
Decentralized Monitoring of Distributed Anytime
Algorithms

Alan Carlin
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

acarlin@cs.umass.edu

Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

shlomo@cs.umass.edu

ABSTRACT
Anytime algorithms allow a system to trade solution quality for
computation time. In previous work, monitoring techniques have
been developed to allow agents to stop the computation at the “right”
time so as to optimize a given time-dependent utility function. How-
ever, these results apply only to the single-agent case. In this pa-
per we analyze the problems that arise when several agents solve
components of a larger problem, each using an anytime algorithm.
Monitoring in this case is more challenging as each agent is uncer-
tain about the progress made so far by the others. We develop a
formal framework for decentralized monitoring, establish the com-
plexity of several interesting variants of the problem, and propose
solution techniques for each one. Finally, we show that the frame-
work can be applied to decentralized flow and planning problems.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]

General Terms
Algorithms, Performance

Keywords
bounded rationality, meta-level control, Dec-MDP

1. INTRODUCTION
Anytime algorithms are algorithms that improve their solution

as a function of time, and can return an answer when interrupted
[7]. When such algorithms are used, one must decide when to
stop computing and use the current solution. Russell and Wefald
describe the situation: “first, real agents have only finite computa-
tional power; second, they don’t have all the time in the world...
Typically, the utility of an action will be a decreasing function of
time.” [16]. Several works have studied the tradeoff of utility for
time in applied settings including intelligent system design [10],
problem solving and search [19], and planning [21].

Much of the work so far has focused on a single decision maker,
whereas work on bounded rationality in group decision making has
been relatively sparse [6, 13]. To some extent, any approximate rea-
soning framework could be viewed as a form of bounded rational-
ity. But unless one can establish some constraints on decision qual-
Cite as: Decentralized Monitoring of Distributed Anytime Algorithms,
Alan Carlin and Shlomo Zilberstein, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
157-164.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ity, such interpretations of bounded rationality are not very inter-
esting. It seems more attractive to define bounded rationality as an
optimization problem constrained by the availability of knowledge
and computational resources. One successful approach is based
on using decision-theoretic principles to monitor and control the
base-level decision making procedure. It has been shown that this
monitoring approach can be treated as a Markov Decision Process
(MDP) and it can be solved optimally offline and used to optimize
decision quality with negligible run-time overhead [9]. This ap-
proach to bounded rationality relies on optimal metareasoning [16].
That is, an agent is considered bounded rational if it monitors and
controls its underlying decision making procedure optimally so as
to maximize the comprehensive value of the decision. Additional
formal approaches to bounded rationality have been proposed. For
example, bounded optimality is based on a construction method
that yields the best possible decision making program given a cer-
tain agent architecture [15]. The approach implies that a bounded
rational agent will not be outperformed by any other agent running
on the same architecture. This is a stronger guarantee than optimal
metareasoning, but it is also harder to achieve.

Extending these computational models of bounded rationality to
multi-agent settings is hard. Even if one assumes that the agents
collaborate with each other – as we do in this paper – there is
an added layer of complication. There is uncertainty about the
progress that each agent makes with its local problem solving pro-
cess. Thus the metareasoning process inherently involves non-
trivial coordination among the agents. One existing approach for
meta-level coordination involves multiple agents that schedule a
series of tasks [14]. As new tasks arrive, each agent must decide
whether to deliberate on the new information and whether to nego-
tiate with other agents about the new schedule. Each agent uses an
MDP framework to reason about its deliberation process. The co-
ordination across agents is handled by negotiation, not by the MDP
policy. A more recent work uses Dec-MDPs for meta-level control,
with reinforcement learning to assign radars to agents [5].

In this paper, we extend optimal metareasoning techniques to
collaborative multiagent systems. We consider a decentralized set-
ting, where multiple agents are solving components of a larger
problem by running multiple anytime problem solving algorithms
concurrently. The main challenge is for each individual agent to
decide when to stop deliberating and start taking action based on
its own partial information. In some settings, agents may be able to
communicate and reach a better joint decision, but such communi-
cation may not be free. We propose a formal model to study these
questions and show that decentralized monitoring of anytime com-
putation can be reduced to the problem of solving decentralized
MDP (Dec-MDP) [3].

157

2. DECENTRALIZED MONITORING
We focus in this paper on a multiagent setting in which a group

of agents is engaged in collaborative decision making. Each agent
solves a component of the overall problem using an anytime algo-
rithm – an algorithm that can be stopped at any time and provide
an approximate solution to the problem. Solution quality increases
with computation time according to some known probabilistic per-
formance profile. The purpose of metareasoning is to monitor the
progress of the anytime algorithms in a decentralized manner and
decide when to stop deliberation.

Definition 1. The decentralized monitoring problem (DMP) is
defined by a tuple <Ag,Q, ~q 0, A, T, P, U,CL, CG> such that:
• Ag is a set of agents.
• Q is a setQ1×Q2...×Qn, whereQi is a set of discrete qual-

ity levels for agent i. At each step t, we denote the vector of
agent qualities by ~q t ∈ Q, or more simply by ~q ∈ Q, whose
components are qi ∈ Qi. Components of ~q t are qualities for
individual agents. We denote the quality for agent i at time t
by qti .
• ~q 0 ∈ Q is a joint quality at the initial step, known to all

agents.
• A = {continue, stop, monitorL, monitorG} is a set of meta-

level actions available to each agent. The actions monitorL
and monitorG represent locally and global monitoring, re-
spectively.
• T is a finite horizon representing the maximum number of

time steps in the problem.
• Pi is the transition model for the “continue” action for agent
i. We will use notation P with i implied by context. For all
i, t ∈ {0..T − 2}, qti ∈ Qi, and qt+1

i ∈ Qi, P (qt+1
i |qti) ∈

[0, 1]. Furthermore, Σ
qt+1
i ∈QiP (qt+1

i |qti) = 1. We assume
that the transitions of any two agents i and j are independent
of each other, that is, P (qt+1

i |qti , qtj) = P (qt+1
i |qti).

