighbors (resulting in bi-directed

edges), and the number q of long-range directed edges incoming

to each vi , that represent work-related interactions of adults. See

Table 1. Hence, we generate and study a family of networks.

In the absence of long-range edges (i.e., q = 0), there are thou-

sands of strongly and weakly connected components in the net-

works: as dsr increases, the number of connected components de-

creases from 19487 to 1235, while the size of the largest weakly

connected component (WCC) increases from 381 families to 51006.

When q increases to 2, there is a one WCC in every graph. Average

degrees for all dsr and q can be computed from the degrees for

q = 0 in Table 1, based on the graph construction process.

Here, our work is confined to face-to-face interactions, although

interactions of other types are candidates for future work. This

might include other network models. For example, communication

networks for social media are often scale free networks.
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Table 1: Kleinberg small world (KSW) networks [19] used in

our experiments. The exponent α = 2.5 in the KSWmodel is

for computing the probabilities of selecting particular long-

range nodes with which to form long-range edges with each

node vi ∈ V . The value of q can be added to the average in-

degree in the table to get average in-degree for different q.
There are five graph instances for each (dsr ,q) combination.

No.

Nodes

Short-Range

Distances (km)

No. Long-Range

Edges

Avg. In- & Out-Deg

Per dsr , for q = 0

167722 0.04, 0.07, 0.10 0, 2, 4, 8, 16, 32 9.58, 22.68, 40.96

2.3 Statistical Model of Evacuation Behavior

2.3.1 Survey. An internet-based survey was conducted by GfK

(formerly known as Knowledge Networks) using its unique panel

of respondents (KnowledgePanel®), to assess factors driving evac-

uation decisions [24]. It was implemented in counties affected by

Hurricane Sandy which hit northeastern U.S. in October 2012.

With the statistical control applied to the sample selection, GfK

ensures the representativeness of KnowledgePanel survey samples

as measured by their proximity to population benchmarks. The

survey was posted online on July 7, 2013 and was closed two weeks

later on July 22. A total of 1,212 individuals completed the survey

with a response rate of 61.93%. Altogether the survey had 48 ques-

tions on issues related to hurricane risk, coastal vulnerability and

demographics, and on average, took about 15 minutes to complete.

2.3.2 Analysis and correlations of neighbors’ evacuation. Using
a Binomial Logit model, we tested for the factors associated with

households’ evacuation behavior, i.e., we tested in order to identify

which variables in the survey are important in predicting evacuation

behavior. We estimated the following equation:

Y ∗
i = β

′

Zi + µi , (2)

where Y ∗
i is the log odds of evacuation, all β values in the equations

of this section are binomial logit regression model parameters, Zi
are the explanatory variables, and µ is the error term. Yi is 1 if the
log-odds of evacuation Y ∗

i > 0, and 0 elsewhere. And

β
′

Zi = β0 + ΣKk=1βHkHki , (3)

where H denotes a vector of explanatory factors. We considered a

variety of explanatory variables including respondent’s age, gender,

race, highest level of education completed; employment status; the

importance of neighbors’ evacuation decisions in respondent’s own

decision to evacuate; the importance of concerns of crime or loot-

ing in the neighborhood in respondent’s own decision to evacuate;

household size; number of elderly members in the households; num-

ber of disabled members in the household; household ownership;

living in a mobile home; household has access to the internet; in-

come; number of vehicles owned; the age of the housing structure;

and whether household has a home insurance. We estimated the

equation using a Binomial Logit model, as appropriate for the level

of measurement for the dependent variable, with robust standard

errors.

Our results indicated that respondent’s employment status; con-

sideration of neighbors’ evacuation behavior; concerns about neigh-

borhood criminal activities or looting; having access to the internet

in the house; age of the house; and having home insurance, each

played a significant role in a respondent’s decision to evacuate

during hurricane Sandy. The effect sizes were modest, nonetheless.

The estimated model is shown in Table 2.

Table 2: Logistic Regression results: dependent variable is

if the respondent evacuated or not during Hurricane Sandy.

(*) symbol next to p-value shows the variable is significant.

