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ABSTRACT
This work introducesHuman-Agent Transfer(HAT), an algorithm
that combines transfer learning, learning from demonstration and
reinforcement learning to achieve rapid learning and high perfor-
mance in complex domains. Using experiments in a simulated
robot soccer domain, we show that human demonstrations trans-
ferred into a baseline policy for an agent and refined using rein-
forcement learning significantly improve both learning time and
policy performance. Our evaluation compares three algorithmic ap-
proaches to incorporating demonstration rule summaries into trans-
fer learning, and studies the impact of demonstration quality and
quantity, as well as the effect of combining demonstrationsfrom
multiple teachers. Our results show that all three transfermeth-
ods lead to statistically significant improvement in performance
over learning without demonstration. The best performancewas
achieved by combining the best demonstrations from two teachers.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Learning from Demonstration, Human/Agent
Interaction, Transfer Learning

1. INTRODUCTION
Agent technologies for virtual agents and physical robots are

rapidly expanding in industrial and research fields, enabling greater
automation, increased levels of efficiency, and new applications.
However, existing systems are designed to provide niche solutions
to very specific problems and each system may require significant
effort to develop. The ability to acquire new behaviors through
learning is fundamentally important for the development ofgeneral-
purpose agent platforms that can be used for a variety of tasks.

Existing approaches to agent learning generally fall into two cat-
egories: independent learning through exploration and learning from
labeled training data. Agents often learn independently from ex-
ploration viaReinforcement learning(RL) [25]. While such tech-
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niques have had great success in offline learning and software ap-
plications, the large amount of data and high exploration times they
require make them intractable for most real-world domains.

On the other end of the spectrum arelearning from demonstra-
tion (LfD) algorithms [1]. These approaches leverage the vast ex-
perience and task knowledge of a person to enable fast learning,
which is critical in real-world applications. However, human teach-
ers provide particularly noisy and suboptimal data due to differ-
ences in embodiment (e.g., degrees of freedom, action speed) and
limitations of human ability. As a result, final policy performance
achieved by these methods is limited by the quality of the dataset
and the performance of the teacher.

This paper proposes a novel approach: use RLtransfer learning
methods [28] to combine LfD and RL and achieve both fast learn-
ing and high performance in complex domains. In transfer learning,
knowledge from asource taskis used in atarget taskto speed up
learning. Equivalently, knowledge from a source agent is used to
speed up learning in a target agent. For instance, knowledgehas
been successfully transferred between agents that balancediffer-
ent length poles [19], that solve a series of mazes [5, 34], orthat
play different soccer tasks [29, 31, 32]. The key insight of transfer
learning is that previous knowledge can be effectively reused, even
if the source task and target task are not identical. This results in
substantially improved learning times because the agent nolonger
relies on an uninformed (arbitrary) prior.

In this work, we show that we can effectively transfer knowledge
from a human to an agent, even when they have different percep-
tions of state. Our method,Human-Agent Transfer(HAT): 1) allows
a human teacher to perform a series of demonstrations in a task, 2)
uses an existing transfer learning algorithm,Rule Transfer[27], to
learn rule-based summaries of the demonstration, and 3) integrates
the rule summaries into RL, biasing learning while also allowing
improvement over the transferred policy.

We perform empirical evaluation ofHAT in a simulated robot
soccer domain. We compare three algorithms for incorporating rule
summaries into reinforcement learning, and compare learning per-
formance for multiple demonstration source, quantity, andquality
conditions. Our findings show statistically significant improvement
in performance for all variants ofHAT over learning with no prior.
Additionally, we find that exposure even to suboptimal demonstra-
tion training data results in significant improvements overrandom
exploration, and combining demonstrations from multiple teachers
leads to the best performance.

2. BACKGROUND
This section provides background on the three key techniques

discussed in this paper: reinforcement learning, learningfrom demon-
strations, and transfer learning.
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2.1 Reinforcement Learning
Reinforcement learning is a common approach to agent learn-

ing from experience. We define reinforcement learning usingthe
standard notation of Markov decision processes (MDPs) [16]. At
every time step the agent observes its states ∈ S as a vector ofk
state variables such thats = 〈x1, x2, . . . , xk〉. The agent selects
an action from the set of available actionsA at every time step. An
MDP’s reward functionR : S×A 7→ R and (stochastic) transition
functionT : S×A 7→ S fully describe the system’s dynamics. The
agent will attempt to maximize the long-term reward determined by
the (initially unknown) reward and transition functions.

