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ABSTRACT
In recent years, several bilateral protocols regulating the ex-
change of arguments between agents have been proposed.
When dealing with persuasion, the objective is to arbitrate
among conflicting viewpoints. Often, these debates are not
entirely predetermined from the initial situation, which means
that agents have a chance to influence the outcome in a way
that fits their individual preferences. This paper introduces
a simple and intuitive protocol for multiparty argumenta-
tion, in which several (more than two) agents are equipped
with argumentation systems. We further assume that they
focus on a (unique) argument (or issue) —thus making the
debate two-sided— but do not coordinate. We study what
outcomes can (or will) be reached if agents follow this proto-
col. We investigate in particular under which conditions the
debate is pre-determined or not, and whether the outcome
coincides with the result obtained by merging the argumen-
tation systems.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Theory
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1. INTRODUCTION
Protocols for persuasion [11] regulate the exchange of ar-

guments to arbitrate among conflicting viewpoints. Depend-
ing on the underlying objective, such protocols can be more
or less flexible. When conceived as argument games (or dis-
putes) between a proponent and an opponent, proof theo-
retical counterparts of argumentation semantics must leave
no room for uncertainty in the result. On the other hand,
when the ambition is to regulate some interaction between
different agents, it is often desirable that the outcome of
the dialogue is not entirely predetermined from the initial
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situation [7, 8]. This means that agents have a chance to
influence the outcome of the game depending on how they
play.

Recently, different properties of these protocols have been
studied with the help of game-theoretical concepts (see [13]
for a survey). This paper follows this line of work, and
develops an analysis which builds on very similar assump-
tions. In particular, we shall take for granted, as [12] do for
instance, that agents’ argument moves should immediately
improve their satisfaction with respect to the current situ-
ation of the debate. This work however departs from these
previous proposals, in the sense that we address a case of
multiparty argumentation. In this context, a number (n > 2)
of agents exchange arguments on a common gameboard. No
central computation of the whole system takes place, and
no coordination between agents is assumed (even if they
share the same view). The motivating applications we have
in mind are for example online platforms allowing users to
asynchronously modify the content of a collective debate.
We want to study what outcomes will be reached with these
type of interactions. This situation has received so far little
attention and there are good reasons for that (see [4] for a
discussion on the challenges raised by multiparty dialogues,
and [16] for a recent study of multiparty persuasion in a spe-
cific framework). Firstly, it is not obvious to identify what
would be the “correct” collective outcome in this case. In
this paper we rely on a specific (natural in our case) merged
solution [3] to assess the quality of the outcome. Secondly,
the design of these protocols is made very difficult by the
number of parameters to consider (think of several agents
focused on possibly different issues), and renders the analy-
sis of their formal properties challenging.

To keep things as simple as possible in this study, the fol-
lowing assumptions are made: (i) all the agents are focused
on the same single issue (argument) of the debate (that is,
agents evaluate how good is a state of the debate on the
sole basis of the status of this specific argument); (ii) all the
agents make use of the same argumentation semantics to
evaluate both their private argumentation system and the
situation on the common gameboard (specifically, we rely
on Dung’s grounded semantics [5]); and (iii) all the agents
share the same set of arguments, but they may have different
views on the attack relations between these arguments (this
may result, e.g., from agents being equipped with value-
based argumentation systems [1] and ranking differently the
values). While these restrictions are arguably severe, we will
see that the resulting framework is already sufficiently rich
to illustrate the variety of results that may be derived in the
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study of multiparty argumentation protocols.
The remainder of this paper is as follows. In the next sec-

tion we provide the necessary background on argumentation
semantics. Section 3 sets up the basic elements of our frame-
work. The properties of the proposed protocol are studied
in Section 4. Finally, Section 5 discusses related works and
concludes, discussing possible extensions of the preliminary
study proposed here.

