
Hiding Actions in Multi-Player Games

Vadim Malvone
Università degli Studi di Napoli

Federico II, Italy
vadim.malvone@unina.it

Aniello Murano
Università degli Studi di Napoli

Federico II, Italy
murano@na.infn.it

Loredana Sorrentino
Università degli Studi di Napoli

Federico II, Italy
loredana.sorrentino@unina.it

ABSTRACT
In the game-theoretic approach to reasoning about multi-
agent systems, imperfect information plays a key role. It
requires that players act in accordance with the information
available to them. The complexity of deciding games that
have imperfect information is generally worse than those that
do not have imperfect information, and is easily undecidable.
In many real-life scenarios, however, we just have to deal with
very restricted forms of imperfect information and limited
interactions among players. In these settings, the challenge
is to come up with elementary decision procedures, as we do.

We study multi-player concurrent games where (i) Player0’s
objective is to reach a target W , and (ii) the opponents
are trying to stop this but have partial observation about
Player0’s actions. We study the problem of deciding whether
the opponents can prevent Player0 to reach W , by beating ev-
ery Player0’s strategy. We show, using an automata-theoretic
approach that, assuming the opponents have the same par-
tial observation and play under uniformity, the problem is in
ExpTime.

1. INTRODUCTION
Game theory in AI is a powerful mathematical framework

to reason about reactive systems. These are characterized
by an ongoing interaction between two or more entities,
modeled as players, and the behavior of the entire system
deeply relies on this interaction [16]. Game theory has been
largely investigated in a number of different fields. In eco-
nomics, it is used to deal with solution concepts such as Nash
Equilibrium [27]. In biology, it is used to reason about the
phenotypic evolution [34]. In computer science, it is applied
to solve problems in robotics, multi-agent system verification
and planning [18,22,36]. In the last two decades game theory
has been also investigated in a number of logics for strategic
reasoning such as ATL?, Strategy Logic, and the like [3, 9, 26].

In this paper we consider multi-player games played on
finite graphs. The game proceeds in rounds. At each round
all players, independently and simultaneously, choose their
actions that, together with the current state of the game,
determine a transition to the next state. We consider games
played under a reachability objective, i.e. some states of the
game arena are declared target and we investigate the ability

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright © 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(formally, a strategy) for some players to reach a target
state or to prevent others from reaching them. A successful
strategy is then called winning.

A basic game setting concerns the one played under perfect
information, meaning that every player has full knowledge
of the game arena and the moves taken by the other players.
However such a game model has rare applications in real-life
scenarios where it is common to have situations in which a
player has to come to a decision without having all relevant
information at hand. In computer science this situation
occurs for example when some variables of a system are
internal/private [6, 23]. For instance, consider an ATM and
a customer player aiming to withdraw some money. At a
certain point, the controller player internally decides the
denominations of the bills to delivery to the customer and
this is revealed only at the end of the interaction, that is
when the game ends.

In game models for AI, the imperfect information is usually
modeled by setting an indistinguishability relation over the
states of the arena [23,29,31]. In this case, during a play, it
may happen that some players cannot tell precisely in which
state they are, but rather they observe a set of states. There-
fore these players cannot base their strategy on the exact
current situation. This means that over indistinguishable sets
they can only use the same strategy or, similarly, that some
perfect information strategies are not valid anymore. This
constraint deeply impacts on the problem of deciding who
wins the game. Indeed, it is well known that multi-player
games of imperfect information are computationally hard
(non-elementary or even undecidable) [28,31].

In this paper we consider multi-player reachability games,
played by n players Player0 . . .Playern−1, where Playeri>0

can have (equal) imperfect information about the actions
taken by Player0. Conversely, Player0 has always full observ-
ability over the actions taken by the other players. Some
states of the game arena are set as target and the aim of
Player1 . . .Playern−1 is to prevent Player0 from reaching a
target state, otherwise Player0 wins the game. Precisely,
we check whether Player0 have a counter-strategy to ev-
ery joint-strategy of his opponents, or equivalently that
Player1 . . .Playern−1 do not have a winning strategy. Clearly,
all players will act by adhering to their observability. Solving
the game amounts to checking whether Player0 wins the
game.

The game model we consider can be applied in a number
of concrete scenarios. As an example, it can be used in the
context of Wireless Sensor Networks [1], which consist of a
large number of small sensors that are used for gathering

1205

data in a variety of environments. The data collected by
each sensor is communicated through the network to a single
processing center that uses all reported data to determine
characteristics of the environment or detect an event. The
communication or message passing process is usually designed
in a way that it limits the consumption of energy. For this
reason, some sensors have a limited scanner view [4]. This
scenario can be easily casted in our game setting, where the
information from sensors can be seen as actions, as well as
it is for the processing center who has complete information
from the sensors. Then, it is possible to check whether a
specific configuration (for example a critical one) can be
reached. Other examples can be found in the setting of not
losing games [15].

Deciding the winner of the introduced multi-player con-
current game setting requires addressing a major issue: we
have to limit the check to solely those players’ strategies that
are compatible with the visible information. Note that the
visibility constraint is not a property easy to check [23]. In
particular, an imperfect information at a certain round of
the game may propagate along all future interactions stages
and this has to be taken into account in every single play.
We address this difficulty by introducing an ad hoc structure,
named blocking tree. Precisely, we consider a tree that, at
each node and for every possible action taken by Player0,
collects the best possible counter-actions of the adversarial
players, chosen under the visibility constraint. Such a tree is
considered “blocking” whenever it contains only paths along
which no target state is met. Then, we say that Player0 wins
the game if and only if no blocking tree exists. Otherwise, we
say that Player0 loses the game and then the opponents win
it. By using this reasoning and by exploiting an automata-
theoretic approach we show that deciding our game setting
can be done in ExpTime. Precisely, we build an alternating
tree automaton [13] that accepts all blocking trees and reduce
the game decision problem to check its emptiness. As the
automata construction is linear and checking its emptiness
is exponential, we get the result.