Independent Variable Odds Ratio p-Value

Age (in years), ahoh 1.000 0.991

Female (Ref: Male), khh 0.848 0.451

Race (Ref: Black)

White, irw 0.740 0.540

Other, iro 0.655 0.620

Hispanic, irh 1.548 0.657

Mixed, imr 0.312 0.000*

Education (Ref: High school or less)

Some college, esc 1.423 0.146

Bachelor or higher, ealb 1.488 0.264

Employment status, hmw 1.076 0.004*

Evacuation decision made by neighbors etc. (Ref: not important)

Somewhat important, ηsi 1.134 0.550

Important, ηi 1.688 0.027*

Very important, ηv i 1.614 0.423

Concerns about crime such as looting (Ref: not important at all)

Somewhat important, ℓsi 0.527 0.042*

Important, ℓi 0.277 0.085*

Very important, ℓv i 0.283 0.051*

Interaction (neighbor and looting), βel 1.055 0.500

Household size, ihs 0.794 0.354

No. of HH members who are disabled, imd 1.068 0.671

No. of HH members who are elderly, ime 1.322 0.225

Household is owned, iio 0.680 0.428

Living in a mobile home, imh 0.931 0.709

HH has access to the internet, iia 0.235 0.028*

HH Income, ihi 1.015 0.770

No. of vehicles owned by HH, rc 1.057 0.810

Age of house, ahhs 0.997 0.074*

HH has home insurance, if i 6.379 0.000*

constant 0.434 0.479

Respondent’s age, gender or race did not influence her decision

to evacuate. The same pattern was evident for household size, the

number of elderly, and disabled members living in the household.

None of the economic status indicators such as income, household

ownership, living in a mobile home, or number of vehicles was

associated with evacuation decisions. Education was marginally

associated. Nomeaningful difference existed in evacuation behavior

between respondents who completed high school or attended high

school or a lower schooling level, and those with a bachelor’s degree.

Further, respondents living in an older housing structure had a

higher likelihood of evacuation during Hurricane Sandy.

2.3.3 Estimating importance of neighbors’ evacuation and con-
cerns about crime and looting. To estimate the probability of evac-

uation for each household in the synthetic population, we need

data on each of the explanatory variables used in the binary logit

equation. Since the synthetic population’s attributes are derived

from the census data, the demographic features for each household

are readily available. However the behavioral features, such as the

importance of neighbors evacuation decisions (which motivates a

family to evacuate) and concerns about crime (which motivates a

family to stay) must be estimated from the survey data separately.

For each of these two features, an ordered logistic regression

model was separately built based on the survey data. The ordered
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logistic was used to handle the 4-level response in the survey data,

i.e., not important (index = 0), somewhat important (index = 1),

important (index = 2), and very important (index = 3). These mod-

els were then applied to the synthetic population to estimate their

corresponding features, which in turn were used to estimate the

probability of evacuation. In both “neighbor” and “looting” mod-

els, we found age, gender, race, education level, family size and

household income to be significant in estimating the importance.

2.3.4 Estimating the probability of evacuation. With important

variables identified in Section 2.3.2, and the additional analysis

results in Section 2.3.3, a logistic regression was performed with the

explanatory variables of Table 2 to calculate the probability pi,evac
of a family vi evacuating, given by:

pi,evac = 1/(1 + [1/exp(−0.835045 + дhh + дnet )]) (4)

where дhh represents the intrinsic (i.e., household-related) terms

дhh = − 0.00017 ahoh − 0.165 khh − 0.301 irw

+ 0.436 irh − 0.423 iro − 1.163 imr

0.353 esc + 0.397 ealb + 0.073 hmw

− 1.446 iia − 0.0025 ahhs + 1.853 if i

− 0.231 ihs + 0.015 ihi + 0.066 imd + 0.279 ime

− 0.386 iio − 0.0718 imh + 0.056 rc

(5)

and дnet represents the network (i.e., exogeneous) terms

дnet =0.125 ηsi + 0.523 ηi + 0.478 ηvi + 0.053 βel

− 0.640 ℓsi − 1.284 ℓi − 1.263 ℓvi .
(6)

Variables in Equations (5) and (6) are provided in Table 2 and the

coefficients are determined from the logistic regression. In Equa-

tion (6), we note that an increase in probability from evacuating

being operative (ηi coefficient) is lesser in magnitude than each of

the three remaining terms for remaining in place (not evacuating).