A learner chooses which action to take in a state via a policy,
π : S 7→ A. Policy π is modified by the learner over time to
improve performance, which is defined as the expected total re-
ward. Instead of learningπ directly, many RL algorithms instead
approximate the action-value function,Q : S × A 7→ R, which
maps state-action pairs to the expected real-valued return. In this
paper, agents learn using Sarsa [17, 20], a well known but relatively
simple temporal difference RL algorithm, which learns to estimate
Q(s, a). While some RL algorithms are more sample efficient than
Sarsa, this paper will focus on Sarsa for the sake of clarity.

Although RL approaches have enjoyed multiple past successes
(e.g., TDGammon [30], inverted Helicopter control [12], and agent
locomotion [18]), they frequently take substantial amounts of data
to learn a reasonable control policy. In many domains, collect-
ing such data may be slow, expensive, or infeasible, motivating the
need for ways of making RL algorithms more sample-efficient.

2.2 Learning from Demonstration
Learning from demonstrationresearch explores techniques for

learning a policy from examples, or demonstrations, provided by a
human teacher. LfD can be seen as a subset of Supervised Learn-
ing, in that the agent is presented with labeled training data and
learns an approximation to the function which produced the data.

Similar to reinforcement learning, learning from demonstration
can be defined in terms of the agent’s observed states ∈ S and ex-
ecutable actionsa ∈ A. Demonstrations are recorded as temporal
sequences oft state-action pairs {(s0, a0), ..., (st, at)}, and these
sequences typically only cover a small subset of all possible states
in a domain. The agent’s goal is to generalize from the demonstra-
tions and learn a policyπ : S 7→ A covering all states that imitates
the demonstrated behavior.

Many different algorithms for using demonstration data to learn
π have been proposed. Approaches vary by how demonstrations
are performed (e.g., teleoperation, teacher following, kinesthetic
teaching, external observation), the type of policy learning method
used (e.g., regression, classification, planning), and assumptions
about degree of demonstration noise and teacher interactivity [1].
Across these differences, LfD techniques possess a number of key
strengths. Most significantly, demonstration leverages the vast task
knowledge of the human teacher to significantly speed up learning
either by eliminating exploration entirely [6, 13], or by focusing
learning on the most relevant areas of the state space [22]. Demon-
stration also provides an intuitive programming interfacefor hu-
mans, opening possibilities for policy development to non-agents-
experts.

However, LfD algorithms are inherently limited by the quality
of the information provided by the human teacher. Algorithms typ-
ically assume the dataset to contain high quality demonstrations
performed by an expert. In reality, teacher demonstrationsmay be
ambiguous, unsuccessful, or suboptimal in certain areas ofthe state
space. A naïvely learned policy will likely perform poorly in such
areas [2]. To enable the agent to improve beyond the performance

of the teacher, learning from demonstration must be combined with
learning from experience.

Most similar to our approach is the work of Smart and Kaelbling,
which shows that human demonstration can be used to bootstrap
reinforcement learning in domains with sparse rewards by initializ-
ing the action-value function using the observed states, actions and
rewards [22]. In contrast to this approach, our work uses demon-
stration data to learn generalized rules, which are then used to bias
the reinforcement learning process.

2.3 Transfer Learning
The insight behindtransfer learning(TL) is that generalization

may occur not only within tasks, but alsoacross tasks, allowing an
agent to begin learning with an informative prior instead ofrelying
on random exploration.

Transfer learning methods for reinforcement learning can trans-
fer a variety of information between agents. However, many trans-
fer methods restrict what type of learning algorithm is usedby
both agents (for instance, some methods require temporal differ-
ence learning [29] or a particular function approximator [32] to be
used in both agents). However, when transferring from a human, it
is impossible to copy a human’s “value function” — both because
the human would likely be incapable of providing a complete and
consistent value function, and because the human would quickly
grow wary of evaluating a large number of state-action pairs.

This paper usesRule Transfer[27], a particularly appropriate
transfer method that is agnostic to the knowledge representation
of the source learner. The ability to transfer knowledge between
agents that have different state representations and/or actions is a
critical ability when considering transfer of knowledge between a
human and an agent. The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task.Any type of
reinforcement learning algorithm may be used.