Regarding the automata we use, recall that nondeterminis-
tic tree automata, on visiting a node of the input tree, send
exactly one copy of themselves to each successor of the node.
An alternating automaton instead can send several copies of
itself to the same successor. To this purpose, the automaton
uses directions to indicate to which successor to send a state.
In our setting, we set as directions the product of the common
visible actions among all the players. This allows to keep
together states that, looking the same to those players, share
the same chosen actions. Note that while the input tree has
a very “thin shape” due to the imperfect information setting,
the corresponding run has as branching degree the product
of the actions all players can choose. Also, we have a tight
complexity since turn-based 2-player games with imperfect
information are ExpTime-hard [23].

Related works. Imperfect information games have been
largely considered in the literature [7, 11,17,24,31]. A sem-
inal work is [31] in which a number of variants of 2-player
games with imperfect information have been investigated.
Generally, having imperfect information immediately reflects
on worsening the complexity of solving the game. In multi-
player games one can easily jump to non-elementary [28] or
even to undecidability [11]. As an evidence we mention [29]
where a pipeline of processes architecture is considered and

each output communication of process i is taken as the input
communication of process i+ 1. The reachability problem
under imperfect information in this specific setting is de-
cidable but complete for non-elementary time1. In [35] the
authors impose a hierarchy in order to regain decidability
of the synthesis problem under imperfect information. As
in [29] the problem is decidable but non-elementary. In con-
trast, as we discussed in the rest of the paper, our (automata)
procedure is 1-ExpTime-complete. Moreover, differently
from [35], we use concurrency, imperfect actions, and spe-
cific adversarial coalitions. Other works worth of mention
concern ATL∗, a logic introduced by Alur, Kupferman and
Henzinger [3]. In many cases, deciding the related decision
problem becomes undecidable [3,11]. In particular it is un-
decidable in the case of three agents having perfect recall
of the past (as we do), while it is elementary decidable in
case the agents play positional (a.k.a. memoryless) strategies.
However note that in the ATL∗ setting the agents can learn
during a play and possibly move to perfect information about
the game structure. This is a very strong requirement that
conflicts with several application domains (see [22] for an
argument) and we do not consider it here.

A group of works that is closely related to our setting con-
cerns module checking [18,22,23]. In the basic setting this is
a two-player game where one of the players, the environment,
has nondeterministic strategies. Module checking has been
also investigated in the imperfect information setting and
the related works have been a good source of inspiration for
the solution techniques we propose in this paper. Note that
in module checking the system player (Player0, in our case)
has one fixed strategy, while the adversarial environment
(Player1) has imperfect information about the arena (and
thus the actions performed by Player0). Our work can be
seen as a specific multi-player variant of module checking
under deterministic strategies.

Other works dealing with imperfect information games
and worth of mentioning are [5,10,30]. These works consider
two-player turned-based games rather than concurrent multi-
player arenas, as we do. On the other hand they consider
richer structures (such as stochastic arenas) and/or richer
winning conditions.

Close to our setting is also the game structure studied in [8].
There the authors consider reachability three-player concur-
rent games under some specific form of imperfect information
but with no hierarchy over the visibility of actions. Solving
such a game turns out to be non-elementary. Finally we re-
port that, in a short paper recently published, a preliminary
study on reachability games under imperfect information
have been considered along with a winning condition similar
to the one we use here [25]. Our paper improves and ex-
tends all the results reported there on two-player games and,
more important, introduces fresh results on the multi-agent
side. For the sake of readability we also use some concepts
introduced there.

We conclude this section by remarking that our definition
of imperfect information relies on the actions played by the
players involved in the game, rather than the visited vertices.
This allows to reason about the actions played by other
players and not only the outcome of these actions. Apart
few works we are aware of [8, 14, 20, 33], this direction has
been less explored in literature, but shown to be useful in

1Other settings have been also taken in consideration and
leading to an undecidable problem.

1206

several contexts. In particular, in the reasoning about Nash
Equilibria, such an extra information plays a key role [2, 33].

Outline. The rest of the work is organized as follows. In
Section 2 we introduce multi-player reachability games with
imperfect information, along with some preliminary notions.
Moreover, we recall the reachability winning condition and
then we show our winning condition that uses blocking trees
to decide the game. In Section 3 we describe how the im-
perfect information has a key rule to determine the winner
via some examples. In Section 4 we show an automata-
theoretic solutions for 2-player reachability games with im-
perfect information and n-player reachability games with
imperfect information. In particular, for both of them we
show that the problem of deciding the winner of the game is
ExpTime− complete. Finally we give some conclusions in
Section 5.

2. GAME DEFINITION
In this section we define the multi-player reachability game

under interest as well as some preliminary notions. We con-
sider that Player1, . . . ,Playern−1 can have imperfect infor-
mation about the actions performed by Player0. Instead,
Player0 is omniscient and has perfect information about all
other players.

Model. We model the game by means of a classic concurrent
game structure [3] augmented with a set of target states and
an equivalence relation over Player0’s actions. The formal
definition follows.

Definition 2.1. A concurrent multi-player reachability
game with imperfect information (CRGI, for short) is a

tuple G ,<St, sI ,P,Ac, tr,W,∼=> where St is a finite non
empty set of states, sI ∈ St is a designated initial state,
P , {Player0, . . . ,Playern−1} is the set of players, Ac ,
Ac0 ∪ . . . ∪ Acn−1 is the set of actions. We assume that
Aci ∩ Acj = ∅, for each 0 ≤ i, j < n. W ⊆ St is a set of
target states, tr : St×(Ac0×. . .×Acn−1)→ St is a transition
function mapping a tuple made of a state and one action for
each player to a state, and ∼= is an equivalence relations on
Ac0.