Thus, we see that when both effects are operative, the remaining

behind (i.e., looting) term dominates (only one of the three terms is

operative for a vi ), so the behavior is as shown in Figure 2(Right).

Figure 2(Left) applies when only the evacuating influence is oper-

ative. Figure 2(Middle) applies when only the looting influence is

operative.

The term дhh is a data-driven model, while дnet is a data-plus-
theory-driven model. Both are time-independent models, but дnet
is augmented in the agent model (Section 2.4) to become time-

dependent, accounting for the changing states of a node’s neighbors.

Theory enters through contagion theory [2, 6] and peer influence

collective action theory [13, 25, 26]. Thus, дhh in Equation (4) pro-

vides heterogeneity across families and дnet (when augmented)

provides heterogeneity and time dependence in the dynamics of

hurricane evacuation decision making.

Equations (4) through (6) represent the particular local function

fi (·) for family vi that was presented in general terms by Equa-

tion (1) of the GDS description in Section 2.1.

2.3.5 Model based estimates of missing data on home insurance.
In VA Beach 55,014 households out of a total of 167,722 house-

holds, had missing information about home insurance. To estimate

this missing information we trained a regression model on all the

112,708 households for which home insurance data was available.

The response variable in the regression was whether the household

had home insurance or not and the independent variables were

demographic variables: household size, household income, age of

the house, age of the head of the household, employment status,

and marital status. Once this model was learned, it was applied

to the households for which home insurance data was missing, to

obtain an estimated probability of having home insurance.

2.4 Agent Model of Behavior

2.4.1 Overview of model development. The survey data are a

collection of individual responses to questions that focus on re-

spondents’ and their families’ demographics, and the end result

of whether the family evacuated prior to the arrival of Hurricane

Sandy. In this sense, the survey data are static, end-of-event infor-

mation: for example, a respondent states that she and her family

either evacuated or did not (not the day that they decided to evac-

uate nor the evacuation decisions of their neighbors). Consistent

with the GDS framework in Section 2.1 and consistent with the

neighborhood effects found in the survey data and analyses of Sec-

tion 2.3, our goal is to develop a model that accounts for (i) time

evolution of evacuation decisions, and for (ii) neighborhood effects.
That is, the survey data did not have a temporal aspect: respondents

state whether they evacuated or did not, and not when, if they did

evacuate. Since our model considers temporal evacuation decisions,

which enables interventions that would not otherwise be possible

to explore, we convert the probability from the logistic model to

a daily probability. We address these in the next two subsections

and then in the third subsection, we put these results together to

produce an algorithm for the probability of a family deciding to

evacuate at each time step.

2.4.2 Predicting neighbor influence on evacuation and sheltering
in-place. Section 2.3.3 describes the procedure for estimating the

influence of neighbors for evacuating and for crime (i.e., remaining)

on a family’s evacuation decision. The covariates in these binary

logit models are time-independent quantities and hence are com-

puted once for each family. For each household vi , for each of the

two effects (evacuating and remaining), we compute probabilities

for each of the four levels. To calculate the probability of evacuation

as shown in Equation (6), the following parameters are required:

ℓsi , the indicator variable for the remaining (i.e., not evacuating)

category of somewhat important; ℓi , the indicator variable for the

remaining category of important; ℓvi , the indicator variable for

the remaining category of very important; and the analogous three

variables from Table 2 for the categories of evacuating. With these

variables, we form two vectors for eachvi :ηi,evac = (0,ηsi ,ηi ,ηvi )
for evacuating and ℓi,loot = (0, ℓsi , ℓi , ℓvi ) for remaining. In each

of these two vectors, at most one element will be 1: that is the ele-

ment corresponding to the category with the greatest probability

from the analyses of Section 2.3.3.

