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ABSTRACT
Reasoning about agents that we observe in the world is challeng-
ing. Our available information is often limited to observations of
the agent’s external behavior in the past and present. To under-
stand these actions, we need to deduce the agent’s internal state,
which includes not only rational elements (such as intentions and
plans), but also emotive ones (such as fear). In addition, we often
want to predict the agent’s future actions, which are constrained
not only by these inward characteristics, but also by the dynamics
of the agent’s interaction with its environment. BEE (Behavior
Evolution and Extrapolation) uses a faster-than-real-time agent-
based model of the environment to characterize agents’ internal
state by evolution against observed behavior, and then predict
their future behavior, taking into account the dynamics of their
interaction with the environment.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – parameter learning.
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence– multiagent systems.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Plan recognition, plan inference, evolution, prediction, emotion,
BDI, swarm intelligence, digital pheromones, dynamics.

1. INTRODUCTION
Reasoning about agents that we observe in the world must

integrate two disparate levels. Our observations are often limited
to the agent’s external behavior, which can frequently be summa-
rized numerically as a trajectory in space-time (perhaps punctu-
ated by actions from a fairly limited vocabulary). However, this
behavior is driven by the agent’s internal state, which (in the case
of a human) may involve high-level psychological and cognitive
concepts such as intentions and emotions. A central challenge in

many application domains is reasoning from external observations
of agent behavior to an estimate of their internal state. Such rea-
soning is motivated by a desire to predict the agent’s behavior.

This problem has traditionally been addressed under the ru-
bric of “plan recognition” or “plan inference.” Work to date fo-
cuses almost entirely on recognizing the rational state (as opposed
to the emotional state) of a single agent (as opposed to an interact-
ing community), and frequently takes advantage of explicit com-
munications between agents (as in managing conversational pro-
tocols). Many realistic problems deviate from these conditions.

Increasing the number of agents leads to a combinatorial ex-
plosion that can swamp conventional analysis.
Environmental dynamics can frustrate agent intentions.
The agents often are trying to hide their intentions (and even
their presence), rather than intentionally sharing information.
An agent’s emotional state may be at least as important as its
rational state in determining its behavior.
Domains that exhibit these constraints can often be charac-

terized as adversarial, and include military combat, competitive
business tactics, and multi-player computer games.

BEE (Behavioral Evolution and Extrapolation) is a novel ap-
proach to recognizing the rational and emotional state of multiple
interacting agents based solely on their behavior, without recourse
to intentional communications from them. It is inspired by tech-
niques used to predict the behavior of nonlinear dynamical sys-
tems, in which a representation of the system is continually fit to
its recent past behavior. For nonlinear dynamical systems, the rep-
resentation is a closed-form mathematical equation. In BEE, it is a
set of parameters governing the behavior of software agents rep-
resenting the individuals being analyzed. The current version of
BEE characterizes and predicts the behavior of agents represent-
ing soldiers engaged in urban combat [8].

Section 2 reviews relevant previous work. Section 3 de-
scribes the architecture of BEE. Section 4 reports results from
experiments with the system. Section 5 concludes. Further details
that cannot be included here for the sake of space are available in
an on-line technical report [16].

2. PREVIOUS WORK
BEE bears comparison with previous research in AI (plan

recognition), Hidden Markov Models, and nonlinear dynamics
systems (trajectory prediction).

2.1 Plan Recognition in AI
Agent theory commonly describes an agent’s cognitive state

in terms of its beliefs, desires, and intentions (the so-called “BDI”
model [5, 20]). An agent’s beliefs are propositions about the state
of the world that it considers true, based on its perceptions. Its
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desires are propositions about the world that it would like to be
true. Desires are not necessarily consistent with one another: an
agent might desire both to be rich and not to work at the same
time. An agent’s intentions, or goals, are a subset of its desires
that it has selected, based on its beliefs, to guide its future actions.
Unlike desires, goals must be consistent with one another (or at
least believed to be consistent by the agent).

An agent’s goals guide its actions. Thus one ought to be able
to learn something about an agent’s goals by observing its past
actions, and knowledge of the agent’s goals in turn enables con-
clusions about what the agent may do in the future.

This process of reasoning from an agent’s actions to its goals
is known as “plan recognition” or “plan inference.” This body of
work (surveyed recently at [3]) is rich and varied. It covers both
single-agent and multi-agent (e.g., robot soccer team) plans, in-
tentional vs. non-intentional actions, speech vs. non-speech be-
havior, adversarial vs. cooperative intent, complete vs. incomplete
world knowledge, and correct vs. faulty plans, among other di-
mensions.