2. BACKGROUND

2.1 Argumentation Systems
In this section, we briefly recall some key elements of ab-

stract argumentation frameworks as proposed by Dung [5].
The exact content of arguments is left unspecified here. In-
stead, a (finite) set of arguments is given, as well as the
different conflicts among them.

Definition 1. An argumentation system (AS) is a
pair 〈A,R〉 of a set A of arguments and a binary relation
R on A called the attack relation. ∀a, b ∈ A, aRb (or
(a, b) ∈ R) means that a attacks b (or b is attacked by a).
An AS may be represented by a directed graph, called the
argumentation graph, whose nodes are arguments and
edges represent the attack relation.

From this argumentation graph, we can introduce some
notions related to graph theory in order to characterize some
properties of the argumentation system.

Definition 2. Let AS be an argumentation system, and
G be the argumentation graph associated. A path in G is
a sequence of nodes such that from each node there is an
edge to the next node in the sequence. A finite path has a
first and a last node. An edge (b, c) is an attack edge (resp.
defense edge) for an argument a iff there is an even-length
(resp. odd-length) path from c to a.

Note that an edge can be both an attack and a defense
edge. In Dung’s framework, the acceptability of an argument
depends on its membership to some sets, called extensions.
These extensions characterize collective acceptability.

Definition 3. Let AS = 〈A,R〉 be an argumentation
system. Let S ⊆ A. S is conflict-free for AS iff there
exists no a, b in S such that aRb. S collectively defends
an argument a iff ∀b ∈ A such that bRa, ∃c ∈ S such that
cRb.

A set of arguments is admissible when it is conflict-free
and each argument of the set is collectively defended by
the set itself. Several semantics for acceptability have been
defined in [5]. In what follows, we concentrate on the notion
of grounded semantics which can be defined as follows:

Definition 4. Let AS = 〈A,R〉 be an argumentation
system. Let S ⊆ A. S is a grounded extension of AS
iff S is the least fixed point of the characteristic function of
AS (F : 2A → 2A with F (S) = {a such that S collectively
defends a}).

Intuitively, a grounded extension contains all arguments
which are not attacked, as well as the arguments which
are defended (directly or not) by non-attacked arguments.
There always exists a unique grounded extension. We shall
denote by E(AS) the grounded extension of the system AS.

2.2 Merged Argumentation System
We now consider a set N of n agents. Each agent holds

an argumentation system ASi = 〈A,R(i)〉, sharing the same
arguments A, but with possible conflicting views on attack
relations between arguments (coming for instance from dif-
ferent underlying preferences). What should be the collec-
tive view in that case? To tackle this problem, we rely on the
notion of a merged argumentation system [3]. In the specific
case we discuss here, it turns out that a meaningful way to
merge is to take the majority argumentation system where
attacks supported by a majority of agents are kept (this
corresponds to minimizing the sum of the edit distances be-
tween the ASi and the merged system, see Prop. 41 in [3]).
Assuming, on top of that, that ties are broken in favour of
the absence of an attack allows to ensure the existence of a
single such merged argumentation system, that we denote
MASN .

Definition 5. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. The ma-
jority argumentation system is MASN = 〈A,M〉 where
M ⊆ A × A and xMy when |{i ∈ N |(x, y) ∈ Ri}| > |{i ∈
N |(x, y) 6∈ Ri}|}.

The corresponding merged outcome is denoted by E(MASN ).

3. A PROTOCOL FOR FOCUSED AGENTS
We now turn to the following question: supposing that the

agents of the system would not report to a central authority
their whole argumentation system but instead contribute
step-by-step in the debate, guided by their individual as-
sessment of the current state of the discussion, and without
coordination with other agents, what would be the outcome
they would reach? For instance, can we guarantee that the
merged outcome would always be reachable? To be able to
formally answer this problem, we need of course to design
a specific protocol and to make some assumption regarding
agents’ preferences regarding the outcome.