1b: Generate samples from the learned policyAfter training
has finished, or during the final training episodes, the agent
records some number of interactions with the environment in
the form of(S,A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes the
source policy. After the data is collected, a propositional
rule learner is used to summarize the collected data to ap-
proximate the learned policy by mapping states to actions.1

This decision list is used as a type of inter-lingua, allowing
the following step to be independent of the type of policy
learned (step 1a).

3: UseDt to bootstrap learning of an improved policy in the
target task. For instance, previous work [27] provided three
ways of leveraging this knowledge; two of these methods are
discussed later in Sections 3.1 and 3.2.

2.4 Additional Related Work
This section briefly summarizes three additional lines of related

work.
Within psychology,behavioral shaping[21] is a training proce-

dure that uses reinforcement to condition the desired behavior in
a human or animal. During training, the reward signal is initially
1Additionally, if the agents in the source and target task usedif-
ferent state representations or have different available actions, the
decision list can be translated via inter-task mappings [27, 29] (as
step 2b). For the current paper, this translation is not necessary, as
the source and target agents operate in the same task.
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used to reinforce any tendency towards the correct behavior, but is
gradually changed to reward successively more difficult elements
of the task. Shaping methods with human-controlled rewardshave
been successfully demonstrated in a variety of software agent ap-
plications [3, 7]. An alternate form of shaping is to change the task
over time, or construct a task sequence for an agent to train on [26,
36]. In contrast to shaping, LfD allows a human to demonstrate
complete behaviors, which may contain much more information
than a sequence of rewards or suggested tasks.

Most similar to our approach is the recent work by Knox and
Stone [9] which combines shaping with reinforcement learning.
Their TAMER [8] system learns to predict and maximize a reward
that is interactively provided by a human. The learned humanre-
ward is combined in various ways with Sarsa(λ), providing signif-
icant improvements. The primary difference betweenHAT and this
method is that we focus on leveraging human demonstration, rather
than estimating and integrating a human reinforcement signal.

The idea of transfer between a human and an agent is somewhat
similar to implicit imitation [15], in that one agent teaches another
how to act in a task, butHAT does not require the agents to have the
same (or very similar) representations.

Allowing for such shifts in representation gives additional flex-
ibility to an agent designer; past experience may be transferred
rather than discarded if a new representation is desired. Represen-
tation transfer is similar in spirit toHAT in that both the teacher and
the learner function in the same task, but very different techniques
are used since the human’s “value function” cannot be directly ex-
amined.

High-level adviceand suggestions have also been used to bias
agent learning. Such advice can provide a powerful learningtool
that speeds up learning by biasing the behavior of an agent and
reducing the policy search space. However, existing methods typi-
cally require either a significant user sophistication (e.g., the human
must use a specific programming language to provide advice [11])
or significant effort is needed to design a human interface (e.g.,
the learning agent must have natural language processing abilities
[10]). Allowing a teacher to demonstrate behaviors is preferable in
domains where demonstrating a policy is a more natural interaction
than providing such high-level advice.

3. METHODOLOGY
In this section we presentHAT, our approach to combining LfD

and RL. HAT consists of three steps, motivated by those used in
Rule Transfer:

Demonstration The agent performs the task under the teleoper-
ated control by a human teacher, or by executing an existing
suboptimal controller. During execution, the agent records
all state-action transitions. Multiple task executions may be
performed.

Policy Summarization HAT uses the state-action transition data
recorded during the Demonstration phase to derive rules sum-
marizing the policy. These rules are used to bootstrap au-
tonomous learning.

Independent Learning The agent learns independently in the task
via reinforcement learning, using the policy summary to bias
its learning. In this step, the agent must balance exploiting
the transferred rules with attempting to learn a policy that
outperforms the transferred rules.

In contrast to transfer learning,HAT assumes that either 1) the
demonstrations are executed on the same agent, in the same task,

as will be learned in the Independent Learning phase, or that2) any
differences between the agent or task in the demonstration phase
are small enough that they can be ignored in the independent learn-
ing phase. Instead of transferring between different tasks, HAT fo-
cuses on transferring between different agents with different inter-
nal representations. For instance, it is not possible to directly use
a human’s “value function” inside an agent because 1) the human’s
knowledge is not directly accessible and 2) the human has a differ-
ent state abstraction than the agent.

We next present three different ways thatHAT can use a decision
list to improve independent learning.