Plan recognition is seldom pursued for its own sake. It usu-
ally supports a higher-level function. For example, in human-
computer interfaces, recognizing a user’s plan can enable the sys-
tem to provide more appropriate information and options for user
action. In a tutoring system, inferring the student’s plan is a first
step to identifying buggy plans and providing appropriate reme-
diation. In many cases, the higher-level function is predicting
likely future actions by the entity whose plan is being inferred.

We focus on plan recognition in support of prediction. An
agent’s plan is a necessary input to a prediction of its future be-
havior, but hardly a sufficient one. At least two other influences,
one internal and one external, need to be taken into account.

The external influence is the dynamics of the environment,
which may include other agents. The dynamics of the real world
impose significant constraints.

The environment may interfere with the desires of the agent [4,
10].
Most interactions among agents, and between agents and the
world, are nonlinear. When iterated, these can generate chaos
(extreme sensitivity to initial conditions).

A rational analysis of an agent’s goals may enable us to pre-
dict what it will attempt, but any nontrivial plan with several steps
will depend sensitively at each step to the reaction of the envi-
ronment, and our prediction must take this reaction into account
as well. Actual simulation of futures is one way (the only one we
know now) to deal with the impact of environmental dynamics on
an agent’s actions.

Human agents are also subject to an internal
influence. The agent’s emotional state can modu-
late its decision process and its focus of attention
(and thus its perception of the environment). In
extreme cases, emotion can lead an agent to
choose actions that from the standpoint of a logi-
cal analysis may appear irrational.

Current work on plan recognition for pre-
diction focuses on the rational plan, and does not
take into account either external environmental
influences or internal emotional biases. BEE in-
tegrates all three elements into its predictions.

2.2 Hidden Markov Models
BEE is superficially similar to Hidden Markov Models

(HMM’s [19]). In both cases, the agent has hidden internal state
(the agent’s personality) and observable state (its outward behav-
ior), and we wish to learn the hidden state from the observable
state (by evolution in BEE, by the Baum-Welch algorithm [1] in
HMM’s) and then predict the agent’s future behavior (by extrapo-
lation via ghosts in BEE, by the forward algorithm in HMM’s).

BEE offers two important benefits over HMM’s.
First, a single agent’s hidden variables do not satisfy the

Markov property. That is, their values at t + 1 depend not only on
their values at t, but also on the hidden variables of other agents.
One could avoid this limitation by constructing a single HMM
over the joint state space of all of the agents, but this approach is
combinatorially prohibitive. BEE combines the efficiency of in-
dependently modeling individual agents with the reality of taking
into account interactions among them.

Second, Markov models assume that transition probabilities
are stationary. This assumption is unrealistic in dynamic situa-
tions. BEE’s evolutionary process continually updates the agents’
personalities based on actual observations, and thus automatically
accounts for changes in the agents’ personalities.

2.3 Real-Time Nonlinear Systems Fitting
Many systems of interest can be described by a vector of real

numbers that changes as a function of time. The dimensions of the
vector define the system’s state space. One typically analyzes

such systems as vector differential equations, e.g.,
)(xf

dt

xd

.
When f is nonlinear, the system can be formally chaotic, and
starting points arbitrarily close to one another can lead to trajecto-
ries that diverge exponentially rapidly. Long-range prediction of
such a system is impossible. However, it is often useful to antici-
pate the system’s behavior a short distance into the future. A com-
mon technique is to fit a convenient functional form for f to the
system’s trajectory in the recent past, then extrapolate this fit into
the future (Figure 1, [7]). This process is repeated constantly, pro-
viding the user with a limited look-ahead.

This approach is robust and widely applied, but requires sys-
tems that can efficiently be described with mathematical equa-
tions. BEE extends this approach to agent behaviors, which it fits
to observed behavior using a genetic algorithm.

3. ARCHITECTURE
BEE predicts the future by observing the emergent behavior

of agents representing the entities of interest in a fine-grained
agent simulation. Key elements of the BEE ar-
chitecture include the model of an individual
agent, the pheromone infrastructure through
which agents interact, the information sources
that guide them, and the overall evolutionary
cycle that they execute.

3.1 Agent Model
The agents in BEE are inspired by two bod-

ies of work: our previous work on fine-grained
agents that coordinate their actions through digi-
tal pheromones in a shared environment [2, 13,
17, 18, 21], and the success of previous agent-
based combat modeling.