W.l.o.g., we assume that for each pair of states s and
s′ there exists at most one tuple of players’ actions that
lets to transit from s to s′. Observe that one can always
transform an arbitrary CRGI to make this property true by
opportunely duplicating the states that are reachable along
different agents’ decisions, starting from a common state.

For two actions a, a′ ∈ Ac0, we say that a and a′ are indis-
tinguishable/invisible to all players Player1, . . . ,Playern−1 if
a ∼= a′. Moreover, we fix with [Ac0] ⊆ Ac0 as a set of repre-
sentative actions over ∼=. If two actions are indistinguishable
for a player then also the reached states are so. That is,
the imperfect information over actions induces the imperfect
information over states. It is important to note that, in our
setting all players can distinguish the initial state while this
is not true in general, in case of imperfect information over
states. A relation ∼= is said to be an identity equivalence if
a ∼= a′ iff a = a′.

A CRGI has perfect information if ∼= contains only identity
relations (so, we drop I from the acronym). A CRGI is a
2-player game if P = {Player0,Player1} and we name it

2CRGI. Hence, 2CRG are 2-player games under perfect
information.

Tracks, strategies, and plays. To give the semantics of
CRGIs, we now introduce some basic concepts such as track,
strategy, and play.

Definition 2.2. A track is a finite sequence of states
ρ ∈ St∗ such that, for all i ∈ [0, |ρ| − 1[, there exists n
actions a0 ∈ Ac0, . . . , an−1 ∈ Acn−1 such that (ρ)i+1 =
tr((ρ)i, a0, . . . , an−1), where (ρ)i is the ith element of ρ.

For a track ρ, by ρ≤i we denote the prefix track (ρ)0 . . . (ρ)i.
By Trk ⊆ St∗, we denote the set of tracks over St. For
simplicity, we assume that Trk contains only tracks starting
at the initial state sI ∈ St.

A strategy represents a scheme for a player containing a
precise choice of actions along an interaction with the other
players. It is given as a function over tracks. The formal
definition follows.

Definition 2.3. A strategy for Playeri in a CRGI G is
a function σi : Trk→ Aci mapping each track to an action.

A strategy is uniform if it adheres on the visibility of the
players. To formally define it, we first give the notion of
indistinguishability over tracks.

Let tr : St× St ⇀ (Ac0 × . . .×Acn−1) a partial function
that given two states s and s′ returns, if exists, the tuple of
actions a0, . . . , an−1 such that s′ = tr(s, a0, . . . , an−1). Note
that tr is well defined as we assume that for each pair of
states s and s′ there exists at most one tuple of players’
actions that allows us to move from s to s′.

Definition 2.4. Given two tracks ρ, ρ′ ∈ Trk, we say that
ρ and ρ′ are indistinguishable to P layerj , with j > 0, iff (i)
|ρ| = |ρ′| = m; (ii) for each k ∈ {0, . . . ,m− 1} it holds that
tr((ρ)k, (ρ)k+1)(0) ∼= tr((ρ′)k, (ρ

′)k+1)(0).

We can now define the concept of uniform strategy.

Definition 2.5. A strategy σi is uniform iff for every
ρ, ρ′ ∈ Trk that are indistinguishable for Playeri we have
that σi(ρ) = σi(ρ

′).

Thus uniform strategies are based on observable actions.
In the rest of the paper we only refer to uniform strategies.

The composition of strategies, one for each player in the
game, induces a computation called play. More precisely,
assume Player0, . . . ,Playern−1 take strategies σ0, . . . , σn−1,
respectively. Their composition induces a play ρ such that
(ρ)0 = sI and for each i ≥ 0 we have that (ρ)i+1 = tr((ρ)i,
σ0(ρ≤i), . . . , σn−1(ρ≤i)), for all i ∈ N.

Now, we give the concepts towards the definition of the
the semantics of CRGI, i.e. how Player0 wins the game. For
a matter of presentation, we reason about the simpler case
of 2CRG. Most of the concepts we present here will be used
or opportunely extended to define CRGI.

Reachability winning condition. To make our reasoning
clear, we recall the classic definition of reachability winning
condition and then discuss its rule in our game setting. First
of all, we define the concept of winning strategy.

1207

Definition 2.6. Let G be a 2CRG and W a set of target
states. A strategy σ is winning for Player0 (resp., Player1)
over G under the reachability condition, if for all strategies
of Player1 (resp., Player0) the resulting induced plays have
at least one (resp., no) state in W.

In reachability games, if a player has a winning strategy,
we say that he wins the game, as reported in the following
definition.

Definition 2.7. Let G be a 2CRG and W a set of target
states. Player0 (resp., Player1) wins the game G under the
reachability condition, if he has a winning strategy.

It is important to observe that the above definition does
not guarantee that the game always admits a winner. In
fact, there are scenarios in which no one of the players has
a winning strategy, that is a strategy that beats all counter
strategies of the opponent player. One can be convinced of
this by simply considering the classic two-player concurrent
matching bit game. Indeed, by applying Definition 2.7 we
have that neither Player0 wins the game nor Player1 does.

Trees. In this paper we are going to use a different winning
condition to establish whether Player0 wins the game. We
formalize this condition by means of trees. For this reason
we first recall some basic notation about this structure.

Let Υ be a set. An Υ-tree is a prefix closed subset T ⊆ Υ∗.
The elements of T are called nodes and the empty word ε is
the root of T . For v ∈ T , the set of children of v (in T) is
child(T, v) = {v ·x ∈ T | x ∈ Υ}. Given a node v = y ·x, with
y ∈ Υ∗ and x ∈ Υ, we define prf(v) to be y and last(v) to be
x. We also say that v corresponds to x. The complete Υ-tree
is the tree Υ∗. For v ∈ T , a (full) path π of T from v is a
minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π such
that child(T, v′) 6= ∅, there is exactly one node in child(T, v′)
belonging to π. Note that every word w ∈ Υ∗ can be thought
of as a path in the tree Υ∗, namely the path containing all
the prefixes of w. For an alphabet Σ, a Σ-labeled Υ-tree is a
pair < T, V > where T is an Υ−tree and V : T → Σ maps
each node of T to a symbol in Σ.