3.1 Agents’ Preferences
We assume that agents are focused [14], that is, they con-

centrate their attention on a specific (same for all) argument.
This argument is referred to as the issue d of the debate
[11]. Unsurprisingly, agents want to see the acceptability
status (under the grounded semantics) of the issue coincide
in the debate and in their individual system. Thus we can
see the debate as opposing two groups of agents: CON =
{ai ∈ N |d 6∈ E(ASi)} and PRO = {ai ∈ N |d ∈ E(ASi)}. If
X = PRO (resp. CON), we have X = CON (resp. PRO).

3.2 The Gameboard
Agents will exchange arguments via a common gameboard.

The issue will be assumed to be present on this gameboard
when the debate begins. The “common” argument system
is therefore a weighted argumentation system [6] where the
weight is simply a number equal in the difference between
the number of agents who asserted a given attack and the
number of agents who opposed it. We denote by xRαy the
fact that the attack has a weight α. Let A(GB) be the
set of all the arguments present on the gameboard. The
collective outcome is obtained by applying the semantics
used on the argumentation system 〈A(GB),M〉 where M ⊆
A(GB) × A(GB) and xMy = {xRαy|α > 0}. In words, we
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only retain those attacks supported by a (strict) majority of
agents having expressed their view on this relation. Observe
that following our tie-breaking policy we require the num-
ber of agents supporting the relation to strictly overweight
the number of agents who oppose it (i.e in case of tie, the
relation does not hold).

3.3 A Relevance-based Protocol
We now introduce our simple protocol which allows agents

to exchange their arguments in order to agree on the sta-
tus of a specific argument d, the issue of the dialogue. Let
ASt(GB), At(GB) and Rt(GB) be respectively the argu-
mentation system, the set of arguments and the set of at-
tack relations on the gameboard after round t. The proto-
col indeed proceeds in rounds which alternate between the
two groups of agents (PRO and CON). Within these groups
though, no coordination takes place: the agents may for in-
stance play asynchronously and the authority simply picks
the first permitted and relevant move before returning the
token to the other side. Permitted moves are simply positive
assertions of attacks xRy (with y ∈ At(GB)), or contradic-
tion of (already introduced) attacks (with (x, y) ∈ Rt(GB)).
Note that arguments are progressively added on the game-
board via these attacks, and that it may not contain the
whole set of arguments when the debate concludes. A move
is relevant [10] at round t for a PRO agent (resp. CON
agent) if it puts the issue back in (resp. drops the issue
from) E(ASt(GB)). Furthermore, the protocol prevents the
repetition of similar moves from the same agent. To ac-
count for this, each agent ai is equipped with a set RP ti ⊆
{(x, y)|x, y ∈ A} which contains the attack relations or the
non-attack relation he has added on the gameboard at time
t, in order to prevent him from adding twice the same rela-
tion. The proposed protocol is as follows:

(1) Agents report their individual view on the issue to the
central authority, which then assign (privately) each
agent to PRO or CON.

(2) The first round starts with the issue on the gameboard
and the turn given to CON.

(3) Until a group of agents cannot move, we have:

(a) agents independently propose moves to the cen-
tral authority;

(b) the central authority picks the first (or at random)
relevant move from the group of agents whose
turn is active, update the gameboard, and passes
the turn to the other group

When a (relevant) move is played on the gameboard, the
following update operation takes place:

(1) after an assertion xRy

• if xRαy ∈ Rt(GB) then α := α+ 1

• if xRαy 6∈ Rt(GB) and x, y ∈ At(GB), then the
edge is created with α := 1

• otherwise (x is not present), then the node of the
new argument is created and the edge is created
with α := 1

(2) after a contradiction of xRy, we have α := α− 1

Note the asymetry here: introducing a new argument can
only be done via a positive assertion, since it can never be
relevant to contradict an attack refering to an argument that
was not introduced already. The reader may remark that
the value of α is binary if agents obey this protocol; how-
ever we discuss in Section 4.3 an extension where this is not
necessarily the case.