3.1 Value Bonus
The intuition behind theValue Bonusmethod [27] is similar to

that of shaping in that the summarized policy is used to add a re-
ward bonus to certain human-favored actions. When the agent
reaches a state and calculatesQ(s, a), the Q-value of the action
suggested by the summarized policy is given a constant bonus(B).
For the firstC episodes, the learner is forced to execute the ac-
tion suggested by the rule set. This is effectively changingthe ini-
tialization of the Q-value function, or, equivalently [33], providing
a shaping reward to the state-action pairs that are selectedby the
rules.

We useB = 10 andC = 100 to be consistent with past work [27];
the Q-value for the action chosen by the summarized policy will be
given a bonus of +10 and agents must execute the action chosenby
the summarized policy for the first 100 episodes.

3.2 Extra Action
TheExtra Actionmethod [27] augments the agent so that it can

select apseudo-action. When the agent selected this pseudo-action,
it executed the action suggested by the decision list. The agent may
either execute the action suggested by the transferred rules, or it
can execute one of the “base” MDP actions. Through exploration,
the RL agent can decide when it should 1) follow the transferred
rules by executing the pseudo-action or 2) execute a base MDP
action (e.g., the transferred rules are sub-optimal). Werethe agent
to always execute the pseudo-action, the agent would never learn
but would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially executes
the action suggested by the decision list, allowing it to estimate the
value of the decision list policy. We again set this period tobe 100
episodes (C = 100).

3.3 Probabilistic Policy Reuse
The third method used isProbabilistic Policy Reuse, based on

the π-reuse Exploration Strategy [4, 5]. In Probabilistic Policy
Reuse, the agent will reuse a policy with probabilityψ, explore
with probabilityǫ, and exploit the current value function with prob-
ability 1− ψ − ǫ. By decayingψ over time, the agent can initially
leverage the decision list, but then learn to improve on it ifpossi-
ble. Note that Probabilistic Policy Reuse is similar to the recent
TAMER+RL method #7 [9], where the agent tries to execute the ac-
tion suggested by the learned human shaping reward, rather than
follow a transferred policy.
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Figure 1: This diagram shows the distances and angles used to
construct the 13 state variables used for learning with 3 keepers
and 2 takers. Relevant objects are the 3 keepers (K) and the
two takers (T), both ordered by distance from the ball, and the
center of the field.

4. EXPERIMENTAL VALIDATION
This section first discusses Keepaway [24], a simulated robot

soccer domain and then explains the experimental methodology
used to evaluateHAT.

4.1 Keepaway
Keepawayis a domain with a continuous state space and signifi-

cant amounts of noise in the agent’s actions and sensors. Oneteam,
the keepers, attempts to maintain possession of the ball within a
20m× 20m region while another team, thetakers, attempts to steal
the ball or force it out of bounds. The simulator places the play-
ers at their initial positions at the start of each episode and ends an
episode when the ball leaves the play region or is taken away from
the keepers.

The keeper with the ball has the option to either pass the ballto
one of its two teammates or to hold the ball. In3 vs. 2 Keepaway
(3 keepers and 2 takers), the state is defined by 13 hand-selected
state variables (see Figure 1) as defined in [24]. The reward to the
learning algorithm is the number of time steps the ball remains in
play after an action is taken. The keepers learn in a constrained
policy space: they have the freedom to decide which action totake
only when in possession of the ball. Keepers not in possession
of the ball are required to execute theReceive macro-action in
which the player who can reach the ball the fastest goes to theball
and the remaining players follow a handcoded strategy to tryto get
open for a pass.

For policy learning, the Keepaway problem is mapped onto the
discrete-time, episodic RL framework. As a way of incorporat-
ing domain knowledge, the learners choose not from the simula-
tor’s primitive actions but from a set of higher-level macro-actions
implemented as part of the player [24]. These macro-actionscan
last more than one time step and the keepers have opportunities to
make decisions only when an on-going macro-action terminates.
Keepers can choose toHold (maintain possession),Pass1 (pass
to the closest teammate), andPass2 (pass to the further team-
mate). Agents then make decisions at discrete time steps (when
macro-actions are initiated and terminated).

Figure 2: This figure shows a screenshot of the visualizer used
for the human to demonstrate a policy in 3 vs. 2 Keepaway.
The human controls the keeper with the ball (shown as a hollow
white circle) by telling the agent when, and to whom, to pass.
When no input is received, the keeper with the ball executes the
Hold action, attempting to maintain possession of the ball.