2.4.3 Network peer effects. Peer (i.e., distance-1 neighbor) effects
fromvi ’s social network are incorporated into the evacuationmodel

for family vi , using the following motivating scenario. Through

the regressions of Section 2.3.3, it is determined that a family vi
considers the influence of its distance-1 neighbors to be important

in motivating them to evacuate, and very important in motivating
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them to remain in place (due to looting concerns). Suppose at some

time t , vi has no neighbors that are evacuating, and the family is

deciding to evacuate. Even though peer effects are important, there

are no neighbors that are evacuating to provide these evacuating

and remaining influences. So the contribution of peer influence to

vi in this situation is ambiguous.

We resolved this ambiguity in the following way. We specify

critical fractions (or counts) of neighbors in state 1 for motivat-

ing evacuation ci,lev and for motivating remaining in place ci,r em .

That is, if at least a fraction (or count) ci,lev (respectively, ci,r em )

of vi ’s neighbors is in state 1, then vi considers these neighbors to
be compelling in motivating vi to leave (respectively, remain); oth-

erwise, vi ignores this neighborhood condition as not persuasive.

In this way, the driving force for changing vi ’s probability of

evacuation is dynamic: it changes in time according to the frac-

tion (or count) of neighbors in state 1, and ci,lev and ci,r em . The

remaining terms in the probability of evacuation (Equation (4))

are assumed static for a simulation; these include age, gender, and

education attainment.

2.4.4 Probability of evacuation. Algorithm 1 describes the pro-

cess of determining whether a family vi evacuates at time (t + 1),
based on the system at time t . Inputs to the algorithm include the

modeling results of this Section 2.4, and the rest of Section 2. The

duration of the simulation is t∗. Algorithm 1 is the local function

for each vi . If a family is in state 1 at time t̂ , then it is evacuating

at all time t ≥ t̂ (step 1). If not (i.e., vi is in state 0), then the state

of vi is determined. First, the fraction (or count) of vi ’s neighbors
that are in state 1 is determined (step 3). Then, steps 4 and 5 deter-

mine whether peer influence for evacuating should be incorporated,

and if so, the value. Next, steps 6 and 7 determine whether peer

influence for remaining in place should be incorporated, and if so,

the value. Steps 8 through 11 compute the probability of evacua-

tion, convert it to a daily value, and perform a Bernoulli trial to

determine whether vi transitions to the evacuating state 1.

3 COMPLEXITY OF MAXEVAC AND

MINCOSTEVAC

These problems turn out to be very hard even for the simplest case of

T = 1, even if there is no concern of looting, so that p
f inal
v > pinitv

for all nodes v ∈ V .

Theorem 3.1. Even if pinitv = 0 and p
f inal
v = 1 for all v , T = 1,

and no nodes have looting concerns, theMaxEvac andMinCostEvac

problems are NP-complete; further, in this setting, the MinCostEvac

problem cannot be approximated within a factor ofO(n
1

2(log logn)c ) for

some c .

We show an approximation algorithm for MinCostEvac when

T = 1, building on the result of [28].

Theorem 3.2. Suppose there is a solution S∗ to MinCostEvac for

instances withT = 1 and no looting concern, such that evac(Sevac , S
∗, ∅,T =

1) ≥ q∗n. Let rmax = maxv θvdeд(v). Then, it is possible to get a
solution S with |S | = O(|S∗ |rmax log

2 n(1 + ln 1

ϵ +
1

ϵq∗ )), such that

evac(Sevac , S, ∅, 1) ≥ (1 − ϵ)q∗n.

Proof. (Sketch) We reduce the MinCostEvac problem to the

partial set multi-cover problem. If no node i has looting concern,

Algorithm 1: Local Function Computation for vertex

vi at time t in a simulation.

1 Input: t , vi , x(t), ni (t), t∗ = 10 days, ci,lev , ci,r em , βel ,
ahoh , ηi,evac = (0,ηsi ,ηi ,ηvi ), ℓi,loot = (0, ℓsi , ℓi , ℓvi ),

khh , irw , irh , iro , imr , hmw , iia , ahhs , if i , esc , ealb , ihs , ihi
imd , ime , iio , imh , rc . See Table 2 for symbol meanings.