• U(~q, t) : Q× T → < is a utility function that represents the
value of solving the overall problem with quality vector ~q at
time t.
• CL and CG are the costs of the local monitoring and global

monitoring actions respectively.

Each agent solves a component of the overall problem using an
anytime algorithm. Unless a “stop” action is taken by one of the
agents, all the agents continue to deliberate for up to T −1 time
steps.

At each time step, agents decide which option to take, to con-
tinue, stop, or monitor globally or locally. If all the agents choose
to continue, then the time step is incremented and solution quality
transitions according to P . However, agents are unaware of the new
quality state determined by the stochastic transition. If any agent
chooses to “stop”, then all agents are instructed to cease computa-
tion before the next time step, and the utility U(~q, t) of the current
solution is taken as the final utility. If an agent chooses to mon-
itor locally, then a cost of CL is subtracted from the utility (for
each agent that chooses monitorL) and the agent becomes aware of
its local quality at the current time step. If any agent chooses to
monitor globally, a single cost of CG is subtracted from the utility
and all agents become aware of all qualities at the time step. The
time step is not incremented after a monitoring action. After an
agent chooses to monitor, it must then choose whether to continue
or stop, at the same time step.

Agents are assumed to know the initial quality vector ~q 0. An
agent has no knowledge about quality in later time steps, unless a

monitoring action is taken. The “monitorL” action monitors the lo-
cal quality; when agent i takes the “monitorL” action at time t it
obtains the value of qti . However, it still does not know any compo-
nent of ~q t−i. A “monitorG” action results in communication among
all the agents, after which they all obtain the global quality ~q t.

3. LOCAL MONITORING
In this section, we examine the concept of local monitoring. That

is, each agent must decide whether to continue its anytime compu-
tation, stop immediately, or monitor its progress at a cost CL, and
then decide whether to continue or stop deliberation and initiate
joint execution. The main result in this section shows that a DMP
with local monitoring decisions can be solved by first converting
the problem to a Transition Independent Dec-MDP. Although the
termination decision may seem to imply transition dependence, the
dependence is eliminated in the construction of Theorem 1.

3.1 Complexity of Local Monitoring
When CL = 0, each agent should choose to monitor locally

on every step, since doing so is free. When CG = ∞, agents
should never choose to monitor globally. The following lemma
and theorem shows that even for the simpler case where CL = 0,
CG =∞, and the number of agents is fixed, the problem of finding
a joint optimal policy is NP-complete. The termination decision
alone, made by agents with local views of quality, is NP-hard.

LEMMA 1. The problem of finding an optimal solution for a
DMP with a fixed number of agents |Ag|, CL = 0 and CG =∞ is
NP-hard in the number of quality levels.

PROOF. A nearly identical problem to this special-case DMP
with zero monitoring cost is the Team Decision Problem (TDP) in
Tsitsiklis [22]. Unfortunately, unlike in the Team Decision Prob-
lem, three joint decisions of a two-agent DMP (when either agent
stops, or they both do) contain the same utility. Therefore we pro-
ceed directly to the underlying Decentralized Detection problem
upon which the complexity proof of TDP is established.

We show that the NP-complete Decentralized Detection (DD)
problem can be solved by a three step DMP. The following defini-
tion is provided in [22].

Decentralized Detection: Given finite sets Y1, Y2, a rational prob-
ability mass function p : Y1 × Y2 → Q, a partition {A0, A1} of
Y1 × Y2. The goal is to optimize J(γ1, γ2) over the selection of
γi : Yi → {0, 1}, i = 1, 2, where J(γ1, γ2) is given byX

(y1,y2)∈A0

p(y1, y2)γ1(y1)γ2(y2)

+
X

(y1,y2)∈A1

p(y1, y2)(1− γ1(y1)γ2(y2))

Decentralized detection can be polynomially reduced to a three
step DMP with CL = 0. The first step is a known joint quality ~q 0.
We define a unique quality level at the second and third step for
each yi ∈ Yi. We will denote the quality level representing yi by
qyi. Transition probabilities to the second step are defined by the
probability mass function, P (q2i , q

2
j) = p(y1, y2). Each agent then

monitors (for zero cost) and is aware of its local quality.
We model the decision of selecting γi = 1 as a decision by agent

i to continue, and of selecting γi = 0 as a decision by agent i to ter-
minate. To accomplish this, the DMP transition model transitions
deterministically to a unique quality at step 3, for each quality of
step 2 of each agent.

Utility on step 3 is defined so that:
U(q2yi, q

2
yj , 2) = 0, U(q3yi, q

3
yj , 3) = 1 iff (yi, yj) ∈ A0, and

U(q2yi, q
2
yj , 2) = 1, U(q3yi, q

3
yj , 3) = 0 iff (yi, yj) ∈ A1.

158

Figure 1: An example of the state space for one of the agents,
while running the Dec-MDP construction of Theorem 1. When
the agent continues, only the current time is incremented.
When the agent monitors, the agent stochastically transitions
to a new quality state based on its performance profile. The
current time increments and monitoring time is set to the cur-
rent time. Not shown, when either agent terminates, the agents
get a reward based on the expectation of utility over their per-
formance profiles.