Digital pheromones are scalar variables that
agents deposit and sense at their current location
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d

a
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d

Figure 1: Tracking a nonlin-
ear dynamical system. a =
system state space; b = system
trajectory over time; c = recent
measurements of system state;
d = short-range prediction.
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in the environment. Agents respond to local concentrations of
these variables tropistically, climbing or descending local gradi-
ents. Their movements change the deposit patterns. This feedback
loop, together with processes of evaporation and propagation in
the environment, support complex patterns of interaction and co-
ordination among the agents [15]. Table 1 shows the BEE’s cur-
rent pheromone flavors. For example, a living member of the ad-
versary emits a RED-ALIVE pheromone, while roads emit a
MOBILITY pheromone.

Our soldier agents are inspired by EINSTein and MANA.
EINSTein [6] represents an agent as a set of six weights, each in
[-1, 1], describing the agent’s response to six kinds of informa-
tion. Four of these describe the number of alive friendly, alive
enemy, injured friendly, and injured enemy troops within the
agent’s sensor range. The other two weights relate to the agent’s
distance to its own flag and that of the adversary, representing
objectives that it seeks to protect and attack, respectively. A posi-
tive weight indicates attraction to the entity described by the
weight, while a negative weight indicates repulsion.

MANA [9] extends the concepts in EINSTein. Friendly and
enemy flags are replaced by the waypoints pursued by each side.
MANA includes low, medium, and high threat enemies. In addi-
tion, it defines a set of triggers (e.g., reaching a waypoint, being
shot at, making contact with the enemy, being injured) that shift
the agent from one personality vector to another. A default state
defines the personality vector when no trigger state is active.

The personality vectors in MANA and EINSTein reflect both
rational and emotive aspects of decision-making. The notion of
being attracted or repelled by friendly or adversarial forces in
various states of health is an important component of what we
informally think of as emotion (e.g., fear, compassion, aggres-
sion), and the use of the term “personality” in both EINSTein and
MANA suggests that the system designers are thinking anthropo-
morphically, though they do not use “emotion” to describe the
effect they are trying to achieve. The notion of waypoints to
which an agent is attracted reflects goal-oriented rationality.

BEE uses an integrated rational-emotive personality model.
A BEE agent’s rationality is a vector of seven desires, which

are values in [-1, +1]: ProtectRed (the adversary), ProtectBlue
(friendly forces), ProtectGreen (civilians), ProtectKeySites,
AvoidCombat, AvoidDetection, and Survive. Negative values
reverse the sense suggested by the label. For example, a negative

value of ProtectRed indicates a desire to harm Red, and an agent
with a high positive desire to ProtectRed will be attracted to RED-
ALIVE, RED-CASUALTY, and MOBILITY pheromone, and
will move at maximum speed.

The emotive component of a BEE’s personality is based on
the Ortony-Clore-Collins (OCC) framework [11], and is described
in detail elsewhere [12]. OCC define emotions as “valanced reac-
tions to agents, states, or events in the environment.” This notion
of reaction is captured in MANA’s trigger states. An important
advance in BEE’s emotional model is the recognition that agents
may differ in how sensitive they are to triggers. For example,
threatening situations tend to stimulate the emotion of fear, but a
given level of threat will produce more fear in a new recruit than
in a seasoned veteran. Thus our model includes not only Emo-
tions, but Dispositions. Each Emotion has a corresponding Dispo-
sition. Dispositions are relatively stable, and considered constant
over the time horizon of a run of the BEE, while Emotions vary
based on the agent’s disposition and the stimuli to which it is ex-
posed.

Interviews with military domain experts identified the two
most crucial emotions for combat behavior as Anger (with the
corresponding disposition Irritability) and Fear (whose disposition
is Cowardice). Table 2 shows which pheromones trigger which
emotions. For example, RED-CASUALTY pheromone stimulates
both Anger and Fear in a Red agent, but not in a Blue agent. Emo-
tions are modeled as agent hormones (internal pheromones) that
are augmented in the presence of the triggering environmental
condition and evaporate over time.

A non-zero emotion modifies the agent’s actions. Elevated
level Anger increases movement likelihood, weapon firing likeli-
hood, and tendency toward an exposed posture. Elevated Fear
decreases these likelihoods.

Figure 2 summarizes the BEE’s personality model. The left
side is a straightforward BDI model (we prefer the term “goal” to
“intention”). The right side is the emotive component, where an
appraisal of the agent’s beliefs, moderated by the disposition,
leads to an emotion that in turn influences the BDI analysis.