2 Output: For family vi at time t + 1, the next state xi (t + 1).

3 Steps:

(1) if xi (t) == 1 do

i. Return xi (t + 1) = 1. // Family is already evacuating.

(2) Set xi (t + 1) = 0. // Family vi ’s next state is initialized to 0.

(3) Determine the fraction (or count) ni of vi ’s neighbors that
are evacuating (i.e., in state 1).

(4) Set vector η = (0, 0, 0, 0). // vi does not consider its
neighbors leaving to be important in motivating vi to leave;

the effect is inoperative.

(5) if ni ≥ ci,lev do

i. Make vector assignment η = ηi,evac // Makes

neighborhood influence to evacuate operative.

(6) Set vector ℓ = (0, 0, 0, 0). // vi does not consider its
neighbors leaving to be important in motivating vi to leave;

the effect is inoperative.

(7) if ni ≥ ci,r em do

i. Make vector assignment ℓ = ℓi,loot // Makes

neighborhood influence to remain operative.

(8) Compute Equation (4) and convert to daily probability

pi,evac,daily = 1 − (1 − pi,evac )
(1/t ∗)

.

(9) Generate a number nrandom ∈ [0, 1] uniformly.

(10) if (nrandom ≤ pi,evac,daily ) do
i. Set xi (t + 1) = 1. // Family vi has transitioned to the

evacuating state.

(11) Return xi (t + 1).

it evacuates with probability p
f inal
i , if ri = θideд(i) neighbors

have evacuated. Since T = 1, this corresponds to having at least

ri neighbors of i in the seed set S . We use the algorithm of [28] to

find a subset S that maximizes the number of such nodes. □

Maximizing the evac(·) objective for larger T is a much harder

problem. Further, our experiments suggest that in practice, seeding

has limited impact on evacuation. Therefore, we consider the prob-

lem of finding a subset S of homes to visit, so that c2(S) ≤ B, where

B is a given budget, and

∑
v p

f inal
v is maximized. Here, we consider

the sum of p
f inal
v ’s, instead of |S |, since this corresponds to the

maximum expected number of nodes that might directly evacuate

within the set. We reduce this problem to the orienteering problem

studied in [8] in the following manner. We consider a root node

s from where the tours start, a cost wi j of going from node i to

node j , and a reward p
f inal
i for each node i . Next, for each possible

t ∈ V , we use the algorithm of [8] to find a tour on a subset St with
c2(St ) ≤ B, and return the one with the maximum reward.

Theorem 3.3. For a given budget B, the above algorithm returns

a set S with c2(S) ≤ B, and
∑
i ∈S p

f inal
i within an O(1) factor of the

optimum.
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The detailed proofs of the theorems are omitted here due to lack of

space but will be available in the journal version of the paper.

4 SIMULATIONS AND RESULTS

4.1 Simulation Process and Parameters

Simulation process. Simulation instances are performed by incre-

menting time at 1-day intervals, for t∗ = 10 days (the tenth day is

hurricane arrival). At each day (time t ), 0 ≤ t ≤ t∗ − 1, all agents

vi ∈ V , 1 ≤ i ≤ n, of the social network G(V ,E) are iterated over

and Algorithm 1 is executed to determine each agentvi ’s next state
xi (t +1). A simulation is composed of 100 simulation instances, and

results are averaged across the instances, and presented below. In all

simulations, the setV of families is the same, and n = |V | = 167722.

It is the connectivity (in terms of numbers of short- and long-range

edges) that changes across networks.

Parameters studied. Input variables and their values used in sim-

ulations are provided in Table 3.

Table 3: Summary of parameters and values in simulations.

Parameter Description

Networks. Vary dsr and q in the networks of Table 1.

Num. random

seeds, ns .
Number of seed nodes (nodes evacuating at t = 0)

specified per run (chosen uniformly at random).

Values are 0, 50, 500, 5000, and 50000.

Neighborhood

effect critical

values, clev ,
cr em .

Values of clev and cr em are 0 to 1, in increments

of 0.2 or finer, when these values are fractions of

neighbors of a node vi . Values of 0, 1, and 2 are

used when these values are counts.

