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ABSTRACT
We present a novel method for analysing the behaviour of
multiagent systems on the basis of the semantically rich in-
formation provided by agent communication languages and
interaction protocols. Contrary to analysis methods that
rely on observing more low-level patterns of behaviour [3, 4],
our method is based on exploiting the semantics. These lan-
guages and protocols which can be used to extract qualitative
properties of observed interactions. This can be achieved by
interpreting the logical constraints associated with protocol
execution paths or individual messages as models of the con-
text of an observed interaction, and using them as features
of learning samples.
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1. INTRODUCTION
Consider a message inform(A,B,X) with the usual mean-

ing that agent A informs B of a fact X. Use of this message
type is usually tied to preconditions like (Bel A φ) stating
that A in fact believes φ to be true. While B is unable to
verify whether this is actually the case (or A is lying/has a
different interpretation of the Bel predicate or of statement
φ), use of the message entitles B to operate under the as-
sumption that (Bel A φ) is true for A. For example, if B
contested φ, it would be unreasonable for a protocol to al-
low A to state that she never claimed φ. So, at a pragmatic
level, any semantic “annotations” (pre- and post-conditions)
of messages that an agent is uttering can be used as as-
sumptions about the former agent’s mental state (or, e.g.
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in commitment-based semantics, about their perception of
a social state).

By using semantic elements of protocols as features of in-
teraction traces, which are available as data samples from
past interactions, we can inductively derive context models
i.e. logical theories that capture regularities in previously
observed interactions. These context models, which essen-
tially capture generalised information about the conditions
under which a protocol reaches a certain outcome, can be
used for various purposes: (1) to make predictions about
future behaviour, (2) to infer the definitions other agents
apply when validating logical constraints during an interac-
tion, and (3) to analyse the reliability and trustworthiness
of agents based on the logical coherence of their utterances.
Surprisingly, no previous work has addressed this potential
use of semantic annotations of protocols, except some recent
work in the area of ontology mapping [1, 2]. However, even
these contributions only deal with ontological conflicts, and
not with more general emergent properties of interactions.

2. FORMAL FRAMEWORK
We represent protocols in a very general way as graphs

whose nodes are speech-act like messages placeholders, and
whose edges define transitions among messages that give
rise to message sequences specified as admissible according
to the protocol. These edges will be labelled with logical
constraints, i.e. formulas that all agents in the system are
able to verify, and these act as guards on a given transition,
so that the message corresponding to a child node can only
be sent if the constraint(s) along its incoming edge from the
parent node (the message just observed) can be satisfied.

We define a protocol model as a graph G = (V,E) where
each node v ∈ V is labelled with a messagem(v) = q(X,Y, Z)
with performative q (a string) and sender / receiver / con-
tent variables X, Y , and Z, and each edge is labelled with
a (conjunctive) list of (say, n) constraints

c(e) = {c1(t1, . . . , tk), . . . , cn(t1, . . . tkn)}
where each constraint ci(. . .) has arity ki, head ci and argu-
ments tj which may contain constants, functions or variables
(in general the label of an edge could be an arbitrary for-
mula φ ∈ L of a logical language L). All variables that occur
in such constraints are implicitly universally quantified. We
also assume that all outgoing edges of a node result in mes-
sages with distinct performatives, i.e. for all (v, v′), (v, v′′) ∈
E (m(v′) = q(. . .) ∧ m(v′′) = q(. . .)) ⇒ v′ = v′′ so that
each observed message sequence corresponds to (at most)
one path in G by virtue of its performatives.
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Figure 1: A simple negotiation protocol model.

Figure 1 shows an example protocol model in this generic
format for illustration purposes. This figure presents a sim-
ple negotiation protocol model: A requests X, the initial
response from B depends on availability; if X is available,
A and B go through an iterative process of negotiating the
terms for the purchase, depending on the keepNegotiating ,
termsAcceptable, and termsAvailable predicates; in case of
acceptance (which implies payment), B may succeed or fail
in delivering the product. Edge constraints are annotated
with the variable representing the agent that has to validate
them.

The semantics of a protocol model G can be defined based
on the pair 〈π, θ〉 which returns the path and variable substi-
tution that the message sequence m corresponds to in pro-
tocol model G. With this, we can define the context of m
as c(G, 〈m1, . . . ,mn〉) =

∧n−1
i=1 c(ei)θ where G(m) = 〈π, θ〉.

The basis of our analysis is the assumption that for any ob-
served message sequence m, the conjunction of edge con-
straints described by the context c(G, 〈m1, . . . ,mn〉) was
logically true at the time of the interaction.

Consider a protocol model G, and message sequences m
obtained from past executions of G. Any such sequence can
be translated to a pair G(m) = 〈π, θ〉 as defined above. As-
suming that a set of such substitution-annotated paths are
used as a training data, the extension proposed here is to
augment the learning data by the logical context of the data
samples, i.e. to include the logical formula c(G,m) in the
data samples, which can be directly inferred using the log-
ical constraints provided by the definition of G. In other
words, we view qualitative protocol mining as an informed
version of data-driven interaction analysis where the back-
ground knowledge of context within which communication
occurs is used to extract “richer” information about what is
happening in a given system.

Due to the nature of multiagent interaction protocols, ad-
ditional design decisions have to be made to deal with differ-
ent agents, paths, variables, and loops before standard data
mining machinery can be used (we omit the details of these
issues for lack of space).

3. CASE STUDY
To illustrate the usefulness of our approach, we have anal-

ysed data generated in a car selling domain, where agents
negotiate over cars using the protocol shown in figure 1. We
experimented with two open source implementations of data
mining techniques, the J48 decision tree algorithm and the
NNge classification-rule based algorithm, to show that our
method does not depend on the use of a specific learning
algorithm.

For the purposes of this case study, we assume that a
single seller (S) is analysing the system evolution from its
local point of view. In converting raw sequences of message
exchanges to training data samples, we make the follow-
ing choices: The seller (in role B), unaware of the decision-
making rules of a set of 10 customers (in role A), performs
the analysis, thus the learning input is restricted to the mes-
sages (nodes) and constraints (edges) of the customers. As
far as variables occurring in constraints are concerned, we
uniformly record all attributes contained in “terms” descrip-
tions T , including a “?” (unknown) value for those not men-
tioned in a given execution trace. The seller tries to learn a
model for the general outcome of the protocol (Successful,
Neutral or Failure). The table in figure 2 shows results for
103 to 105 negotiations where: nn is the number of nego-
tiations, time is the time in seconds required to build the
model, cci is the percentage of correctly classified instances
(evaluated using 10-fold stratified cross-validation), mae is
the mean absolute error and rae is the relative absolute er-
ror.

J48 nn time cci mae rae
1.E3 0.05 83.4% 0.16 38.34%
1.E4 0.48 97.58% 0.04 11.21%
1.E5 5.09 99.96% 0.004 1.1%

Nnge nn time cci mae rae
1.E3 0.1 86.8% 0.08 19.91%
1.E4 0.66 89.03% 0.07 16.6%
1.E5 17.39 93.53% 0.04 9.79%

Figure 2: Experiment results.

These experiments, in which the protocol mining algo-
rithms were able to accurately reconstruct the actual de-
cision rules used by the customers, demonstrate that good
models to predict the outcome of a protocol can be quickly
built from the context of concrete executions of that proto-
col. They hint at the potential analyses that can be con-
ducted and illustrate the usefulness of qualitative protocol
mining in real-world scenarios1.
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