It should be clear from this construction that an optimal continu-
ation policy which maps qyi to a decision to continue or terminate,
can be used to construct γ(yi) in DD.

To show that this DMP is in NP, we will reduce to a transition in-
dependent Decentralized MDP (Dec-MDP), a problem which was
shown by Goldman and Zilberstein to be NP-complete [8].

In the Dec-MDP model, each agent has a local state space (de-
noted Si) available, similar to a classic MDP. The vector of states,
one for each agent, is referred to as the joint state. Each agent
takes one action from a set of actions denoted Ai, and actions have
stochastic effects which change the local state. The vector of ac-
tions, one per agent, is referred to as the joint action. Finally, agents
receive a joint reward (denoted R(~s,~a)) for taking a joint action
from a joint state. Execution takes place sequentially, a joint action
is taken from a joint state, a joint reward is received, and the pro-
cess repeats. In a finite horizon problem, there are T repetitions,
with T being the horizon of the problem. An agent’s Dec-MDP
policy is a mapping from its history of states and actions to a plan
for future actions, and is denoted πi.

Each agent is aware of its own local state and local action, but not
necessarily the states and actions of the other agents at run-time. It
is aware, however, of the other agents’ policies which were formed
at planning time. The Dec-MDP model enforces the rule that the
joint state is jointly fully observable. That is, between the agents,
the whole state can be observed at every step. In typical formula-
tions of Dec-MDP, this means each agent is aware of its local state
but not the state of the other agents. In a transition independent
Dec-MDP, state transitions of each agent are fully independent of
each other, no agent can have an effect another agent’s local state.
The only dependency between the agents is with respect to joint
reward.

THEOREM 1. The problem of finding an optimal solution for a
DMP with a fixed number of agents, CL = k and CG = ∞ is
NP-complete.

NP-hardness follows from above, with k = 0 as a special case. To
show NP-completeness, we show that the problem can be reduced

to a transition independent Dec-MDP. Policies and policy-values
for the DMP will correspond to policies and policy-values for the
transition-independent Dec-MDP. The conversion is as follows:

The state space Si for agent i are tuples < qi, t0, t >, where qi
is a quality level (drawn from Qi), t0 is the time step at which that
quality level was monitored, and t is the number of the current time
step. We also define a terminal state for each agent.

The action space for all agents is {terminate, continue, monitor}.
The transitions consist of the following: when the action is to

continue, t is merely incremented. When the action is to terminate,
the agent transitions to the terminal state. Let PMDP(s′|s, a) be
the transition function of the Dec-MDP. Let t0 represent the time
step when an agent last monitored. When the action is to monitor,
we have ∀qi, q′i ∈ Qi :

PMDP(< q′i, t
′
0, t

′ > | < qi, t0, t >,monitor) = 0

if t′ 6= t or t′ 6= t0.

PMDP(< q′i, t
′
0, t

′ > | < qi, t0, t >,monitor) = P (qt
′
i |qt0i)

if t′ = t′0 = t

The Reward is defined as zero if all agents choose to continue, as
−kC if k agents choose to monitor and none of the agents are in
a terminal state, as U(~q) if one of the agents chooses to terminate
and none of the agents are in a terminal state, and as zero if any
agent is in a terminal state.

This reduction is polynomial, as the number of agent states in the
Dec-MDP is |Qi|T 2 and number of actions is 3. The representation
is transition-independent, as the state of each agent does not affect
the state of the other agents. Note that when one agent terminates,
the other agents do not enter a terminal state, such a specification
would violate transition independence. Rather, this notion, that no
reward is accumulated once any agent has terminated, is captured
by the reward function. No reward is received if any of the agents
are in a terminal state. Since reward is only received when one of
the agents enters the terminal state, reward is only received once,
and the reward received by the Dec-MDP is the same as the utility
received by the DMP.

Figure 1 shows a visual representation of the Dec-MDP reduc-
tion from a DMP with local monitoring costs. State consists of a
tuple consisting of a quality level, the time at which the quality was
monitored, and the current time. The “continue” action in the first
step increments the current time. The “monitor” action increments
the monitoring time to the current time, and probabilistically tran-
sitions quality according to the transition probability of the DMP
applied to multiple steps.

An optimal policy for the Dec-MDP produces an optimal policy
for the corresponding multi-agent anytime problem. Note that the
uncertainty of quality present when an agent does not monitor is
simulated in the MDP. Even though, in an MDP, an agent always
knows its state, in this reduction the transition is not executed until
the monitoring action is taken. Thus, even though an MDP has
no local uncertainty, an agent does not “know” its quality until the
monitor action is executed, and thus the local uncertainty of the
multi-agent anytime problem is represented.

3.2 Solution Methods with Local Monitoring

3.2.1 Greedy Solution
We first build a solution that adapts the single-agent approach of

Hansen and Zilberstein to the multi-agent case [9]. The adaption
considers the other agents to be a part of the environment, and thus
we name it the Greedy approach. Greedy computation does not
take into account the actions of the other agents, we will initiate a

159

greedy computation by assuming that the other agents always con-
tinue, and that they will never monitor or terminate. We will then
build upon this solution to develop a nonmyopic solution. For ease
of explanation, we will describe the algorithm from a single agent’s
point of view. It should be assumed that each agent is executing this
algorithm simultaneously.