When (after a sequence σ of moves) a group of agents
cannot move, we say that the gameboard is stable and we
refer to E(AS(GBσt→∞)) (or simply E(AS(GB)) when clear
from the context) as the outcome of the debate.

3.4 Properties
The outcome E(AS(GBσt→∞)) resulting from a specific se-

quence of moves σ obeying this protocol will typically be
compared with the result which would be obtained by merg-
ing the argumentation systems (E(MAS)). We may want to
ensure different properties, but we typically have:

• Termination— trivially guaranteed by assuming finite
argument systems and preventing move repetition.

• Guaranteed convergence to the merged outcome— re-
quires all possible sequences of moves (in particular,
regardless of the specific choice of the agent and of
the move to pick, when several relevant moves are pro-
posed to the authority) to converge to the merged out-
come, that is ∀σ d ∈ E(AS(GBσt→∞))↔ d ∈ E(MASN )

• Reachability of the merged outcome— requires at least
one possible sequence of moves to reach the merged
outcome, that is ∃σ d ∈ E(AS(GBσt→∞))↔ d ∈ E(MASN )

Example 1. Let three agents with their argumentation
systems, and the following merged argumentation framework:

a b c

E(AS1) = {a}
a1

a b c

E(AS2) = {a, c}
a2

a b c

E(AS3) = {a, b}
a3

a b c

E(MAS) = {a, c}

The issue of the dialogue is the argument c. We have
CON = {a1, a3}, PRO = {a2}. At the begining, we have
RP 0

1 = RP 0
2 = RP 0

3 = { }, AS0(GB) = 〈{c}, { }〉 and
E(AS0(GB)) = {c}.

A sequence of moves allowed by the protocol is the follow-
ing:

t = 1 - a1 plays for CON: RP 1
1 = {(a, c)}

a c

t = 2 - a2: RP 2
2 = {(a, c)}

a c

t = 3 - a3 plays for CON: RP 3
3 = {(b, c)}

a b c

t = 4 - a2: RP 4
2 = {(a, b), (a, c)}

a b c

t = 5 - a3: RP 5
3 = {(b, c), (a, b)}

a b c

t = 6 - a2 cannot add c in the extension
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The game board is stable, we obtain E(AS(GB)) = {a, b}.
The first interesting thing to observe on this simple ex-

ample is the fact than the status of an issue in the merged
argumentation system can contradict the opinion of the ma-
jority. This is discussed in [3]: if agents vote on extensions,
the attack relations from which extensions are characterized
are not taken into consideration, and a lot of significant in-
formation is not exploited.

Another important thing to note in this example is that
PRO agents cannot ensure c in E(AS(GB)). It is then im-
possible to guarantee convergence to the status of the issue
obtained in the merged argumentation system. This is due
to the fact that agent a1 has no interest to play the attack
relation (a, b), which appears in the MAS. As studied in a
different context by [12], this can be seen as a strategic ma-
nipulation by witholding an argument or an attack between
arguments. But is it even possible to reach the merged out-
come in this case? We leave it to the reader to check that
this is not the case here. One may then think that the group
with the highest number of agents will always win with our
protocol. It is not the case, as shown by the fairly simple
following example.

Example 2. Let three agents with their argumentation
systems, and the following merged argumentation framework:

a b c

E(AS1) = {a, b}
a1

a b c

E(AS2) = {a, b, c}
a2

a b c

E(AS3) = {a, b}
a3

a b c

E(MAS) = {a, b, c}

The issue of the dialogue is the argument c. We have
CON = {a1, a3}, PRO = {a2}. Agents in CON can attack
c in two ways: either a1 can play bRc; or a3 can play aRc.
But a2 will be able to remove either attack, and CON agents
will not have the possibility to counter-attack. We will obtain
E(AS(GB)) = {a, b, c}.

The two previous examples show that the characterization
of the result obtained by debates following this protocol is
not as simple as one can believe at first glance. We now
introduce some useful and more sophisticated notions.