The considered winning condition. In this paper we
consider the setting in which Player1 wins the game (and
thus Player0 loses it) if, for each strategy of Player0 there
exists a strategy for Player1, that can force the induced
play to avoid a target state. Otherwise, Player0 wins the
game. Under this definition it is immediate to observe that a
game always has a winner, under both perfect and imperfect
information. The winning condition we adopt simply enforces
the winning power of Player0 under imperfect information.
However observe that under this condition, we still have cases
(in particular in the perfect information setting) in which
Player1 does not have a winning strategy but still he can
block Player0 and thus the latter loses the game (see Section
3 for an example). We formalize our new winning condition
by means of a tree structure that we call blocking tree. To
proper introduce this structure we also need to provide the
concepts of decision tree and strategy tree.

We now give the notion of decision tree. Such a tree simply
collects all the tracks that come out from the interplays
between the players. In other words, a decision tree can be
seen as an unwinding of the game structure along with all
possible combinations of player actions. More formally, given

a 2CRG G, a decision tree is an St-labeled full (Ac0 ×Ac1)∗-
tree collecting all tracks over G.

We now introduce strategy trees that allow to collect, for
each fixed strategy for Playeri, all possible responding strate-
gies for Player1−i, with i ∈ {0, 1}. Therefore, the strategy
tree is a full tree whose directions are determined by Ac1−i

and it is labeled with states given in accordance with the
transition function of the game based on the fixed strategies
for Playeri and all possible strategies of Player1−i. Thus, a
strategy tree is an opportune projection of the decision tree.
The formal definition follows.

Definition 2.8. Given a 2CRG G and a strategy σ for
Playeri, a strategy tree for Playeri is an St-labeled full Ac∗1−i-
tree < Ac∗1−i, l >, with l as follows:

1. V (ε) = sI ;

2. for all v ∈ Ac+1−i, let ρ = (ρ)0 . . . (ρ)|v|−1 be a track
from sI , with (ρ)k = l(v≤k) for each 0 ≤ k < |v|.
We have that V (v) = tr(V (prf(v)), act0, act1), with
acti = σ(ρ) and act1−i = last(v).

The strategy tree can be used to check whether a strategy
is winning in accordance to Definition 2.6. In fact, given a
2CRG G with a set of target states W , then Player0 wins the
game under the reachability condition by simply checking
the existence of a strategy tree for Player0, that is a tree such
that each path enters a state belonging to W . Such a tree
is called a winning-strategy tree for Player0. Analogously,
one can check whether Player0 cannot win the game by
checking whether Player1 can “block” every possible strategy
for Player0. This blocking behavior that let Player0 losing
the game can be collected in a blocking tree for Player0. The
definition of blocking tree follows.

Definition 2.9. Given a 2CRG G a blocking tree for
Playeri is a {>,⊥}-labeled (Ac0 × Ac1)-tree <T, V > with
T ⊂ (Ac0 ×Ac1)∗ and V as follows:

1. V (ε) = >;

2. for all nodes v ∈ T , we have that ρ = (ρ)0 . . . (ρ)|v|−1 is
a track from sI such that for each 0 < k < |v| it holds
that (ρ)k = tr((ρ)k−1, last(v≤k));

3. For all nodes v ∈ T labeled with ⊥ all children are
labeled with ⊥;

4. For every v ∈ T , a ∈ Ac0, and child(T, v)(a) = {v ·
x ∈ child(T, v) | x = (a, b), for some b ∈ Ac1}, we
have that there exists exactly one node in child(T, v)(a)
labeled with > and all the others labeled with ⊥; i.e.,
the one labeled with > corresponds to the action Player1
chooses as a countermove to a chosen by Player0;

5. for all v ∈ T , if |v| > |St| and V (v) = > then for all
0 ≤ i ≤ |St| we have that (ρ)i /∈W .

By the above definition, we formalize the winning condition
we consider as follows.

Definition 2.10. Let G be a 2CRG and W a set of target
states. Player0 (resp., Player1) wins the game G if there is
not (resp., there is) a blocking tree for Player0.

1208

sI

ss s

s ss

pw rw sw

pf rf sf

Figure 1: Variant of paper, rock, and scissor game.

The existence of a blocking tree makes in our setting
Player0 losing the game. Conversely, if such a blocking tree
does not exist, Player0 wins the game. This condition makes
the game rather than artificial and corresponds to several
real settings in formal verification, security, and planning.
For example, a scenario in which one wants to check whether
a system is immune to an external attack from an adversarial
environment can be easily casted in our setting [18,19,32].

In the rest of the paper we only refer to Definition 2.10
as winning condition. However, note that in the sequel we
will extend the notion of blocking tree to handle the case
of imperfect information along CRGI, as we need a richer
structure.

3. DOES THE IMPERFECT INFORMATION
MATTER?

In this section we show, by means of examples, that the
imperfect information has a key role to let Player0 winning
the game. We use here the definition of blocking tree as given
in the previous section and also use an informal explanation
of its extension under imperfect information. We prefer
to anticipate here this section to help the reader to better
understand the formalisms and the constructions we will
introduce in the next section as well as to provide some
simple reasoning about the game setting we propose.