To learn Keepaway with Sarsa, each keeper is controlled by a
separate agent. Many kinds of function approximation have been
successfully used to approximate an action-value functionin Keep-
away, but a Gaussian Radial Basis Function Approximation (RBF)
has been one of the most successful [23]. All weights in the RBF
function approximator are initially set to zero; every initial state-
action value is zero and the action-value function is uniform. Ex-
periments in this paper use the public versions 11.1.0 of theRoboCup
Soccer Server [14], and 0.6 of UT-Austin’s Keepaway players[23].

4.2 Experimental Setup
In the Demonstration phase ofHAT, Keepaway players in the

simulator are controlled by the teacher using the keyboard.This
allows a human to watch the visualization and instruct the keeper
with the ball to execute theHold, Pass1, orPass2 actions. Dur-
ing demonstration, we record all (s, a) pairs selected by the teacher.
It is worth noting that the human has a very different representation
of the state than the learning agent. Rather than observing a13
dimensional state vector like the RL agent, the human uses a visu-
alizer (Figure 2). It is therefore critical that whatever method used
to glean information about the human’s policy does not require the
agent and the human to have identical representations of state.

To be consistent with past work [23], our Sarsa learners use
α = 0.05, ǫ = 0.10, and RBF function approximation. After
conducting initial experiments with five values ofψ, we found that
ψ = 0.999 was at least as good as other possible settings. In the
Policy Summarization Phase, we use a simple propositional rule
learner to generate a decision list summarizing the policy (that is,
it learns to generalize which action is selected in every state). For
these experiments, we use JRip, as implemented in Weka [35].

Finally, when measuring speedup in RL tasks, there are many
possible metrics. In this paper, we measure the success ofHAT

along three related dimensions. The initial performance ofan agent
in a target task may be improved by transfer. Such ajumpstart
(relative to the initial performance of an agent learning without the
benefit of any prior information), suggests that transferred informa-
tion is immediately useful to the agent. In Keepaway, the jumpstart

620



is measured as the average episode reward (corresponding tothe
average episode length in seconds), averaged over 1,000 episodes
without learning. The jumpstart is a particularly important metric
when learning is slow and/or expensive.

The final reward acquired by the algorithm at the end of the
learning process (at 30 simulator hours in this paper) indicates the
best performance achieved by the learner. This value is computed
by taking the average of the final 1,000 episodes to account for the
high degree of noise in the Keepaway domain.

The total rewardaccumulated by an agent (i.e., the area under
the learning curve) may also be improved. This metric measures
the ability of the agent to continue to learn after transfer,but is
heavily dependent on the length of the experiment. In Keepaway,
the total reward is the sum of the average episode durations at every
integral hour of training:X

t:0→n

(average episode reward at training hourt)

where the experiment lastsn hours and each average reward is
computed by using a sliding window over the past 1,000 episodes.2

5. EMPIRICAL EVALUATION
This section presents results showing thatHAT can effectively

use human demonstration to bootstrap RL in Keepaway agents.
To begin, we recorded a demonstration from a teacher (Subject

A) which lasted for 20 episodes (less than 3 minutes). Next, we
used JRip to summarize the policy with a decision list. The fol-
lowing rules were learned, wherestatek represents thekth state
variable, as defined in the keepaway task [23]:

if (state11 ≥ 74.84 andstate3 ≤ 5.99 and

state11 ≤ 76.26) → Action= 1

elseif (state11 ≥ 53.97 andstate4 ≤ 5.91 and

state0 ≥ 8.45 andstate8 ≤ 7.06) → Action= 1

elseif (state3 ≤ 4.84 andstate0 ≥ 7.33 and

state12 ≥ 43.66 andstate8 ≤ 5.57) → Action= 2

else → Action= 0

While not the focus of this work, we found it interesting thatthe
policy was able to be summarized with only four rules, obtaining
over 87% accuracy on when using stratified cross-validation.

Finally, agents are trained in 3 vs. 2 Keepaway without using
transfer rules (No Prior), using the Value Bonus, using the Ex-
tra Action, or using the Probabilistic Policy Reuse method.All
learning algorithms were executed for 30 simulator hours (proces-
sor running time of roughly 2.5 hours) to ensure convergence.