3.5 Global arguments-control graph
In order to characterize the status of the issue obtained

by our protocol we will need the notion of global arguments-
control graph (ACG). The idea here is to gather the attacks
of all agents in the same argumentation graph, and then
determine which group, PRO or CON, have the control over
some path of this graph, and thus a possible way to reach
its preferred outcome. To do so, we first need to define the
notion of control over an attack relation:

Definition 6. Let N be a set of agents, 〈AS1 . . . ASn〉
be the collection of their argumentation systems, and L =
∪i∈1...nR(i) be the union of all attack relations. Let X ∈
{CON, PRO}. Finally, let add(a,b) = {ai ∈ N |(a, b) ⊆
R(i)}, and rem(a,b) = {ai ∈ N |(a, b) 6⊆ R(i)}.

• X has the constructive control of (a, b) ∈ L, de-
noted by X+(a, b), iff |add(a,b) ∩X| > |rem(a,b) ∩X|,
that is if the number of agents in X who can add (a, b)
is greater than the number of agents in X who can
remove it.

• X has the destructive control of (a, b) ∈ L, denoted
by X−(a, b), iff |rem(a,b) ∩X| ≥ |add(a,b) ∩X|, that is
if the number of agents in X who can remove (a, b) is
greater or equal than the number of agents in X who
can add it.

The following remarks are simple but useful: (1) It is

impossible to have both X+(a, b) and X
−

(a, b); (2) It is
possible to have both X+(a, b) and X−(a, b); (3) A minority
group cannot have constructive and destructive control of an
edge: if |X| < |X|, it is impossible to have both X+(a, b)
and X−(a, b); (4) If there is not X−(a, b) (resp. X+(a, b)),

then there is X
+

(a, b) (resp. X
−

(a, b)).
Observe that the notion of destructive control intuitively

says that a group has the control to overweight any possible
attempt to establish a given relation. This of course vacu-
ously holds when no agent from the other group supports
the relation at all, in which case the relation is not even
playable.

Definition 7. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. We will say
that (a, b) ∈ ∪1...nR(i) is playable by a X ∈ {PRO,CON},
denoted by X•(a, b), iff there is an ai ∈ X such that (a, b) ∈
R(i).

For the sake of readability, we will only specify the infor-
mation about playability when it is relevant.

Definition 8. Let N be a set of agents and 〈AS1 . . . ASn〉
be the collection of their argumentation systems. The global
arguments-control graph is ACGN = 〈A,L〉 is constructed
as follow: (1) L = ∪i∈1...nR(i) (2) Label each (a, b) ∈ L by
the information about control and playability for each group
X ∈ {PRO,CON}.

Example 3. Five agents have the following argumenta-
tion systems:

a b

c

d

agent 1

a b

c

d

agent 2

a b

c

d

agent 3

a b

c

d

agent 4

a b

c

d

agent 5

The issue of the dialogue is the argument c. We have
CON = {a1, a2, a3}, PRO = {a4, a5}. The global arguments-
control graph is the following:

a b

c

d
CON+,−

• , PRO• CON+
• , PRO+

•

CON+
• PRO+

• CON−• , PRO−CON−• , PRO−
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4. PROPERTIES
We now discuss three distinct properties that we wish to

analyze on the basis of the ACG: (i) who wins the debate?,
(ii) does the outcome of the debate coincide with that of the
merged system?, and (iii) is it useful to allow moves that
reinforce previous moves?

4.1 Who wins the debate?
The first question that we address is whether an omni-

scient observer would know a priori which group of the de-
bate could possibly or necessarily win the debate, in particu-
lar whether some debates are“open”(i.e. not pre-determined
[8]).

Definition 9. We will say that the issue of the debate
is a possible outcome for a group X if this group has a
possibility to set the acceptability status of this argument to
coincide in the debate and in their individual system. The
issue is a necessary outcome for X iff this issue is not a
possible outcome for X.