First, we introduce a 2CRG consisting of a variant of the
classic paper, rock, and scissor game in which Player0 plays
as usual, by choosing an action between paper (p), rock
(r), and scissor (s), while Player1 uses as actions fire (f)
and water (w). The game is depicted in Figure 1. The
vertexes of the graph are the states of the game and the
labels over the edges represent the possible actions that can
be taken by the players. The transition function can be
easily retrieved by the figure. As this is a one-shot game,
we assume that after the first move has been performed, the
game remains in the reached state forever, i.e. tr(si, a, b) = si
for all i ∈ {1, · · · , 6}, a ∈ Ac0, and b ∈ Ac1. The set of target
states is W = {s1, s5, s6}, i.e., the set of states that Player0

sI

ss s

ss s

pw rw sw

pf rf sf

Figure 2: Extended paper, rock, and scissor where
p ∼= r.

wants to reach (note that the target states are drawn in
boldface along the figure). One can see that Player0 cannot
win the game since there exists a blocking tree for Player0.
In fact, by combining the action p for Player0 with the action
f for Player1, it prevents the former to reach a target state.
The same happens by combining the actions r or s for Player0
with w for Player1. It is important to observe that our game
setting is concurrent, i.e. in each state every player chooses
an action simultaneously and independently from the actions
taken by the other players. If we would have considered
instead a turn-based scenario, then the order of the players
becomes crucial. To better understand this note that in
turn-based if Player0 moves first then he loses the game and,
conversely, he wins the game if he moves after Player1.

Consider the game as before but with in addition imper-
fect information on the actions performed by Player0 (see
Figure 2). Precisely we have that his actions p (paper) and
r (rock) are indistinguishable to Player1, i.e. p ∼= r. Under
this assumption we have that Player0 wins the game since
there is not a blocking tree for Player0 (built by considering
classic action-choice uniformity for Player1, over the visible
actions of Player0). In fact, suppose that Player0 picks an
action between p an r. Then, Player1 can use (simultane-
ously) for both these cases, just one action. If the hidden
action is p then he wins the game by choosing f (fire). But
in case Player0 has chosen r, this would be instead a loosing
move for Player1. A similar reasoning applies in case Player1
chooses w (water). In other words Player1 cannot uniformly
block Player0. So, whereas with perfect information Player1
wins the game, here, having imperfect information regarding
some actions, Player0 wins the game.

Finally, as an extension of the above example consider
the CRGI depicted in Figure 3. In this game we have three
players. As above, Player0 can take as action one among
p, r, and s, Player1 one between f and w, and additionally
Player2 can take actions c for cloud or l for lightning. We
suppose that the moves c and l have the same behavior of

1209

sIs

ss

s

s

s

s

s s

s

s

s

pfl

pwc

pfc pwl rfl

rwc

rfc

rwl

sfl swcsfc

swl

Figure 3: Extended paper, rock, and scissor with 3
players.

w and f , respectively. The transition relation of this game
can be easily retrieved by the figure. The set of target states
for Player0 is W = {s2, s5, s9}. Assume now that Player1
and Player2 have imperfect information on the actions p
and r taken by Player0, i.e. p ∼= r. This means that such
actions are indistinguishable for Player1 and Player2, making
Player1 and Player2 to have only partial view of the game.
Over this game, Player1 and Player2 cooperate to win the
game. It is not hard to check that by letting Player1 and
Player2 to choose actions with different behavior, this makes
Player0 to lose the game. With more precise words, one can
build a blocking tree by using the described way of acting
for Player1 and Player2 and then, in accordance with our
definition of winning condition, we have that Player0 loses
the game.

4. AUTOMATA-THEORETIC SOLUTION
In this section, we introduce an automaton-theoretic ap-

proach to solve CRGI. We start by analyzing the case of
2-player reachability games under imperfect information and
show that it is ExpTime-complete. Then, we handle the
most general setting of CRGI and show that, as for 2CRGI,
deciding the winner of the game is also ExpTime-complete.
For a matter of clarity, we first recall some basic notation
and definitions about automata.

4.1 Automata Theory
We recall the definition of alternating tree automata and

its special case of nondeterministic tree automaton.

Definition 4.1. An alternating tree automaton (ATA,

for short) is a tuple A ,< Σ,D,Q, q0, δ, F >, where Σ is
the alphabet, D is a finite set of directions, Q is the set of
states, q0 ∈ Q is the initial state, δ : Q× Σ → B+(D ×Q)
is the transition function, where B+(D ×Q) is the set of all
positive Boolean combinations of pairs (d, q) with d direction
and q state, and F ⊆ Q is the set of the accepting states.

An ATA A recognizes (finite) trees by means of runs. For
a Σ-labeled tree < T, V >, with T = D∗, a run is a (D∗×Q)-
labeled N-tree < Tr, r > such that the root is labeled with

(ε, q0) and the labels of each node and its successors satisfy
the transition relation.

For example, assume that A, being in a state q, is reading
a node x of the input tree labeled by ξ. Assume also that
δ(q, ξ) = ((0, q1)∨ (1, q2))∧ (1, q1). Then, there are two ways
along which the construction of the run can proceed. In the
first option, one copy of the automaton proceeds in direction
0 to state q1 and one copy proceeds in direction 1 to state q1.
In the second option, two copies of A proceed in direction 1,
one to state q1 and the other to state q2. Hence, ∨ and ∧ in
δ(q, ξ) represent, respectively, choice and concurrency. A run
is accepting if all its leaves are labeled with accepting states.
An input tree is accepted if there exists a corresponding
accepting run. By L(A) we denote the set of trees accepted
by A. We say that A is not empty if L(A) 6= ∅.

As a special case of alternating tree automata, we consider
nondeterministic tree automata (NTA, for short), where the
concurrency feature is not allowed. That is, whenever the
automaton visits a node x of the input tree, it sends to each
successor (direction) of x at most one copy of itself. More
formally, an NTA is an ATA in which δ is in disjunctive
normal form, and in each conjunctive clause every direction
appears at most once.