Table 1. Pheromone flavors in BEE
Pheromone

Flavor Description

RedAlive
RedCasualty
BlueAlive
BlueCasualty
GreenAlive
GreenCasualty

Emitted by a living or dead entity of the appro-
priate group (Red = enemy, Blue = friendly,
Green = neutral)

WeaponsFire Emitted by a firing weapon

KeySite Emitted by a site of particular importance to
Red

Cover Emitted by locations that afford cover from fire

Mobility Emitted by roads and other structures that en-
hance agent mobility

RedThreat
BlueThreat

Determined by external process (see Section
3.3)

Table 2: Interactions of pheromones and dispositions/emotions

Dispositions/Emotions
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RedAlive X X

RedCasualty X X

BlueAlive X X X X

BlueCasualty X X

GreenCasualty X X X X

WeaponsFire X X X X X X

KeySites X X

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1423



3.2 The BEE Cycle
BEE’s major innovation is extend-

ing the nonlinear systems technique of
Section 2.2 to agent behaviors. This
section describes this process at a high
level, then details the multi-page
pheromone infrastructure that imple-
ments it.

3.2.1 Overview
Figure 3 is an overview of Behav-

ior Evolution and Extrapolation. Each
active entity in the battlespace has an
persistent avatar that continuously gen-
erates a stream of ghost agents repre-
senting itself. We call the combined
modeling entity consisting of avatar and ghosts a polyagent [14].

Ghosts live on a timeline indexed by that begins in the past
and runs into the future. is offset with respect to the current time
t. The timeline is divided into discrete “pages,” each representing
a successive value of . The avatar inserts the ghosts at the inser-
tion horizon. In our current system, the insertion horizon is at - t
= -30, meaning that ghosts are inserted into a page representing
the state of the world 30 minutes ago. At the insertion horizon,
each ghost’s behavioral parameters (desires and dispositions) are
sampled from distributions to explore alternative personalities of
the entity it represents.

Each page between the insertion horizon and = t (“now”)
records the historical state of the world at the point in the past to
which it corresponds. As ghosts move from page to page, they
interact with this past state, based on their behavioral parameters.
These interactions mean that their fitness depends not just on their
own actions, but also on the behaviors of the rest of the popula-
tion, which is also evolving. Because advances faster than real
time, eventually = t (actual time). At this point, each ghost is
evaluated based on its location compared with the actual location
of its corresponding real-world entity.

The fittest ghosts have three functions.
1. The personality of each entity’s fittest ghost is reported to the

rest of the system as the likely personality of that entity. This
information enables us to characterize individual warriors as
unusually cowardly or brave.

2. The fittest ghosts breed genetically and their offspring return
to the insertion horizon to continue the fitting process.

3. The fittest ghosts for each entity form the basis for a
population of ghosts that run past the avatar's present into the
future. Each ghost that runs into the future explores a
different possible future of the battle, analogous to how some
people plan ahead by mentally simulating different ways that
a situation might unfold. Analysis of the behaviors of these
different possible futures yields predictions.

Thus BEE has three distinct notions of time, all of which
may be distinct from real-world time.
1. Domain time t is the current time in the domain being

modeled. If BEE is applied to a real-world situation, this time
is the same as real-world time. In our experiments, we apply
BEE to a simulated battle, and domain time is the time stamp
published by the simulator. During actual runs, the simulator
is often paused, so domain time runs slower than real time.
When we replay logs from simulation runs, we can speed

them up so that domain time runs faster
than real time.

2. BEE time for a page records the
domain time corresponding to the state
of the world represented on that page,
and is offset from the current domain
time.

3. Shift time is incremented every time the
ghosts move from one page to the next.
The relation between shift time and real
time depends on the processing
resources available.

3.2.2 Pheromone Infrastructure
BEE must operate very rapidly, to

keep pace with the ongoing battle. Thus
we use simple agents coordinated using pheromone mechanisms.
We have described the basic dynamics of our pheromone infra-
structure elsewhere [2]. This infrastructure runs on the nodes of a
graph-structured environment (in the case of BEE, a rectangular
lattice). Each node maintains a scalar value for each flavor of
pheromone, and provides three functions:

It aggregates deposits from individual agents, fusing
information across multiple agents and through time.
It evaporates pheromones over time, providing an innovative
alternative to traditional truth maintenance. Traditionally,
knowledge bases remember everything they are told unless
they have a reason to forget. Pheromone-based systems
immediately begin to forget everything they learn, unless it is
continually reinforced. Thus inconsistencies automatically
remove themselves within a known period.
It diffuses pheromones to nearby places, disseminating
information for access by nearby agents.

The distribution of each pheromone flavor over the environ-
ment forms a field that represents some aspect of the state of the
world at an instant in time. Each page of the timeline is a com-
plete pheromone field for the world at the BEE time represented
by that page. The behavior of the pheromones on each page de-
pends on whether the page represents the past or the future.