Definition 10. A path for d controlled by CON is
an odd-length path from x to d such that (i) CON has con-
structive control on all the attack edges for d, and (ii) CON
has destructive control on all the defense edges for d attack-
ing x.

Note that condition (ii) covers in particular the case where
the first node x is not attacked. Controlling a path is not
enough since alternative defenses may exist. By extension,
we then define the notion of a tree controlled by CON .

Definition 11. A tree for d controlled by CON is a
tree such that (i) d is the root, (ii) all the paths from the
leaves to d are controlled by CON , and (iii) for any attack
edge yRx of the tree, it contains all the defense edges zRy
such that PRO+(z, y).

This gives us a condition guaranteeing that a favourable
outcome can be attained by CON.

Proposition 4.1. If there exists a tree for d controlled
by CON, then the issue d is a possible outcome for CON .

Proof. (Sketch.) Observe that because we have a tree
no edge can be played both as an attack and a defense edge.
Then CON can certainly win by making sure that all the
attack moves of the tree are placed, since it can respond
to any possible defense edge of the tree on which PRO has
constructive control, and it can certainly remove any other
defense edge which could be played by PRO (because it
must hold the destructive control on these edges). �

A couple of remarks are in order here. If the ACG itself
happens to be a tree, then the above condition is necessary
and sufficient to guarantee that the outcome is necessary
for CON . However, in general, things turn out to be much
more involved. First this condition is not necessary for the
outcome to be possible for CON : this group of agents may
win in absence of such a tree (in fact, even in absence of a
single path controlled by himself). This may look counter-
intuitive, but the reason lies on the fact that the control of
an edge may be gained during the debate in specific circum-
stances. We do not elaborate on this point here but a related

observation is developed in Section 4.3. Secondly, this con-
dition is not strong enough to guarantee that the issue is a
necessary outcome for CON . Indeed, in absence of coordi-
nation, agents of CON may not play the moves of the tree
only. And there are cases where this may make d a possible
outcome for PRO. To see why this may be the case, recall
that an edge may be both an attack and a defense edge for
the same issue d, as it may appear on several distinct paths.
When that happens, this edge may be used as an attack
edge, preventing the deployment of the path controlled by
CON. The following notions of switch captures this.

Definition 12. An edge (x, y) on a path P is a switch
for d if (i) it is a defense for d on P , (ii) it is playable
by CON , (iii) there exists an even-length path from y to
d such that all the attack edges are playable by CON and
all the defense edges are playable by PRO. So it is also a
potential attack for d via a different path.

Essentially, what this definition says is that there is a
possibility that this edge (x, y) may be played as an attack
by CON . As mentioned before this may harm CON own
line of attack. Following this, we say that there exists a
switch for path P for d controlled by CON if there exists a
defense edge for d attacking x (the first node of P ) that is a
switch. Each path in which a switch for P is an attack edge
is called a switch path of P .

We are now in a position to informally state some con-
ditions under which d may not be a necessary outcome for
CON despite the existence of a tree controlled by himself.
In fact it is the case when there exists a set of switches S
such that: (i) for any tree t for d controlled by CON, there
exists a switch belonging to S for a path (of t) for d con-
trolled by CON ; (ii) there must exist a sequence of moves
such that (1) all the switches in S are actually played, and
(2) PRO has the destructive control over an attack edge of
each resulting switch path; (iii) there must exist a sequence
of moves such that all the switches in S are maintained.

It may not be immediately clear to the reader why the
mere existence of switches —Cond (i)— does not imply the
fact that they can be played —Cond (ii.1): after all, the
definition requires a path of playable moves reaching the
switch to exist. The subtlety lies on the fact that these
paths may interact when they share some arguments. In
this case, the existence of a path may preclude other paths
to be played. Intuitively, Cond (iii) caters for the fact that a
switch may be “patched” by CON if he manages to append
an odd-length path right behind the switch.