Each agent begins by forming a performance profile for the other
agents. We will use the term Pr as a probability function assuming
only “continue” actions are taken, extending the transition model
P over multiple steps. Furthermore we can derive performance
profiles of multiple agents from the individual agents, using the
independence of agent transitions. For example, in the two agent
case we use Pr(~q) as shorthand for Pr(qi)Pr(qj).

Definition 2. A dynamic local performance profile of an any-
time algorithm, Pri(q′i|qi,∆t), denotes the probability of agent i
getting a solution of quality q′ by continuing the algorithm for time
interval ∆t when the currently available solution has quality q.

Definition 3. A greedy estimate of expected value of computa-
tion (MEVC) for agent i at time t is:

MEV C(qti , t, t+ ∆t) =
X
~q t

X
~q t+∆t

Pr(~q t|qti , t)Pr(~q t+∆t|~q t,∆t)(U(~q t+∆t, t+ ∆t)− U(~q t, t))

The first probability is the expectation of the current global state,
given the local state, and the second probability is the chance of
transition. Thus, MEVC is the difference between the expected
utility level after continuing for ∆tmore steps, versus the expected
utility level at present. Both of these terms must be computed based
on the performance profiles of the other agents, and thus the utilities
are summed over all possible qualities achieved by the other agents.
Cost of monitoring, CL, is not included in the above definition.
An agent making a decision must subtract this quantity outside the
MEVC term.

For typical utility functions, the agent faces a choice as to whether
to continue and achieve higher quality in a longer time, or to halt
and receive the current quality with no additional time spent. A
monitoring policy makes that decision.

Definition 4. A monitoring policy Π(qi, t) for agent i is a map-
ping from time step t and local quality level qi to a decision whether
to continue the algorithm or act on the currently available solution.

It is possible to construct a stopping rule by creating and optimiz-
ing a value function for each agent. First, create a new local-agent
value function Ui such that

Ui(qi, t) =
X
~q t−i

Pr(~q t−i)U(< qi, ~q−i >, t)

Next, create a value function using dynamic programming, one
step at a time:

Vi(qi, t) = max
d

8>>>><>>>>:
if d = stop:
Ui(qi, t),

if d = continue:P
q t+∆t
i

Pr(q t+∆t
i |qi)Vi(qi, t+ ∆t)

to determine the following policy:

πi(qi, t) = argmaxd

8>>>><>>>>:
if d = stop:
Ui(qi, t),

if d = continue:P
q t+∆t
i

Pr(q t+∆t
i |qti)Vi(qi, t+ ∆t)

qt1 = 1 qt1 = 2 qt1 = 3
qt2 = 1 -2 0 -1
qt2 = 2 5 -3 -1
qt2 = 3 -2 -1 1

Table 1: An example of a case where greedy termination policy
produces a poor solution. Entries represent the expected utility
of continuing for a step.

where ∆t represents a single time step and d is a variable rep-
resenting the decision. In the above, a stop action yields an ex-
pected utility over the qualities of the other agents. A continue ac-
tion yields an expectation over joint qualities at future step t+ ∆t.
The above definitions exclude the option of monitoring (thus in-
curring the costs CL and CG), the choices are merely whether to
continue or act. Thus, we must define a cost-sensitive monitoring
policy, which accounts for CL and CG.

Definition 5. A cost-sensitive monitoring policy, Πi,c(qi, t), is
a mapping from time step t, quality level qi, and monitoring cost
c into a monitoring decision (∆t,m) such that ∆t represents the
additional amount of time to allocate to the anytime algorithm, and
m is a binary variable that represents whether to monitor at the end
of this time allocation or to stop without monitoring.

Thus, a cost-sensitive monitoring policy at each step chooses to
either blindly continue, monitor, or terminate. It can be constructed
using dynamic programming and the value function below. The
agent chooses ∆t, how many steps to continue blindly, as well as
whether to stop or monitor after. If it stops, it receives expected
utility, if it monitors it achieves value with a penalty of CL.

Vc(qi, t) = max
d,∆t

8>>>>>><>>>>>>:

if d = stop:P
q t+∆t
i

Pr(q t+∆t
i |qti)Ui(qi, t+ ∆t)

if d = monitor:P
q t+∆t
i

Pr(q t+∆t
i |qti)Vc(qi, t+ ∆t)− CL

A greedy monitoring policy can thus be derived by applying dy-
namic programming over one agent. On initialization, such an al-
gorithm assigns each quality level on the final step a value, based
on its expected utility over possible qualities of the other agents.
Then, working backwards, it finds the value of the previous step,
which is the maximum over: (1) the expected utility over the pos-
sible qualities of the other agents (if it chooses to stop). (2) The
expected utility of continuing (if it chooses to continue). An algo-
rithm to find a cost-sensitive monitoring policy can similarly find
the expectation over each time step with and without monitoring,
and compare the difference to the cost of monitoring.

3.2.2 Solution Methods: Modeling the Other Agents
The greedy solution can be improved upon to coordinate policies

among all the agents. To illustrate, examine Table 1. Each entry
represents the expected joint utility of continuing (thus increasing
utility but also time cost), minus the expected utility of stopping.
Assume all entries have equal probability and monitoring cost is
zero, and that the value of stopping immediately is zero, and thus
the values shown represent only the value of continuing. Agent
1 would greedily decide to continue if it is in state qt1 = 1 only,
as that is the only column whose summation is positive. Agent 2
would greedily continue if it has achieved quality qt2 = 2, as that
is the only row whose summation is positive. However, this would

160

mean that the agents continue from all joint quality levels which are
in bold. The sum of these levels is negative, and the agents would
do better by selecting to terminate all the time!