Environment

Beliefs

Desires

Goal Emotion

Disposition

State Process

Analysis

Action

Perception

Appraisal

Rational Emotive

Figure 2: BEE’s Integrated Rational and
Emotive Personality Model
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Figure 3: Behavioral Emulation and Extrapolation. Each avatar
generates a stream of ghosts that sample the personality space of its
entity. They evolve against the entity’s recent observed behavior, and
the fittest ghosts run into the future to generate predictions.
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In pages representing the future ( > t), the usual pheromone
mechanisms apply. Ghosts deposit pheromone each time they
move to a new page, and pheromones evaporate and propagate
from one page to the next.

In pages representing the past ( t), we have an observed
state of the real world. This has two consequences for pheromone
management. First, we can generate the pheromone fields directly
from the observed locations of individual entities, so there is no
need for the ghosts to make deposits. Second, we can adjust the
pheromone intensities based on the changed locations of entities
from page to page, so we do not need to evaporate or propagate
the pheromones. Both of these simplifications reflect the fact that
in our current system, we have complete knowledge of the past.
When we introduce noise and uncertainty, we will probably need
to introduce dynamic pheromones in the past as well as the future.

Execution of the pheromone infrastructure proceeds on two
time scales, running in separate threads.

The first thread updates the book of pages each time the do-
main time advances past the next page boundary. At each step,

The former “now + 1”page is replaced with a new current page,
whose pheromones correspond to the locations and strengths of
observed units;
An empty page is added at the prediction horizon;
The oldest page is discarded, since it has passed the insertion
horizon.

The second thread moves the ghosts from one page to the
next, as fast as the processor allows. At each step,

Ghosts reaching the = t page are evaluated for fitness and
removed or evolved;
New ghosts from the avatars and from the evolutionary process
are inserted at the insertion horizon;
A population of ghosts based on the fittest ghosts are inserted at

= t to run into the future;
Ghosts that have moved beyond the prediction horizon are
removed;
All ghosts plan their next actions based on the pheromone field
in the pages they currently occupy;
The system computes the next state of each page, including
executing the actions elected by the ghosts, and (in future
pages) evaporating pheromones and recording new deposits
from the recently arrived ghosts.

Ghost movement based on pheromone gradients is a simple
process, so this system can support realistic agent populations
without excessive computer load. In our current system, each ava-
tar generates eight ghosts per shift. Since there are about 50 enti-
ties in the battlespace (about 20 units each of Red and Blue and
about 5 of Green), we must support about 400 ghosts per page, or
about 24000 over the entire book.

How fast a processor do we need? Let p be the real-time du-
ration of a page in seconds. If each page represents 60 seconds of
domain time, and we are replaying a simulation at 2x domain
time, p = 30. Let n be the number of pages between the insertion
horizon and = t. In our current system, n = 30. Then a shift rate
of n/p shifts per second will permit ghosts to run from the inser-
tion horizon to the current time at least once before a new page is
generated. Empirically, this level is a lower bound for reasonable
performance, and easily achievable on stock WinTel platforms.

3.3 Information sources
The flexibility of the BEE’s pheromone infrastructure per-

mits the integration of numerous information sources as input to
our characterizations of entity personalities and predictions of
their future behavior. Our current system draws on three sources
of information, but others can readily be added.

Real-world observations.—Observations from the real
world are encoded into the pheromone field each increment of
BEE time, as a new “current page” is generated. Table 1 identifies
the entities that generate each flavor of pheromone.

Statistical estimates of threat regions.—Statistical tech-
niques1 estimate the level of threat to each force (Red or Blue),
based on the topology of the battlefield and the known disposition
of forces. For example, a broad open area with no cover is threat-
ening, especially if the opposite force occupies its margins. The
results of this process are posted to the pheromone pages as
“RedThreat” pheromone (representing a threat to red) and
“BlueThreat” pheromone (representing a threat to Blue).

AI-based plan recognition.—While plan recognition is not
sufficient for effective prediction, it is a valuable input. We dy-
namically configure a Bayes net based on heuristics to identify
the likely goals that each entity may hold.2 The destinations of
these goals function as “virtual pheromones.” Ghosts include their
distance to such points in their action decisions, achieving the re-
sult of gradient following without the computational expense of
maintaining a pheromone field.