Geographic

subregions of

the popula-

tion, kblk .

The bounding box (rectangle) that circumscribes

the VA Beach, VA population (roughly 46 km × 29

km) is partitioned into 25 equi-sized blocks. The

kth block is kblk . 1 ≤ kblk ≤ 25.

4.2 Simulation Results

Effect of network structure (dsr and q). Figure 4 provides the
average cumulative fraction s of nodes evacuating from the popula-

tion at each day leading up to hurricane arrival. Figure 4a shows

the effect of distances dsr for introducing short-range edges in the

social networks, and Figure 4b shows the effect of number q of long

range incoming edges per node. First, the plots show that there are

very small effects of numbers of short-range edges and long-range

edges on the fraction of the population evacuating. These results

are for the particular case where clev = cr em = 0.2. Later, we

will demonstrate that varying clev and cr em , along with network

structure, reveals significant interaction effects. Second, variances

among the data in each curve are very small (there are vertical

variance bars for each curve at each day on the x-axis, and they

are non-visible, indicating that variances are very small among

the 100 simulation instances). We therefore ignore variances in the

following results.

Basic character of dynamics and effects of seeding. Continu-

ing with Figure 4, the curves in the plots are concave downward.

In epidemics, for example, the initial stages of an outbreak are con-

cave upward as a virus takes hold in a population, and the latter

stages are concave downward as the number of available agents

(a) (b)

Figure 4: Effect of network structure on the dynamics of

evacuation decision making. Dynamics are shown as the

time history of the cumulative average fraction of the pop-

ulation that has decided to evacuate (Frac. DE). Other fixed

conditions: clev = cr em = 0.2, and ns = 50 random seeds. (a)

Curves for three short-range radii dsr for short-range edges
andfixedq = 4 random, long-range incoming edges per node.

(b) Curves for four values of number q of long-range incom-

ing edges for fixed dsr = 0.07 km.

(a)

Figure 5: Effect of number

ns of seeded families

on the dynamics of

evacuation decision mak-

ing. Fixed conditions:

dsr = 0.10 km, q = 32,

and clev = cr em = 0.0.

It is not until ns is large

(500 ≤ ns ≤ 5000) that it

makes a noticeable differ-

ence in the dynamics.

for infection decreases, resulting in a sigmoidal curve. Here, be-

cause of the influence of family’s intrinsic factors in Equation (4)

on the probability of evacuation, a family may decide to evacuate

without any external (network) influence. As a result, seeding the

population with families that are evacuating is not required, as is

the case with a Granovetter type [6, 13, 33] of contagion, where

the driving force to change state to 1 (i.e., to become active, in a

general sense), is provided solely by exogenous (peer) influence.

This is also illustrated in Figure 5, where the effect of seeding is

explicitly shown. The results indicate that the dynamics are not

influenced appreciably until the number ns of seed nodes is about

5000. It is also interesting that this set of input parameters yields ap-

proximately linear behavior in time, because a hallmark of complex

systems is nonlinear behavior. This effect of seeding is pervasive

across conditions.

Effects of clev and cr em , coupled with network structure. Re-

call that Figure 4 illustrates that for fixed clev = cr em = 0.2, the

fraction of the population deciding to evacuate (Frac. DE) was not

dependent on network structure. Figure 6 depicts how Frac. DE

changes with cr em and network structure (dsr , and q). Here now,
cr em is the minimum count of vi ’s neighbors in state 1 that makes

neighbors compelling such that the dampening effect of looting on

the probability of evacuation becomes operative.

In Figure 6a, the largest variation in the final (i.e., t = 10) fraction

s of families evacuating occurs for dsr = 0.04 km, and this variation
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decreases with increasing dsr . This is because for dsr = 0.04 km

(0.10 km), the average in-degree of a node is 10 (40), so the in-degree

of a node is changed more appreciably for lesser dsr values when
32 long-range edges are added per node.