We solve the DMP with CG = ∞ optimally by leveraging the
bilinear program approach of Petrik and Zilberstein to solving tran-
sition independent Dec-MDPs [11]. We first convert the problem
to the transition independent Dec-MDP model described above.
We prune “impossible” state-actions, for example we prune states
where t0 > t, as an agent can not have last monitored in the future.
Then we convert the resulting problem into a bilinear program. A
bilinear program can be described by the following objective func-
tion and constraints for the two-agent case (the framework is exten-
sible beyond two agents if more agent-vectors are added):

maximizex,y r
T
1 x+ xTRy + r2y

subject to B1x = α1

B2y = α2

In our bilinear formulation of a DMP, each component of the
vector x represents a joint state-action pair for the first agent (sim-
ilarly, each component of y represents a state-action for the second
agent). Following the construction of Theorem 1, each component
of x represents a tuple< qt01 , t0, t, a >where q1 represents the last
quality observed, t0 represents the time at which it was observed, t
represents the current time, and a represents a continue, monitor, or
terminate. Thus, the length of x is 3|Q1|T 2 (assuming no pruning
of impossible state-actions). Each entry represents the probability
of that state and action occurring upon policy execution.

The vectors r1 and r2 are non-zero for entries corresponding to
state-actions that have non-zero local reward, for agents 1 and 2 re-
spectively. We set these vectors to zero, indicating no local reward.

The matrix R specifies joint rewards for joint actions, each entry
corresponds to the joint reward of a single state-action in x and y.
Thus, entries in R correspond to the joint utility U(~q, t) of the row
and column state, when any agent terminates. For entries where
one agent monitors and the other agent terminates or continues, we
adjust reward by −CL. Otherwise, joint reward is 0.

For the constraints, α1 and α2 represent the initial state distribu-
tions, and B1 and B2 and correspond to the dual formation of the
total expected reward MDP [12]. Intuitively, these constraints are
very similar to the classic linear program formulation of maximum
flow. Each constraint represents a state triple, and each constraint
assures that the probability of transitioning to the state (which is
the sum of state-actions that transition to it, weighted by their tran-
sition probabilities) matches the probability of taking the outgoing
state-actions (which is the three state-actions corresponding to the
state triple). A special case is the start quality, from which outgoing
flow equals 1.

Bilinear programs, like their linear counterparts, can be solved
through methods in the literature [11]. These techniques are be-
yond the scope of this paper, one technique is to alternately fix x
and y policies and solve for the other as a linear program. Al-
though bilinear problems are NP-complete in general, in practice
performance depends on the number of non-zero entries in R.

4. GLOBAL MONITORING
Next, we examine the case where agents can communicate with

each other (i.e., monitor globally). We will analyze the case where
CL = 0 and CG = k, where k is a constant. For ease of de-
scription, we describe an on-line approach to communication. The
online approach can be converted to an offline approach by antici-
pating all possible contingencies. We decide whether to communi-
cate based on decision theory, agents compute Value of Information

(VoI), which is defined as follows:

V oI = V ∗(qi, t)− Vsync(qi, t)− CG
where V ∗ represents the expected utility after monitoring, Vsync
represents expected utility without monitoring (see below), andCG
is cost of monitoring. In order to support the computation of Vsync
and V ∗, joint policies are produced at each communication point
(or, for the offline algorithm, at all possible joint qualities). We de-
fine a helpful term V ∗(~q, t), (which decomposes into V ∗(qi, ~q−i, t)
to more clearly identify the local agent), which is the value of
a joint policy after communication and discovery of joint quality
~q, as computed through the methodology of the last section with
CL = 0. From the point of view of agent i, the value after com-
municating can then be viewed as an expectation over the quality
of the other agents, based on their profiles.

V ∗(qi, t) =
X
~q−i

Pr(~q−i, t)V
∗(qi, ~q−i, t)

Similarly, Vsync is the value attached to quality qi and not com-
municating. This was computed as part of the local monitoring
problem at the last point of communication, we use the subscript
“sync” to remind us that Vsync(qi, t) depends on the policies cre-
ated and qualities observed at the last point of communication.

Non-myopic policies require each agent to make a decision as to
whether to communicate or not at each step, resulting in the con-
struction of a table resembling Table 1. We examined this table
in a previous section when deciding whether to continue or stop.
The table is used similarly for global monitoring, except the de-
cision made by each agent is whether to communicate or not to
communicate. Communication by either agent forces both agents
to communicate and synchronize knowledge. Entries represent the
joint state, and are incurred if either agent 1 decides to commu-
nicate from the row representing its quality, or agent 2 decides to
communicate from the column representing its local knowledge.

This problem, of deciding whether to communicate after each
step, is NP-complete as well. We will show this by reducing to a
transition independent Dec-MDP-Comm-Sync [2]. A Dec-MDP-
Comm-Sync is a transition independent Dec-MDP with an addi-
tional property: After each step, agents can decide whether to com-
municate or not to communicate. If they do not communicate,
agents continue onto the next step as with a typical transition in-
dependent Dec-MDP. If any agent selects to communicate, then
all agents learn the global state. However, a joint cost of CG is
assessed for performing the communication. Agents form joint
plans at each time of communication. The portion of the joint plan
formed by agent i after step t is denoted πti .

THEOREM 2. The DMP problem with CL = 0 and CG is a
constant, is NP-complete.

The proof of NP-hardness is similar to Lemma 1.
To show that the problem is in NP, we can reduce the problem to

that of finding the solution of a Dec-MDP-Comm-Sync. We create
the following Dec-MDP-Comm-Sync from a DMP with CL = 0.