The next question is whether these conditions can be sim-
ply expressed on the basis of the ACG. For (i) and (ii.2)
this is obvious. For (ii.1) and (iii) this is more challenging
because the definition refers to possible sequences of moves.
We will rely instead on sufficient conditions:

Proposition 4.2. The issue d may not be a necessary
outcome for CON if there exists a set of switches S such
that: (i) for any tree t for d controlled by CON there exists
a switch belonging to S for a path (of t) for d controlled by
CON ; (ii) there exists a set of switch paths P for S such
that these paths do not share any arguments (except d), and
PRO has destructive control over an attack edge of each of
these paths; (iii) for all switches (x, y) ∈ S, there does not
exist any even-length path P reaching d meeting x, such that
[x, d] constitutes an odd-path length, and such that CON has
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the constructive control on all attack edges, and PRO has
the constructive control on all the defense edges.

Proof. (Sketch.) Cond (i) ensures that at least an at-
tack path of each tree controlled by CON can be potentially
switched. Cond (ii) suffices to guarantee that the switch
paths are independent, so all the switches can actually be
played, and the switch paths subsequently cut. As for (iii),
observe that there are two ways to render a switch (xRy)
ineffective. Either by simply removing it, but this necessar-
ily requires a path (leading to the issue) to meet the node
y of the switch (so that playing xRy would be relevant).
This is impossible. Or by appending an odd-length path (a
“patch”) on x of the switch, such that a move meeting the
node y of the switch could now be played. This can only
happen when there exists an even-length path reaching d
meeting x, such that [x, d] constitutes an odd-path length,
and such that CON has the constructive control on all attack
edges, and PRO has the constructive control on all the de-
fense edges; otherwise there is necessarily a possibility that
this path does not reach x. �

Note that for (ii) it may be the case that switch paths,
even interacting, allow the switch to be played. For (iii) it
may be the case, on the other hand, that even if such paths
leading to patches do exist, they could not be played because
they are interacting in a way that makes them mutually ex-
clusive. What this discussion suggests is that obtaining a
full characterization of outcomes is certainly very challeng-
ing in the general case. It provides however a simple way to
construct examples of debates that are indeed open.

Example 3 cont. We easily see that the issue c is a
possible outcome for the agents in CON: CON can attack
c with b. Then, the only possible move for PRO is to defend
d with aRb. However, CON can remove this attack, and
PRO has no other move.

But c is also a possible outcome for PRO: CON can
start with dRc, which is playable by a1. Then, a5 will defend
with bRd, and a1 counter-attack with aRb. If the next move
of PRO is to remove dRc, then CON has no other move left:
it cannot add the attack bRc, as it is defended by a; and it
cannot remove the edge (a, b) as it does not drop c from the
extension. In this case, (a, b) is a switch and the merged
outcome is then (only) reachable.

4.2 Does it coincide with the MAS?
The next step here is to characterize the convergence and/or

the reachability of the merged outcome. We have already
seen that the merged outcome is not always reachable, but
is it possible to find some case for which it is? To answer
this question, we first need the following lemma.

Lemma 1. Let N be a set of agents, ACGN = 〈A,L〉 be
the global arguments-control graph and MASN = 〈A,M〉 be
the merged argumentation system. If there is no edge (a, b) ∈
L such that a group X ∈ {CON, PRO} has the constructive
and destructive control of (a, b), then all the edges controlled
constructively in the ACG belong to the MAS, whereas all
the edges controlled destructively in the ACG do not belong
to the MAS.

Proof. By remark (4), we know that either X+(a, b) and

X
+

(a, b), or X−(a, b) and X
−

(a, b). Take the case of con-
structive control: we have |add(a,b)∩X| > |rem(a,b)∩X| and

|rem(a,b) ∩ X| < |add(a,b) ∩ X|. As X ∩ X = { }, we have
|add(a,b)| > |rem(a,b)|. Then, by definition of the merged ar-
gumentation system, we know that (a, b) ∈M (that is (a, b)
is an edge of the MAS). The case of destructive control is
similar. �

This lemma leads to the following proposition.