4. EXPERIMENTAL RESULTS
We have tested BEE in a series of experiments in which hu-

man wargamers make decisions that are played out in a battlefield
simulator. The commander for each side (Red and Blue) has at his
disposal a team of pucksters, human operators who set waypoints
for individual units in the simulator. Each puckster is responsible
for four to six units. The simulator moves the units, determines
firing actions, and resolves the outcome of conflicts. It is
important to emphasize that this simulator is simply a surrogate
for a sensor feed from a real-world battlefield

4.1 Fitting Dispositions
To test our ability to fit personalities based on behavior, one

Red puckster responsible for four units is designated the “emo-
tional” puckster. He selects two of his units to be cowardly
(“chickens”) and two to be irritable (“Rambos”). He does not dis-
close this assignment during the run. He moves each unit accord-
ing to the commander’s orders until the unit encounters circum-
stances that would trigger the emotion associated with the unit’s
disposition. Then he manipulates chickens as though they are
fearful (avoiding combat and moving away from Blue), and
moves Rambos into combat as quickly as possible. Our software
receives position reports on all units, every twenty seconds.

1 This process, known as SAD (Statistical Anomaly Detection), is
developed by our colleagues Rafael Alonso, Hua Li, and John
Asmuth at Sarnoff Corporation. Alonso and Li are now at SET
Corporation.

2 This process, known as KIP (Knowledge-based Intention Projec-
tion), is developed by our colleagues Paul Nielsen, Jacob
Crossman, and Rich Frederiksen at Soar Technology.
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The difference between the two disposition values (Irritabil-
ity - Cowardice) of the fittest ghosts proves a better indicator of
the emotional state of the corresponding entity than either value
by itself. Figure 4 shows the delta disposition for each of the eight
fittest ghosts at each time step, plotted against the time in seconds,
for a unit played as a chicken. The values clearly trend negative.
Figure 5 shows a similar plot for a Rambo. Rambos tend to die
early, and often do not give their ghosts enough time to evolve a
clear picture of their personality, but in
this case the positive Delta Disposition is
evident before the unit’s demise.

To characterize a unit’s personality,
we maintain a 800-second exponentially
weighted moving average of the Delta
Disposition, and declare the unit to be a
chicken or Rambo if this value passes a
negative or positive threshold, respectively. Currently, this thresh-
old is set at 0.25. We are exploring additional filters. For example,
a rapid rate of increase enhances the likelihood of calling a
Rambo; units that seek to avoid detection and avoid combat are
more readily called chicken.

Table 1 shows the detection results for emotional units in a
recent series of experiments. We never called a Rambo a chicken.
In the one case where we called a chicken a Rambo, logs show
that in fact the unit was being played aggressively, rushing toward
oncoming Blue forces. The brave die young, so we almost never
detect units played intentionally as Rambos.

Figure 6 shows a comparison on a separate series of experi-
ments of our emotion detector compared with humans. Two cow-
ards were played in each of eleven games. Human observers in
each game were able to detect a total of 13 of the cowards. BEE
was able to detect cowards (= chickens) much earlier than the
human, while missing only one chicken that the humans detected.

In addition to these results on units intentionally played as
emotional, BEE sometimes detects other units as cowardly or
brave. Analysis of these units shows that these characterizations
were appropriate: units that flee in the face of enemy forces or
weapons fire are detected as chickens, while those that stand their
ground or rush the adversary are denominated as Rambos.

4.2 Integrated Predictions
Each ghost that runs into the future generates a possible path

that its unit might follow. The paths in the resulting set over all

ghosts vary in how likely they are, the risk they pose to their own
or the opposite side, and so forth. In the experiments reported
here, we select the future whose ghost receives the most guidance
from pheromones in the environment at each step along the way.
In this sense, it is the most likely future. In these experiments, we
receive position reports only on units that have actually come
within visual range of Blue units, or on average fewer than half of
the live Red units at any time.

We evaluate predictions spatially, comparing an entity’s ac-
tual location with the location predicted
for it 15 minutes earlier. We compare
BEE with two baselines: a game-
theoretic predictor based on linguistic
geometry [22], and estimates by military
officers. In both cases, we use a CEP
(“circular error probable”) measure of
accuracy, the radius of the circle that one

would have to draw around each prediction to capture 50% of the
actual unit locations. The higher the CEP measure, the worse the
accuracy.