• Si is the set Qi ∪ {fi} for agent i, where fi is a new “termi-
nal” state for agent i.

• Ai = {continue, terminate}; the joint action set is
Q
iA

i.

• The transition model:
PMDP(qt+1

i |qti , continue) = P (qt+1
i |qti)

PMDP(qt2i |qt1i , continue) = 0, ∀(t2 6= t1 + 1)

PMDP(fi|qti , terminate) = 1, ∀qti ∈ Si

161

Figure 2: Expected Utility versus cost of time of non-myopic
local monitoring of RockSample, for four different values of
CL. For the four plots, from highest to lowest, the cost of mon-
itoring was .5, 4, 7, and 10.

• The reward function R(~q t, ai) = U(~q, t) if ai = terminate
for some i; 0 otherwise.

• The reward function is 0 when any agent is in the final state.

• The horizon T is the same as T from the DMP.

• The cost of communication is CG.

The reduction is polynomial as the number of states added is
equal to T , and only one action is added.

It is straightforward to verify that this reduction is polynomial.
Having represented the DMP problem as a Dec-MDP-Comm-Sync,
we can use solution techniques from the literature to solve the prob-
lem which make use of a VoI computation [2].

5. EXPERIMENTS
We experimented on two decentralized decision problems in-

volving anytime computation. First we profiled the RockSample
domain, borrowed from the POMDP planning literature. In this
planning problem, two rovers must each form a plan to sample
rocks, maximizing the interesting samples. However, the loca-
tion of the rocks are not known until runtime, and thus the plans
can not be constructed until the rovers are deployed. We selected
the HSVI algorithm for POMDPs as the planning tool [20]. HSVI
is an anytime algorithm, the performance improves with time, its
error bound is constructed and reported at runtime. Prior to run-
time, the algorithm was simulated 10, 000 times on randomized
RockSample problems, in order to find the performance profile.
The resulting profile held 5 quality levels over 6 time steps.

Second, we profiled the Ford Fulkerson maximum flow solution
method. This motivating scenario involved a decentralized max-
imum flow problem where two entities must each solve a maxi-
mum flow problem in order to supply disparate goods to the cus-
tomer. To estimate the transition model P in the DMP, we profiled
performance of Ford Fulkerson through Monte Carlo simulation.
The flow network was constructed randomly on each trial, with
each edge capacity in the network drawn from a uniform distribu-
tion. Quality levels corresponded to regions containing equal-sized
ranges of the current flow. From the simulation, a 3-dimensional
probability table was created, with each layer of the table corre-
sponding to the time, each row corresponding to a quality at that
time, each column representing the quality at the next time step,
and the entry representing the transition probability. We created
software to compile a Decentralized MDP from the probability ma-

Problem (Local/Global) Compile Time Solve Time
Max Flow Local 3.5 11.4

RockSample Local .13 2.8
Max Flow Global .04 370

RockSample Global .01 129

Table 2: Timing results in seconds. Compile time represents
time to compile performance profile into bilinear problem,
solve time measures time taken by the bilinear solver.

Agent 1
Quality 1 2 3 4 5 6

1 4 3 3 2 1 0
2 4 3 3 2 1 0
3 0 3 2 2 1 0
4 0 2 1 1 1 0
5 0 1 0 0 0 0

Agent 2
1 4 3 3 2 1 0
2 4 3 3 2 1 0
3 0 3 2 2 1 0
4 0 2 1 1 1 0
5 0 1 0 0 0 0

Table 3: Greedy Local Monitoring Policy for RockSample
problem, C=2 K=8

trix, as described in the previous sections, and solved the resulting
problem using a bilinear program.

Three parameters of utility were varied with respect to each other:
the reward for increasing quality, a linearly increasing cost of time,
and the cost of monitoring. Experiments varied the latter two.
For RockSample, the chosen utility function was 10(qi + qj −
Kt), where t was time in seconds modulo 5, and we experimented
with various values of K. For MaxFlow, utility was defined as
10(min(qi, qj) − Kt), where min(qi, qj) represents the lesser of
the flows, t represents the time step, (defined for the profile as the
time in seconds modulo 5), and K represents cost of time and was
varied. For max flow there were 10 quality levels and 10 time steps
for each agent. In this section we focus problems with costs of time
which result in non-trivial continuation policies. When cost of time
is very low with respect to quality increase, computation trivially
always continues, and when cost of time is very high, computa-
tion stops immediately. When cost of time lies between these two
extremes, the option of monitoring becomes interesting.

Mean running time for the non-myopic variant of our algorithms
is shown in Table 2. The MaxFlow problem was larger than the
RockSample problem (containing more quality levels), thus con-
sumed more time. The global formulations, as opposed to the local
formulations, required a sub-problem formulation to precompute
V ∗ at each communication point, and thus more time elapsed.