At dsr = 0.04 km, cr em = 0 means that the inhibiting effect of

concerns about looting are always operative, even if no neighbors

of family vi are evacuating (blue and orange curves lay on top

of each other). Incorporating looting decreases the probability of

evacuation, and this results in the least values of s , regardless of q.
As cr em increases from 0, the final fraction of evacuating families

increases, because increasing cr em inhibits the activation of the

looting effect. For a given cr em > 0, the curve for q = 0 is greater

than that for q = 32 because as the number q of long range edges

increases, there are more paths over which the evacuation decision

can propagate. Figure 6b illustrates how increasing cr em (plotted

on x-axis) from 0 to 1, which dampens looting concerns and thus

makes evacuation more likely, indeed increases s by 50%.

(a) (b)

Figure 6: (a) Plot of the final fraction of the population that

decides to evacuate (Final Frac. DE, s) as a function of dsr , q,
and cr em . Fixed values are clev = 0,ns = 0. cr em is a count (not

a fraction) of the minimum number of neighbors that must

be in state 1 for a family to be concerned with looting. These

results demonstrate that for some regions of the input space,

network structure can have a significant effect of evacuation

dynamics. (b) Plot of the final fraction of nodes in state 1

as a function of cr em (the fraction of neighbors in state 1,

for making operative concerns over looting), which varies

from 0 to 1. Fixed conditions are clev = cr em , ns = 0. As cr em
increases from 0 to 1, s increases by 50%.

Interventions in the form of police reassuring citizens that

their property will be protected against looting. Previous re-

searchers have shown that targeting monitoring of homes and

property by law enforcement agencies in hurricane affected areas

can be effective in controlling criminal activities and hence in mo-

tivating people to leave [20, 30, 32]. Based on our results above, we

conclude that (i) seeding families as evacuating has little impact

on the overall evacuation fraction, for reasonable levels of seeding,

and (ii) increasing cr em can be effective in increasing the amount

of evacuation. The latter result was obtained by methodically in-

creasing cr em globally (i.e., for the entire population) in Figure 6b.

Here, we take a local approach and study a systematic targeting of

successively larger geospatial zones by police in reassuring people

in those zones of police property protection. Our base case in this

study is the spread fraction s of evacuation when clev = cr em = 0.

VA Beach, VA is circumscribed by a roughly 46 km × 29 km

geographic region (a “bounding box”). We partition this region into

25 equi-sized rectangular blocks, and run a set of 25 simulations.

The baseline condition is that cr em = 0, i.e., that the families are

always concerned about looting, no matter how many neighbors

have evacuated. In a first simulation, the police visit households in

block 1 to reassure them, resulting in an increase in cr em to 0.2 for

all families whose homes reside in block 1. In the kth simulation,

police reassure all homes residing in blocks 1 through k , inclusive.
Note that because of varying population density, there is not an

equal number of households in each block; see Figure 7a.

Figure 7b shows the results. First, the stair-stepped nature of the

results is caused by differences in population density, underscoring

the need for realistic populations. Second, the effect of changing

dsr is small, but increases with increasing cr em . The effect of cr em
is greater. Third, these effects are solely due to network and peer

effects. That is, household-related variables are all held constant in

this intervention study.

(a) (b)

Figure 7: (a) Fraction of households in each of 25 equi-sized

zones within the bounding box of VA Beach, Va. The shape

of the curve is the consequence of the greater population

density in the northern part of the city. (b) Final fraction

s of population evacuating as a function of the cumulative

number of blocks visited by police to reassure families that

they will monitor property to dissuade looting. Police visit

the blocks in the order given in (a). Households that have

been reassured have cr em increased to 0.2 (or 0.4), from the

baseline condition of 0. The steps in the plot correspond to

police entering blocks (zones) with greater population den-

sity. Increasing cr em dampens a family’s concern over loot-

ing. Note that these results are solely a network effect. This
intervention generates up to a 50% increase in the fraction

of the population evacuating.

5 SUMMARY AND FUTUREWORK

We use a combination of hurricane survey data, synthetic popu-

lations, statistical models and ABM to understand the effects of

network structure, seeding, human behavior, and interventions

on the evacuation response to a hurricane. Our results show that

network effects and incentives can help in increasing the evacua-

tion rates. In future work, we plan to include the impact of utility

disruptions and risk perceptions on evacuation behavior.
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