4.2 Solution for 2CRGI
Recall that blocking trees are projections of decision trees.

In case of imperfect information over the actions played
by Player0, some non-uniform strategies of Player1 are no
longer valid. This reflects directly in the way the blocking
tree is built. To restrict to the visibility of the players, we
merge in the blocking tree the directions that come out from
indistinguishable actions. This means that the tree branching
is reduced accordingly.

In other words, in the perfect information setting, the
blocking tree has just one direction for each possible action
of Player0. In the imperfect information setting, instead, we
consider a “thin” tree in which some nodes carry more action
choices (all indistinguishable) at the same time. So, the set
of directions of the blocking tree is given by ∼= and set to
[Ac0]. In the 2-player case, the set [Ac0] represents the class
of actions Ac0 that are indistinguishable to Player1.

For the solution side, we use an automata-approach via
alternating tree automata. The idea is to read a {>,⊥}-
labeled full ([Ac0]×Ac1)*-tree such that more copies of the
automaton are sent to the same directions along the class
of equivalence over [Ac0]. The automaton checks the consis-
tency of the moves on the fly and its size is just polynomial
in the size of the game arena. These trees are taken with
depth greater than the number of states; so if no state in W
is reached in |St| step, then there is a loop over the states
in the game model that forbids to reach states in W in the
future.

Theorem 4.1. Given a 2CRGI G played by Player0 and
Player1, the problem of deciding whether Player0 wins the
game is ExpTime-complete.

Proof sketch. Let G be a 2CRGI. For the lower bound,
we recall that deciding the winner in a 2-player turn-based
games with imperfect information is ExpTime-hard [31].
For the upper bound, we use an automata-theoretic approach.
Precisely, we build an ATA A that accepts all trees that
are blocking for Player0 over G. These are {>,⊥}-labeled
([Ac0] × Ac1)∗-trees that represent the projection of the

1210

decision tree over the blocking tree in accordance with the
visibility over the actions. The branching degree of the input
tree is thus given by [Ac0]×Ac1. The automaton, therefore
will send more copies on the same direction of the input
tree when they correspond to hidden actions. Then it will
check the consistency with the states on the fly by taking
in consideration the information stored in the node of the
tree. The automaton accepts only trees that have depth (i.e.
all its paths) greater than |St|. This can be simply checked
by means of a binary counter along with the states of the
automaton. For the sake of readability we omit this part.

The automaton uses as set of states Q = St×St×{>,⊥}×
{0, 1} and alphabet Σ = {>,⊥}. We use in Q a duplication
of game states as we want to remember the game state
associated to the parent node while traversing the tree. For
the initial state we set q0 = (sI , sI ,>, 0), i.e. for simplicity
the parent game state associated to the root of the tree is
the game state itself. The flag f ∈ {0, 1} indicates whether
along a path we have entered a target state. In that case we
move f from 0 to 1. Given a state s = (p, q, t, f) and symbol
t′, the transition relation δ(s, t′) is defined as:

∧
a0∈Ac0

∧
a1∈Ac1

(d, (q, q′,>, f ′)) if t= t′=>∧f=0;

true if t′ = ⊥;

false if t = ⊥ ∨ f = 1.

where q′ = tr(q, a0, a1), t, t′ ∈ {>,⊥}, d = [Ac0] × Ac1,
and f ′ = 1 if q′ ∈W otherwise f ′ = f .

The set of accepted states is F = {(p, q, t, f) : p, q ∈
St ∧ t = > ∧ f = 0}. Recall that an input tree is accepted if
there exists a run whose leaves are all labeled with accepting
states. In our setting this means that an input tree simulates
a blocking tree for Player0. So, if the automaton is empty
then Player0 wins the game, i.e., does not exist a blocking
tree for him. The required computational complexity of
the solution follows by considering that: (i) the size of the
automaton is polynomial in the size of the game, (ii) to check
its emptiness can be performed in exponential time over the
number of states [12,21]. �

4.3 Solution for CRGI
In this section we describe the main result of this work,

i.e. an exponential solution algorithm to decide CRGIs. As
we have anticipated earlier we use an opportune extension
of the automata-theoretic approach we have introduced in
the previous sections. Such an extension needs to work with
n players: Player0 . . .Playern−1.

In particular, we decide the game by looking for a blocking
tree for Player0, which is built by considering all possible
ways players Playerj , with 1 ≤ j < n, have to block Player0,
but playing under uniform visibility. These trees, once again,
can be collected in a ATA that we can build by opportunely
extending the one introduced for 2-player games with im-
perfect information. Precisely, the automaton will take as
input {>,⊥}-labeled full ([Ac0]×Ac1 × . . .×Acn−1)∗-trees
such that more copies of the automaton are sent along the
same directions as defined by the equivalence class over the
actions.

Theorem 4.2. Given a CRGI G played by Player0 . . .
Playern−1, the problem of deciding whether Player0 wins the
game is ExpTime-complete.

Proof sketch. Let G be a CRGI. For the lower bound, we

ε

jwl> sfl⊥jwc⊥jfc>jfl⊥ sfc> sfl⊥ swl>.

Figure 4: Tree accepted by the automaton.

inherit it from 2CRGI. For the upper bound, we build an
ATA A that accepts all trees that are blocking for Player0 over
G. These are {>,⊥}-labeled full ([Ac0]×Ac1×. . .×Acn−1)∗-
trees that represent all projections, one for each Playeri, in
accordance with the visibility of the actions. The branching
degree of the input tree is thus given by [Ac0] × Ac1 ×
. . . × Acn−1. The automaton, as in the 2-player case, has
set of states Q = St × St × {>,⊥} × {0, 1}, initial state
q0 = (sI , sI ,>, 0), and alphabet Σ = {>,⊥}. Given a state
s = (p, q, t, f) and symbol t′, the transition relation δ(s, t′) is
defined as:
∧

a0∈Ac0
· · ·

∧
an−1∈Acn−1

(d,(q, q′,>, f ′)) if t= t′=>∧f=0;

true if t′ = ⊥;

false if t = ⊥ ∨ f = 1.

where q′ = tr(q, a0, . . . , an−1), t, t′ ∈ {>,⊥}, d = [Ac0]×
. . .×Acn−1, and f ′ = 1 if q′ ∈W otherwise f ′ = f .