Figure 3 compares the performance of the four methods, aver-
aged over 10 independent trials. Using 20 episodes of transferred
data fromSubject Awith HAT can improve the jumpstart, the fi-
nal reward, and the cumulative reward. The horizontal line in the
figure shows the average duration of the teacher’s demonstration
episodes; all four of the RL-based learning methods improveupon
and outperform the human teacher. The performance of the differ-
ent algorithms is measured quantitatively in Table 1, wheresignifi-
cance is tested with a Student’s t-test.
2Recall that the reward in Keepaway is +1 per time step, where a
time step is a 10th of a simulator second. Thus, the reward forthe
first hour of training is always60 × 60 × 10 = 36000 — a met-
ric for the total reward over time must account for the rewardper
episodeand simply summing the total amount of reward accrued is
not appropriate.
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Figure 3: This graph summarizes performance of Sarsa learn-
ing in Keepaway using four different algorithms. One demon-
stration of 20 episodes was used for all threeHAT learners. Er-
ror bars show the standard error in the performance.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380
Value Bonus 0.57 15.1 401
Extra Action -0.29 16.0 407
Probabilistic Policy Reuse -0.30 15.2 411

Table 1: This table shows the jumpstart, final reward and total
reward metrics for Figure 3. Values in bold have statistically
significant differences in comparison to the No Prior method
(p < 0.05).

While the final reward performance of the all four methods is
very similar (only Extra Action has a statistically significant3 im-
provement over No Prior), the total reward accumulated by all three
algorithms is significantly higher than with No Prior learning. This
result is an indication that although the same final performance is
achieved in the long term because the learning algorithm is able to
learn the task in all cases, high performance is achievedfasterby
using a small number of demonstrations. This difference canbe
best observed by selecting an arbitrary threshold of episode dura-
tion and comparing the number of simulation hours each algorithm
takes to achieve this performance. In the case of a thresholdof 14
seconds, we see that No Prior learning takes 13.5 hours, compared
to 10.1, 8.57 and 7.9 hours for Value Bonus, Extra Action and Prob-
abilistic Policy Reuse respectively. These results show that trans-
ferring information viaHAT from the human results in significant
improvements over learning without prior knowledge.

Section 5.1 will explore how performance changes with differ-
ent types or amounts of demonstration, while Section 5.2 discusses
how teacher ability affects learning performance. In all further ex-
periments we use the Probabilistic Policy Reuse method as itwas
not dominated by either of the other two methods. Additionally, in
some trials with other methods we found that the learner could start
with a high jumpstart but fail to improve as much as other trials. We
posit this is due to becoming stuck in a local minimum. However,
becauseψ explicitly decays the effect from the rules, this phenom-
ena was never observed when using Probabilistic Policy Reuse.

3Throughout this paper, t-tests are used to calculate significance,
defined asp < 0.05.
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5.1 Comparison of Different Teachers
Above, we used a single demonstration data set to evaluate and

compare three algorithms for incorporating learned rules into rein-
forcement learning. In this section, we examine how demonstra-
tions from different people impact learning performance ofa sin-
gle algorithm, Probabilistic Policy Reuse. Specifically, we compare
three different teachers:

1. Subject A: This teacher has many years of research experi-
ence with the Keepaway task. (The same as Figure 3.)

2. Subject B: This teacher is new to Keepaway, but practiced for
approximately 100 games before recording demonstrations.

3. Subject C: This teacher is an expert in LfD, but is new to
Keepaway. The teacher practiced 10 games before recording
demonstrations.

Each teacher recorded 20 demonstration episodes while trying
to play Keepaway to the best of their ability. Figure 4 summarizes
the results and compares performance of using these three demon-
stration sets against learning the Keepaway task without a prior.
All reported results are averaged over 10 learning trials. Table 2
presents summary of the results, highlighting statistically signifi-
cant changes in bold.

Method Jumpstart Final Total Reward

No Prior N/A 14.3 380
Subject A -0.30 15.2 411
Subject B 3.35 15.7 423
Subject C 0.15 16.2 424

Table 2: This table shows the jumpstart, final reward and total
reward metrics for Figure 4, where all HAT methods use Prob-
abilistic Policy Reuse with 20 episodes of demonstrated play.
Values in bold have statistically significant differences in com-
parison to the No Prior method.