Figure 7 compares our accuracy with that of the game-
theoretic predictor. Each point gives the median CEP measure
over all predictions in a single run. Points above the diagonal fa-
vor BEE, while points below the line favor the game-theoretic
predictor. In all but two missions, BEE is more accurate. In one
mission, the two systems are comparable, while in one, the game-

Table 1: Experimental Results on Fitting
Disposition (16 runs)

Called
Correctly

Called
Incorrectly

Not
Called

Chickens 68% 5% 27%

Rambos 5% 0% 95%

Figure 4: Delta Disposition for a Chicken’s Ghosts.
Figure 5: Delta Disposition for a Rambo.
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theoretic predictor is more accurate.
In 18 RAID runs, BEE generated 1405 predictions at each of

two time horizons (0 and 15 minutes), while in 18 non-RAID
runs, staff generated 102 predictions. Figure. 8 shows a box-and-
whisker plot of the CEP measures, in meters, of these predictions.
The box covers the inter-quartile range with a line at the median,
whiskers extend to the most distant data points within 1.5 of the
interquartile range from the edge of the box, squares show outliers
within 3 interquartile ranges, and stars show more distant outliers.
BEE’s median score even at 15 minutes is lower than either Staff
median. The Wilcoxon test shows that the difference between the
H15 scores is significant at the 99.76% level, while that between
the H0 scores is significant at more than 99.999%.

5. CONCLUSIONS
In many domains, it is important to reason from an entity’s

observed behavior to an estimate of its internal state, and then to
extrapolate that estimate to predict the entity’s future behavior.
BEE performs this task using a faster-than-real-time simulation of
swarming agents, coordinated through digital pheromones. This
simulation integrates knowledge of threat regions, a cognitive
analysis of the agent’s beliefs, desires, and intentions, a model of
the agent’s emotional disposition and state, and the dynamics of
interactions with the environment. By evolving agents in this rich
environment, we can fit their internal state to their observed be-
havior. In realistic wargames, the system successfully detects de-
liberately played emotions and makes reasonable predictions
about the entities’ future behaviors.

BEE can only model internal state variables that impact the
agent’s external behavior. It cannot fit variables that the agent
does not manifest externally, since the basis for the evolutionary
cycle is a comparison of the outward behavior of the simulated
agent with that of the real entity. This limitation is serious if our
purpose is to understand the entity’s internal state for its own
sake. If our purpose of fitting agents is to predict their subsequent
behavior, the limitation is much less serious. State variables that
do not impact behavior, while invisible to a behavior-based analy-
sis, are irrelevant to a behavioral prediction.

The BEE architecture lends itself to extension in several
promising directions.

The various inputs being integrated by the BEE are only an ex-
ample of the kinds of information that can be handled. The ba-
sic principle of using a dynamical simulation to integrate a

wide range of influences can be extended to other inputs as
well, requiring much less additional engineering than other
more traditional ways of reasoning about how different knowl-
edge sources come together in impacting an agent’s behavior.
With such a change in inputs, BEE could be applied more
widely than its current domain of adversarial reasoning in ur-
ban warfare. Potential applications of interest include computer
games, business strategy, and sensor fusion.
Our initial limited repertoire of emotions is a small subset of
those that have been distinguished by psychologists, and that
might be useful for understanding and projecting behavior. We
expect to extend the set of emotions and supporting disposi-
tions that BEE can detect.
The mapping between an agent’s psychological (cognitive and
emotional) state and its outward behavior is not one-to-one.
Several different internal states might be consistent with a
given observed behavior under one set of environmental condi-
tions, but might yield distinct behaviors under other conditions.
If the environment in the recent past is one that confounds such
distinct internal states, we will be unable to distinguish them.
As long as the environment stays in this state, our predictions
will be accurate, whichever of the internal states we assign to
the agent. If the environment then shifts to one under which the
different internal states lead to different behaviors, using the
previously chosen internal state will yield inaccurate predic-
tions. One way to address these concerns is to probe the real
world, perturbing it in ways that would stimulate distinct be-
haviors from entities whose psychological state is otherwise in-
distinguishable. Such probing is an important intelligence tech-
nique. BEE’s faster-than-real-time simulation may enable us to
identify appropriate probing actions, greatly increasing the ef-
fectiveness of intelligence efforts.

6. ACKNOWLEDGEMENTS
This material is based in part upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. NBCHC040153. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the DARPA or
the Department of Interior-National Business Center (DOI-NBC).
Distribution Statement “A” (Approved for Public Release, Distri-
bution Unlimited).

7. REFERENCES
[1] Baum, L. E., Petrie, T., Soules, G., and Weiss, N. A maximi-

zation technique occurring in the statistical analysis of prob-

50 100 150 200 250 300
BEE Median Error

50

100

150

200

250

300

GL
naide

M
rorrE

Figure 7: Median errors for BEE vs. Linguistic Geometry on
each run.—Squares are Defend missions, triangles are Move
missions, diamonds are Attack missions.

RAID H0 Staff H0 RAID H15 Staff H15

100

200

300

400

500

Figure. 8: Box-and-whisker plots of RAID and Staff predictions
at 0 and 15 minutes Horizons. Y-axis is CEP radius in meters;
lower values indicate greater accuracy.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1427



abilistic functions of Markov chains. Ann. Math. Statist., 41,
1: 1970, 164-171.