The set of accepted states as for the 2-player case is F =
{(p, q, t, f) : p, q ∈ St ∧ t = > ∧ f = 0}. By applying a
reasoning similar to that used in the previous section, one
can see that the automaton A accepts only trees that simulate
blocking trees for Player0. So, if the automaton is empty
then Player0 wins the game. We finally obtain the required
complexity result by observing that also in this case the
size of the automaton is polynomial and by recalling that
checking its emptiness can be done in exponential time over
the number of states [12,21]. So, on the construction of the
automata, any branching degree, even exponential, is not a
problem.�

ε

jwl> sfl⊥jwc⊥jfc⊥jfl> sfc> sfl⊥ swl>.

Figure 5: Tree rejected by the automaton.

We conclude this section by reasoning on the application of
the above automata construction over the game example re-
ported in Figure 3. First observe that, [Ac0] = {j, s} (j is the
representative action of p ∼= r). One can see that the automa-
ton accepts the {>,⊥}-labeled full ([Ac0]×Ac1×Ac2)∗-tree

1211

depicted in Figure 4 but rejects the one in Figure 5. Indeed,
the projection of the tree in Figure 4 over the decision tree
of the game induces a blocking tree for Player0 in which all
paths do not reach a target state. Conversely, the projection
of the tree in Figure 5 over the decision tree of the game
induces a tree in which there exists a path (precisely the
path leading to rfl) that reaches a target state.

5. CONCLUSION
On game reasoning for multi-player systems, imperfect

information plays a key role. Several fundamental works
in formal verification and strategy reasoning have deeply
investigated this setting. Among the others we mention the
seminal work of Pnueli and Rosner [29] that considered n-
player games, by extending important results achieved by
Reif [31] over two-player games under imperfect information.
Pnueli and Rosner considered multi-player games over dif-
ferent architecture models. Worth of note is the pipeline of
processes in which each output communication of a process i
is used as an input to a process i+ 1. Another seminal work
concerns ATL by Alur, Kupferman and Henzinger [3], who
addressed the imperfect information problem from a logic
point of view. This setting has been an important source of
several works in AI and formal verification.

However, moving from perfect to imperfect information
makes the problem of deciding multi-agent games much more
complicated. For example, the reachability game under the
pipeline architecture of Pnueli and Rosner is non-elementary
and solving ATL goals specifications over multi-agent con-
current game structures is undecidable [3, 11] (in the general
setting). In the perfect information case, instead, they are
both elementary decidable. This has given rise in the years
to the need of investigating restricted imperfect information
settings (and thus methodologies) in which the decision prob-
lem gets back to an elementary complexity and, possibly, not
too far from the one for the perfect information case.

In this paper we have addressed a variant of the reach-
ability game problem for n players under a specific form
of imperfect information. Precisely we have considered the
case in which Player0 is omniscient and plays against all
other players who have common partial visibility over the
actions he can perform. Remarkably, we have considered as
a winning condition for Player0 the inability for all other
players to prevent him to reach a target state (while using
uniformity along action choice) and formalized this concept
by introducing blocking trees. As a variant of classic reacha-
bility condition in 2-player concurrent games, this enforces
Player0 ability to win the game and so to declare always a
winner of the game.

We have proved that our game setting can be decided in
ExpTime by making use of an automata-theoretic solution.
It is worth remarking the efficiency of the automata solution
we have provided that is able to handle several memoryfull
player’s strategies under imperfect information all in one
shot.

Overall, the framework we have addressed is one of the
few multi-player game settings with imperfect information
yet elementary decidable. It is important to note that, one
cannot translate our game with n players in a two-player one,
by just removing players. In particular this is not possible
for the imperfect information. To be convinced, see the
very end of last paragraph of Section 3: by simply merging

Player1 and Player2 (performing only one action at time),
then Player0 loses the game.

We argue that the introduced game framework has several
practical and broad applications. Along the introduction we
have given some specific example. In addition, one can think
of a rob and copper scenario in which several independent
and non-communicating coppers try to catch a robber being
at different distances from him. Clearly the coppers in the
back have less information from the ones being in the front
and the robber, being in front of every one else and playing
adversarial, can have full information over the actions of the
other players. In such a scenario, a reasonable goal for the
coppers is to prevent the robber to reach a safe (target) state.

Another way to see our work is an orthogonal application
of the module checking extension along with multiple-agents
[18, 19]. By casting that settings in ours, we address the
case in which the system is represented by Player0 and the
environment is made by several agents (the opponent players)
having imperfect information about the system. We recall
that in [18,19] the environment is modeled by a single player
while the system is composed by several agents.

Clearly, there are several other specific settings/extensions
one can consider for n players under imperfect information.
We conclude this section just reporting some of them, which
we aim to investigate as future work. One extension that
would be worth investigating concerns the relaxation of the
common visibility among the opponent players upon Player0.
Another interesting extension concerns multi-target games.
That is every player has its own target to reach. In this
case every player works against every one else. To give some
fairness condition over the game, one can also think of having
an order (for each player) over the targets. This means that
if a player cannot reach his own goal, he may want to help
one player rather than another. This can be generalized by
considering a solution concept as a target. We conjecture
that the exponential algorithm we have proposed can be
adapted to deal with this scenario as well.

Acknowledgements. The authors acknowledge the sup-
port of the GNCS 2017 project ”Logiche e Automi per il
Model Checking Intervallare”.

REFERENCES
[1] I. F. Akyildiz and M. C. Vuran. Wireless sensor

networks, volume 4. John Wiley & Sons, 2010.