All three HAT experiments outperformed learning without a bias
from demonstration, with statistically significant improvements in
total reward. However, as in any game, different Keepaway players
have different strategies. While some prefer to keep the ball in one
location as long as possible, others pass frequently between keep-
ers. As a result, demonstrations from three different teachers led to
different learning curves. Demonstration data fromSubjects Aand
C resulted in a low jumpstart, whileSubject B’s demonstration gave
the learner a significant jumpstart early in the learning process. The
final reward also increased for all threeHAT trials, with statistically
significant results in the case ofSubjects Band C. These results
indicate thatHAT is robust to demonstrations from different people
with varying degrees of task expertise.

An important factor to consider with any algorithm that learns
from human input, is whether combining demonstrations fromtwo
or more different teachers helps the agent to learn faster, or whether
exposure to possibly conflicting demonstrations from different teach-
ers slows the learning process. In the following evaluationwe com-
pared five demonstration types:

1. Subject A (20): Set of the original 20 demonstrations by Sub-
ject A: average duration of 10.4 seconds/episode

2. Subject A (10): Set of 10 randomly selected demonstrations
by Subject A: average duration 7.5 seconds/episode

3. Subject C (20): Set of the original 20 demonstrations by Sub-
ject C : average duration of 11.3 seconds/episode
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Figure 4: This graph summarizes performance of no prior
learning and Probabilistic Policy Reuse learning using demon-
strations from three different teachers. Each teacher per-
formed demonstrations for 20 episodes. Error bars show the
standard error in performance across 10 trials.

4. Subjects A + C Best (20): The 10 best (longest) demonstra-
tion episodes each from Subjects A and C: average duration
of 17.2 and 18.0 seconds/episode, respectively

5. Subjects A + C Worst (20): The 10 worst (shortest) demon-
stration episodes each from Subjects A and C: average dura-
tion of 4.6 seconds/episode for both

This analysis provides insight about the impact of combining
demonstrations from multiple teachers (conditions 1 and 3 vs. 4
and 5) and the impact of demonstration quantity (condition 1vs. 2)
and quality (condition 4 vs. 5). Figure 5 presents a comparison of
the five learning conditions, and Table 3 summarizes the results.

Method Jumpstart Final Total Reward

Subject A (20) -0.30 15.2 411
Subject A (10) -2.23 15.8 407
Subject C (20) 0.15 16.2 424
Subjects A + C Best 2.15 15.7 431
Subjects A + C Worst 0.37 16.1 419

Table 3: This table shows the jumpstart, final reward and total
reward metrics for Figure 5, where all HAT methods use Prob-
abilistic Policy Reuse with 20 demonstrated episodes. Values in
bold have statistically significant differences in comparison to
the No Prior method (not shown).

With respect to learning from multiple teachers, results show
that combining data from different subjects leads to performance
as good as or better than learning from a single teacher. Condi-
tion Subjects A + C Bestperforms better than eitherSubject Aor
Subject Calone, and significantly outperforms all other methods
in the group, in large part due to the early lead it has due to its
high jumpstart. ConditionSubjects A + C Worstshows no statis-
tically significant change in performance between it and learning
from Subject Aor Subject Calone.4 This result is significant be-
cause it indicates that while quality is important, as shownby the
4Note that because we have few subjects, our claims of significance
are limited to results from demonstrations with the three subjects
tested. Future work will generalize our findings by considering
many more subjects.
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Figure 5: This graph summarizes performance of Probabilistic
Policy Reuse learning using five different demonstration sets.
Error bars show the standard error in performance across 10
trials.

difference betweenSubjects A + C BestandWorst, any demonstra-
tion is beneficial. The fact that the worst demonstrations still lead
to performance well aboveNo Prior learning is an indication that
exposure to any training data is better than random exploration.

In fact, quantity of demonstration may matter more than qual-
ity, as shown by the comparison of conditions 1 and 2. Reducing
the number of demonstrations by half resulted in a significant de-
crease in jumpstart. Although performance eventually recovered
to achieve a final reward comparable to that of the other methods,
achieving that result took longer and there is a statistically signifi-
cant difference between the total reward of the two conditions.

Most significantly, we highlight that all demonstration-based meth-
ods, regardless of data source, quantity or quality, resulted in statis-
tically significant performance improvements overNo Prior learn-
ing. This critical result indicates thatHAT learning can benefit from
variable degrees of demonstration quality. The algorithm does not
require the teacher to be a task expert and easily surpasses the per-
formance of the teacher. In the following section, we further ex-
plore the effects of suboptimal demonstrations.