Table 3 shows resulting policies of the Greedy algorithm for lo-
cal monitoring on the RockSample problem. The policy is taken
for K = 8 and C = 2, which we consider well motivated since the
routine to report progress took approximately a quarter of a time
step. Rows represent quality levels and columns represent the time
step at which that quality level was observed. Entries represent the
agent’s policy. Numbered entries represent to proceed that number
of steps, and then terminate. For example, the entry in box (1, 1)
represents that at step 1 with quality level 1, the Greedy policy pro-
ceeds 4 steps and then terminates. For this particular cost of time
and cost of monitoring, the Greedy algorithm does not monitor at
any step, although the Greedy algorithm did monitor for lower costs
of monitoring. Also note that the Greedy algorithm is the same for
agent 1 and agent 2, each is working off of the same profile and is

162

Agent 1
Quality 1 2 3 4 5 6

1 3M - - 1M 2 0
2 - - - 1M 2 0
3 - - - 1M 2 0
4 - - - 1M 1 0
5 - - - 0 0 0

Agent 2
1 1M 1M 2M - 1 0
2 - 1M 2M - 1 0
3 - - 2M - 1 0
4 - - 1M 0 1 0
5 - - 1M 0 0 0

Table 4: Nonmyopic local monitoring policy for first agent C=2
K=8. In some cases, the bilinear program returned stochastic
actions, where multiple state-actions corresponding to the same
state had non-zero probability (the sum of the state-actions
equaled one). In these cases, the tables show the most probable
action for the state.

not considering the policy of the other agent.
Table 4 shows resulting policies of the Nonmyopic algorithm for

the same local monitoring problem. Entries designated “xM” de-
note continuing for x steps and then monitoring. For instance, in
the first step, the first agent will proceed for 3 steps and then mon-
itor. The second agent, by contrast, will proceed one step and then
monitor. In these policies, agents are more likely to stop at higher
quality levels, and more likely to monitor at earlier points in time.

Qualities that are impossible to achieve are reported with a “-”.
The bilinear program only reports its policy for state-actions with
probability above zero. For example, since agent 1 has a 100 per-
cent chance of starting at quality level 1, and since the first step for
agent 1 continues for three steps and then monitors, it is impossible
to observe any quality level on the 2nd and 3rd steps.

Figure 2 plots value versus the cost of time (K) for 4 different
local costs of monitoring on the RockSample problem. For a
constant cost of time, a higher cost of monitoring results in a lower
quality solution. The drop off is monotonically decreasing and
roughly linear, with higher cost of monitoring resulting in a more
negative slope. This can be explained in context of the extremes of
the graph. As one proceeds leftwards, cost of time is smaller, ulti-
mately when it is small enough the agents should always continue
(and, for instance when cost of time is zero, no monitoring decision
is needed to verify this). As one proceeds rightwards, cost of time
is larger, and when it is large enough the agents should stop on the
first step (and again, no monitoring decision is required to verify
this), achieving zero value. One can see that expected utility hits
zero more quickly for the high cost of monitoring than the low cost
of monitoring. Thus, the plots of all four monitoring costs intersect
to the far left and the far right, but the zones where expected util-
ity lies between those values is smallest when cost of monitoring is
highest. Thus, higher cost of monitoring results in a more negative
slope.

Figure 3 (a) shows value of Global Monitoring as compared to
Local Monitoring on RockSample for various time costs. Value
with Global Monitoring is higher, due to the Cost of Local Mon-
itoring being zero for the Global Monitoring case, as well as the
ability of each agent to monitor the progress of other agents, thus
coordinating further.

Similarly, Figure 3 (b) summarizes experiments on MaxFlow.
Nonmyopic monitoring outperforms myopic monitoring, and the
global variant achieves higher performance. The RockSample
domain proved more difficult to achieve higher scores, as the min
function made it difficult to achieve value.

(a) RockSample

(b) MaxFlow

Figure 3: Comparison of global monitoring, nonmyopic lo-
cal monitoring, and local monitoring on RockSample and
MaxFlow problems.

6. RELATED WORK
The history of literature on anytime algorithms is rich in single-

agent settings. We refer to [1, 6, 18] for recent overviews. Dean
and Boddy used the term “anytime algorithm” in the 1980’s to de-
scribe a class of algorithms that "can be interrupted at any point
during computation to return a result whose utility is a function of
computation time" [7, 4]. They employed these algorithms in their
work on time dependent planning and how to schedule deliberation.
Horvitz, during the 1980’s as well, used decision theory to analyze
"costs and benefits of applying alternative approximation proce-
dures" to cases "where it is clear that there are insufficient com-
putational resources to perform an analysis deemed as complete"
[10]. Russell and Wefald used a discrete deliberation scheduling
algorithm, which decides whether to deliberate or act based on ex-
pected value [16]. The work was implemented for search algo-
rithms. Russell, Subramanian, and Parr utilized bounded optimal-
ity, which holds if a program produces a solution to a constrained
optimization problem presented by the environment [15].

Work in artificial intelligence has produced several theories and
architectures that can take into account the computational cost of
decision making [7, 10, 15, 23, 24]. Zilberstein and Russell utilized
performance profiles of algorithms in order to inform future any-
time decisions [25]. The concept of performance profiles has been
further explored in recent decision-theoretic approaches. Hansen
and Zilberstein form a performance profile of an agent offline [9].
Then, based on this profile, a dynamic programming approach is
used to make stopping decisions. The decisions use Bayesian rea-
soning based on the profiles in order to ascertain probability of fu-
ture quality. Predictions of future quality are used to inform moni-
toring decisions, which are decisions whether to pause and monitor
quality, or merely to continue. Similarly, Sandholm uses perfor-
mance profiles to decide when to optimally terminate incomplete
decision algorithms (algorithms which never finish if the answer is

163

N and may or may not finish if the answer is Y) on problems such
as 3-SAT [17]. Termination decisions are based on the prior proba-
bility of an answer, on a utility model based on the utility of quality
and time, and on the performance profiles.