[2] S. Almagor, G. Avni, and O. Kupferman. Repairing
multi-player games. In CONCUR’15, LIPIcs 42, pages
325–339. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

[3] R. Alur, T. Henzinger, and O. Kupferman.
Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[4] S. Bandyopadhyay and E. J. Coyle. An energy efficient
hierarchical clustering algorithm for wireless sensor
networks. In INFOCOM’03, pages 1713–1723. IEEE,
2003.

[5] D. Berwanger and L. Kaiser. Information tracking in
games on graphs. Journal of Logic, Language and
Information, 19(4):395–412, 2010.

[6] R. Bloem, K. Chatterjee, S. Jacobs, and R. Könighofer.
Assume-guarantee synthesis for concurrent reactive
programs with partial information. In TACAS’15,
LNCS 9035, pages 517–532. Springer, 2015.

1212

[7] N. Bulling and W. Jamroga. Comparing variants of
strategic ability: how uncertainty and memory
influence general properties of games. Autonomous
Agents and Multi-Agent Systems, 28(3):474–518, 2014.

[8] K. Chatterjee and L. Doyen. Partial-observation
stochastic games: How to win when belief fails. ACM
Transactions on Computational Logic (TOCL),
15(2):16, 2014.

[9] K. Chatterjee, T. Henzinger, and N. Piterman.
Strategy Logic. Information and Computation,
208(6):677–693, 2010.

[10] K. Chatterjee and T. A. Henzinger. A survey of
stochastic omega-regular games. J. Comput. Syst. Sci.,
78(2):394–413, 2012.

[11] C. Dima and F. Tiplea. Model-checking ATL under
Imperfect Information and Perfect Recall Semantics is
Undecidable. Technical report, arXiv, 2011.

[12] E. Emerson and C. Jutla. The Complexity of Tree
Automata and Logics of Programs (Extended
Abstract). In FOCS’88, pages 328–337. IEEE
Computer Society, 1988.

[13] E. Emerson and C. Jutla. The Complexity of Tree
Automata and Logics of Programs. SJM, 29(1):132–158,
1999.

[14] E. Faingold and Y. Sannikov. Equilibrium degeneracy
and reputation effects in continuous time games.
Technical report, mimeo, 2005.

[15] O. Grumberg and M. Lange and M. Leucker and S.
Shoham. When not losing is better than winning:
Abstraction and refinement for the full µ-calculus.
Information and Computation, 205(8): 1130–1148,
2007.

[16] D. Harel and A. Pnueli. On the Development of
Reactive Systems. Springer, 1985.

[17] W. Jamroga and T. Ågotnes. Constructive knowledge:
what agents can achieve under imperfect information. J.
Applied Non-Classical Logics, 17(4):423–475, 2007.

[18] W. Jamroga and A. Murano. On Module Checking and
Strategies. In AAMAS’14, pages 701–708. IFAAMAS,
2014.

[19] W. Jamroga and A. Murano. Module checking of
strategic ability. In AAMAS’15, pages 227–235.
IFAAMAS, 2015.

[20] M. Kandori and H. Matsushima. Private observation,
communication and collusion. Econometrica, pages
627–652, 1998.

[21] O. Kupferman, M. Vardi, and P. Wolper. An Automata
Theoretic Approach to Branching-Time Model
Checking. JACM, 47(2):312–360, 2000.

[22] O. Kupferman, M. Vardi, and P. Wolper. Module
Checking. Inf. Comput., 164(2):322–344, 2001.

[23] O. Kupferman and M. Y. Vardi. Module checking
revisited. In CAV’97, LNCS 1254, pages 36–47.
Springer, 1997.

[24] O. Kupferman and M. Y. Vardi. Synthesis with
incomplete informatio. In Advances in Temporal Logic,
pages 109–127. Springer, 2000.

[25] V. Malvone and A. Murano and L. Sorrentino. Hiding
Actions in Concurrent Games. ECAI 2016,
285:1686–1687, 2016.

[26] F. Mogavero, A. Murano, G. Perelli, and M. Vardi.
Reasoning About Strategies: On the Model-Checking
Problem. ACM Transactions on Computational Logic
(TOCL), 15(4):34:1–42, 2014.

[27] R. Myerson. Game Theory: Analysis of Conflict.
Harvard University Press, 1991.

[28] A. Pnueli and R. Rosner. On the Synthesis of a
Reactive Module. In POPL’89, pages 179–190.
Association for Computing Machinery, 1989.

[29] A. Pnueli and R. Rosner. Distributed reactive systems
are hard to synthesize. In FOCS’90, pages 746–757.
IEEE, 1990.

[30] J. Raskin, K. Chatterjee, L. Doyen, and T. A.
Henzinger. Algorithms for omega-regular games with
imperfect information. Logical Methods in Computer
Science, 3(3), 2007.

[31] J. H. Reif. The complexity of two-player games of
incomplete information. J. Comput. Syst. Sci.,
29(2):274–301, 1984.

[32] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya,
and Q. Wu. A survey of game theory as applied to
network security. In HICSS’10, pages 1–10. IEEE, 2010.

[33] Y. Sannikov. Games with imperfectly observable
actions in continuous time. Econometrica,
75(5):1285–1329, 2007.

[34] J. M. Smith. Evolution and the Theory of Games.
Cambridge university press, 1982.

[35] R. Van der Meyden and T. Wilke. Synthesis of
distributed systems from knowledge-based
specifications. In CONCUR’05, LNCS 3653, 562–576.
Springer, 2005.

[36] M. Wooldridge. An Introduction to Multi Agent
Systems. John Wiley & Sons, 2002.

1213

	Introduction
	Game Definition
	Does the imperfect information matter?
	Automata-Theoretic Solution
	Automata Theory
	Solution for 2CRGI
	Solution for CRGI

	Conclusion