5.2 Impact of Teacher Ability on Learning
In the above experiments, all three teachers demonstrated the

task to their best ability. In this evaluation, we alter the simula-
tion environment to make the teacher’s demonstrations inherently
suboptimal. Specifically, we compare three types of demonstration:

1. Subject B: Same as above: average duration 10.5 sec./episode
2. Subject B Fast: Simulator speed during training was increased

to approximately 5 times faster than real time: average dura-
tion 4.3 seconds/episode

3. Subject B Limited Actions: The teacher was limited to exe-
cuting only two actions,Hold andPass1, disallowing passes
to the further keeper: average duration 5.2 seconds/episode

The two test conditions are designed to handicap the teacherand re-
duce the quality of demonstrations, either by affecting reaction time
(Subject B Fast) or by providing the learning agent with demonstra-
tions of only a subset of the state/action space (Subject B Limited
Actions). The handicapping effects were successful, reducing the
average duration of the teacher’s demonstration episodes by more
than half.

Figure 6 presents a comparison of the three learning conditions
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Figure 6: This graph summarizes performance of Probabilistic
Policy Reuse learning using three sets of demonstrations from
Subject B recorded under different simulator conditions: nor-
mal, fast and with limited actions. Each demonstration set con-
sists of 20 episodes. Error bars show the standard error in per-
formance across 10 trials.

and Table 4 summarizes the results. Importantly, we see again that
poor teacher performance does not negatively impact the final per-
formance of the agent. The data further supports our earlierfind-
ings that in the long-term, Probabilistic Policy Reuse can learn the
task regardless of the initialization method, and there is no statis-
tically significant difference in final reward values between condi-
tions 1 and 2, and conditions 1 and 3. Statistically significant dif-
ferences are observed, however, in the rate of learning, both with
respect to jumpstart and total reward, indicating that suboptimal
demonstrations slow the learning process. However, even with the
added handicaps, learning from human data shows statistically sig-
nificant improvements overNo Prior learning.

Method Jumpstart Final Total Reward

Subject B 3.35 15.7 423
Limited Actions -1.26 16.0 404
Fast Demonstration -2.37 16.0 401

Table 4: This table shows the jumpstart, final reward and to-
tal reward metrics for Figure 6, where all HAT methods use
Probabilistic Policy Reuse. All demonstrations are 20 episodes,
recorded by Subject B. Values in bold have statistically signif-
icant differences in comparison to the No Prior method (not
shown).

6. FUTURE WORK AND CONCLUSION
This paper has introducedHAT, a novel method to combine learn-

ing from demonstration with reinforcement learning by leveraging
an existing transfer learning algorithm. Using empirical evaluation
in the Keepaway domain we showed that given training data from
just a few minutes of human demonstration,HAT can increase the
learning rate of the task by several simulation hours. We evaluated
three different variants which used different methods to bias learn-
ing with the human’s demonstration. All three methods performed
statistically significantly better than learning without demonstra-
tion. Probabilistic Policy Reuse consistently performed at least as
well as the other methods, likely because it explicitly balances ex-

623



ploiting the human’s demonstration, exploring, and exploiting the
learned policy. Additional evaluation using demonstrations from
different teachers, combined demonstrations from multiple teach-
ers, and suboptimal demonstrations all showed thatHAT is robust
to variations in data quality and quantity. The best learning perfor-
mance was achieved by combining the best demonstrations from
two teachers.

One of the key strengths of this approach is its robustness. It
is able to take data of good or poor quality and use it well with-
out negative effects. This is very important when learning from
humans because it can naturally handle the noisy, suboptimal data
that usually occurs with human demonstration. Its ability to deal
with poor teachers opens up opportunities for non-expert users.

In order to better understandHAT and possible variants, the fol-
lowing questions should be explored in future work:

• Is it possible to identify the characteristics that make oneset
of demonstrations lead to better learning performance than
another? Can we identify what influences jumpstart (e.g.,
Subject B’s high jumpstart in Figure 4).

• Rather than performing 1-shot transfer, couldHAT be ex-
tended so that the learning agent and teacher could iterate be-
tween learning autonomously and providing additional demon-
strations?

• In this work, the human teacher and the learning agent had
different representations of state, and in one case had differ-
ent action sets. WillHAT still be useful if the teacher and
agent are performing different tasks? How similar does the
demonstrated task need to be to the autonomous learning task
for HAT to be effective?
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