In the multi-agent realm, Raja and Lesser explore a framework
for coordinating agents Meta-Level control [13, 14]. In these works
a single agent or multiple agents schedule a series of tasks. At var-
ious points in time, new tasks arrive, and each agent must decide
whether to deliberate on the new information and whether to nego-
tiate with other agents about the new schedule. The authors use an
MDP framework within agents to reason about deliberation and the
coordination across agents is handled by negotiation. The recent
approach of Cheng et al. uses reinforcement learning for meta-level
control of weather radars, using Dec-MDPs [5].

7. CONCLUSIONS AND FUTURE WORK
Anytime algorithms effectively gauge the trade-off between time

and quality. Monitoring is an essential part of the process. Existing
techniques from the literature weigh the trade-off between time,
quality, and monitoring for the single-agent case. The complexity
of the monitoring problem is known, and dynamic programming
methods provide an efficient solution method.

However, this paper shows that these techniques do not scale to
the multi-agent case. In this paper, we took a decision-theoretic ap-
proach to the monitoring problem. We formalized the problem for
the multi-agent case, and proved that there exist problems for both
local and global monitoring which are NP-complete. We showed
how the multi-agent monitoring problems can be compiled as spe-
cial cases of Decentralized Markov Decision Processes, and thus
solvers from the literature can produce efficient solutions.

Future work lies in several directions. First, we will analyze and
produce solutions for monitoring problems that are partially ob-
servable. We will also examine items like varying the monitoring
cost. Second, we would like to examine cases with non-cooperative
utility functions. Third, we will apply the methods to cases involv-
ing more than two agents. The latter will require modifications to
the bilinear solver.

Acknowledgments
Support for this work was provided in part by the National Sci-
ence Foundation Grant IIS-0812149 and by the Air Force Office of
Scientific Research Grant FA9550-08-1-0181.

8. REFERENCES
[1] M. Anderson. A review of recent research in metareasoning

and metalearning. AI Magazine, 28(1):7–16, 2007.
[2] R. Becker, A. Carlin, V. Lesser, and S. Zilberstein. Analyzing

myopic approaches for multi-agent communication.
Computational Intelligence, 25(1):31–50, 2009.

[3] D.S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein
The complexity of decentralized control of Markov decision
processes. Mathematics of Operations Research,
27(1):819–840, 2002.

[4] M. Boddy and T. Dean. Deliberation scheduling for problem
solving in time-constrained environments. Artificial
Intelligence, 67:244–285, 1994.

[5] S. Cheng, A. Raja, and V. Lesser. Multiagent Meta-level
Control for a Network of Weather Radars. In Proceedings of
2010 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 157-164, 2010.

[6] M. Cox and A. Raja. Metareasoning: Thinking about
thinking. Cambridge, MA: MIT Press.

[7] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proceedings of the Seventh National Conference
on Artificial Intelligence, 49–54, 1988.

[8] C. Goldman and S. Zilberstein. Decentralized control of
cooperative systems: Categorization and complexity
analysis. Journal of Artificial Intelligence Research,
22:143–174, 2004.

[9] E. Hansen and S. Zilberstein. Monitoring and control of
anytime algorithms: A dynamic programming approach.
Artificial Intelligence, 126(1-2):139–157, 2001.

[10] E. Horvitz. Reasoning about beliefs and actions under
computational resource constraints. In Proceedings of Third
Workshop on Uncertainty in Artificial Intelligence, 429–444,
1987.

[11] M. Petrik and S. Zilberstein. A bilinear approach for
multiagent planning. Journal of Artificial Intelligence
Research, 35:235–274, 2009.

[12] M. Puterman. Markov decision processes, Discrete stochastic
dynamic programming. John Wiley and Sons, Inc., 2005.

[13] A. Raja and V. Lesser. Meta-level reasoning in deliberative
agents. In Proceedings of the International Conference on
Intelligent Agent Technology, 141–147, 2004.

[14] A. Raja and V. Lesser. A framework for meta-level control in
multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 15:147–196, 2007.

[15] S. Russell, D. Subramanian, and R. Parr. Provably bounded
optimal agents. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
575–609, 1993.

[16] S. Russell and E. Wefald. Principles of metareasoning. In
Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning,
400–411, 1989.

[17] T. Sandholm. Terminating decision algorithms optimally. In
Proceedings of the International Conference on Principles
and Practice of Constraint Programming, 2003.

[18] M. Schut and M. Wooldridge. The control of reasoning in
resource-bounded agents. Knowledge Engineering Review,
16(3):215–240, 2001.

[19] H. Simon and J. Kadane. Optimal problem solving search:
All or nothing solutions. Computer Science Technical Report
CMU-CS-74-41, 1974.

[20] T. Smith and R. Simmons. Heuristic search value iIteration
for POMDPs. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, 520–527, 2004.

[21] M. Stefik. Planning and meta-planning. Artificial
Intelligence, 16(2):141–170, 1981.

[22] J. Tsitsiklis and M. Athans. On the complexity of
decentralized decision making and detection problems. IEEE
Transactions on Automatic Control, 30(5):440–446, 1985.

[23] M. P. Wellman. Formulation of Tradeoffs in Planning under
Uncertainty. London: Pitman, 1990.

[24] S. Zilberstein. Operational rationality through compilation of
anytime algorithms. Ph.D. Dissertation, Computer Science
Division, University of California, Berkeley, 1993.

[25] S. Zilberstein and S. Russell. Optimal composition of
real-time systems. Artificial Intelligence, 82(1-2):181–213,
1996.

[26] S. Zilberstein. Metareasoning and bounded rationality. In M.
Cox and A. Raja (Eds.), Metareasoning: Thinking about
Thinking, MIT Press, forthcoming.

164