[2] Brueckner, S. Return from the Ant: Synthetic Ecosystems for
Manufacturing Control. Thesis at Humboldt University Ber-
lin, Department of Computer Science, 2000.

[3] Carberry, S. Techniques for Plan Recognition. User Model-
ing and User-Adapted Interaction, 11, 1-2: 2001, 31-48.

[4] Ferber, J. and Müller, J.-P. Influences and Reactions: a
Model of Situated Multiagent Systems. In Proceedings of
Second International Conference on Multi-Agent Systems
(ICMAS-96), AAAI, 1996, 72-79.

[5] Haddadi, A. and Sundermeyer, K. Belief-Desire-Intention
Agent Architectures. In G. M. P. O'Hare and N. R. Jennings,
Editors, Foundations of Distributed Artificial Intelligence,
John Wiley, New York, NY, 1996, 169-185.

[6] Ilachinski, A. Artificial War: Multiagent-based Simulation of
Combat. Singapore, World Scientific, 2004.

[7] Kantz, H. and Schreiber, T. Nonlinear Time Series Analysis.
Cambridge, UK, Cambridge University Press, 1997.

[8] Kott, A. Real-Time Adversarial Intelligence & Decision
Making (RAID). vol. 2005, DARPA, Arlington, VA, 2004.
Web Site.

[9] Lauren, M. K. and Stephen, R. T. Map-Aware Non-uniform
Automata (MANA)—A New Zealand Approach to Scenario
Modelling. Journal of Battlefield Technology, 5, 1 (March):
2002, 27ff.

[10] Michel, F. Formalisme, méthodologie et outils pour la modé-
lisation et la simulation de systèmes multi-agents. Thesis at
Université des Sciences et Techniques du Languedoc, De-
partment of Informatique, 2004.

[11] Ortony, A., Clore, G. L., and Collins, A. The cognitive struc-
ture of emotions. Cambridge, UK, Cambridge University
Press, 1988.

[12] Parunak, H. V. D., Bisson, R., Brueckner, S., Matthews, R.,
and Sauter, J. Representing Dispositions and Emotions in
Simulated Combat. In Proceedings of Workshop on Defence
Applications of Multi-Agent Systems (DAMAS05, at
AAMAS05), Springer, 2005, 51-65.

[13] Parunak, H. V. D. and Brueckner, S. Ant-Like Missionaries
and Cannibals: Synthetic Pheromones for Distributed Motion
Control. In Proceedings of Fourth International Conference
on Autonomous Agents (Agents 2000), 2000, 467-474.

[14] Parunak, H. V. D. and Brueckner, S. Modeling Uncertain
Domains with Polyagents. In Proceedings of International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS'06), ACM, 2006.

[15] Parunak, H. V. D., Brueckner, S., Fleischer, M., and Odell, J.
A Design Taxonomy of Multi-Agent Interactions. In Pro-
ceedings of Agent-Oriented Software Engineering IV,
Springer, 2003, 123-137.

[16] Parunak, H. V. D., Brueckner, S., Matthews, R., Sauter, J.,
and Brophy, S. Characterizing and Predicting Agents via
Multi-Agent Evolution. Altarum Institute, Ann Arbor, MI,
2005. http://www.newvectors.net/staff/parunakv/BEE.pdf.

[17] Parunak, H. V. D., Brueckner, S., and Sauter, J. Digital
Pheromones for Coordination of Unmanned Vehicles. In
Proceedings of Workshop on Environments for Multi-Agent
Systems (E4MAS 2004), Springer, 2004, 246-263.

[18] Parunak, H. V. D., Brueckner, S. A., and Sauter, J. Digital
Pheromone Mechanisms for Coordination of Unmanned Ve-
hicles. In Proceedings of First International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS
2002), ACM, 2002, 449-450.

[19] Rabiner, L. R. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proceedings of
the IEEE, 77, 2: 1989, 257–286.

[20] Rao, A. S. and Georgeff, M. P. Modeling Rational Agents
within a BDI Architecture. In Proceedings of International
Conference on Principles of Knowledge Representation and
Reasoning (KR-91), Morgan Kaufman, 1991, 473-484.

[21] Sauter, J. A., Matthews, R., Parunak, H. V. D., and Brueck-
ner, S. Evolving Adaptive Pheromone Path Planning Mecha-
nisms. In Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS02), ACM, 2002, 434-440.

[22] Stilman, B. Linguistic Geometry: From Search to Construc-
tion. Boston, Kluwer, 2000.

1428 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)