Proposition 4.3. Let N be a set of agents, and ACGN =
〈A,L〉. If there is no edge (a, b) ∈ L such that X+,−(a, b),
then the merged outcome is reachable.

Proof. We know from Lemma 1 that all the edges con-
trolled constructively in theACG belong to theMAS, whereas
all the edges controlled destructively in the ACG do not be-
long to the MAS. Let d be the issue of the debate.

(1) Let us assume that d ∈ E(MAS). Thus, for all x ∈ A
such that xMd, there is an even-length path P =
(x1, x2, . . . , x, d) which defends d. As all these edges
belong to the MAS, we know from Lemma 1 that they
belong to the ACG, and that they are controlled con-
structively by PRO and by CON. Thus, CON can play
all the attack edges of P , whereas PRO can defend d
by adding all the defense edges of P . As x1 is not at-
tacked in the MAS, there are two possibilities in the
ACG:

• Either x1 is not attacked in the ACG. In this
case, CON can not attack x1, and then has no
possibility to drop d from E(AS(GB)).

• Or there is an attack edge (y, x1) in the ACG.
As this edge is not in the MAS, we know that
PRO−(y, x1). So, PRO can remove this edge and
then ensure that d ∈ E(AS(GB))

As this reasonment holds for all defense path in the
MAS, and is playable with our protocol, d is reachable.

(2) Let us assume now that d 6∈ E(MAS). So, there is
an odd-length path P = (x1, x2, . . . , x, d) in the MAS
which attacks d. As all these edges belong to theMAS,
we know from Lemma 1 that they belong to the ACG,
and that they are controlled constructively by PRO
and by CON. Thus, CON can play all the attack edges
of P , whereas PRO can defend d by adding all the
defense edges of P . As x1 is not attacked in the MAS,
there are two possibilities in the ACG:

• Either x1 is not attacked in the ACG. In this
case, PRO can not attack x1, and then has no
possibility to put d in E(AS(GB)).

• Or there is an attack edge (y, x1) in the ACG.
As this edge is not in the MAS, we know that
CON−(y, x1). So, CON can remove this edge
and then ensure that d 6∈ E(AS(GB))

As this path is playable with our protocol, we know
that d is reachable.

�

Note that we can only ensure the reachability. The fol-
lowing example shows that we do not have guaranteed con-
vergence.
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Example 4. Consider the following global arguments-control
graph and merged argumentation systems, where c is the is-
sue.

a b

c

de
CON+

• , PRO+
• CON+

• , PRO+
•

CON+
• , PRO+

• CON−• , PRO−

CON+
• , PRO+

•

From Lemma 1, we know that the graph of the merged
argumentation system is the following:

a b

c

de

Thus, c 6∈ E(MAS). However, if we suppose that the edge
(d, c) is playable for CON, c is a possible outcome for PRO:
CON can start by adding dRc. Then, PRO will defend with
bRd, and CON counter-attack with aRb. If the next move of
PRO is to remove the attack dRc, then CON has no other
move left: it cannot add the attack bRc, as it is defended by
a; and it cannot remove the edge aRb as it does not drop
c from the extension. But c is also a possible outcome for
CON: the merged outcome is (only) reachable.

Another important remark is that the converse of Propo-
sition 4.3 is false: as shown by the following example, it
is possible for a group to have constructive and destructive
control of an edge of the global arguments-control graph,
and to ensure the reachibility of the merged outcome.

Example 5. Consider the following global arguments-control
graph, where c is the issue.

ACG

a b c

CON+,−
•

CON+,−
•

MAS

a b c

In this graph, CON has the constructive and destructive
control over two edges, and the merged outcome is reachable:
the outcome is necessary for CON, and c 6∈ E(MAS).

4.3 Is it useful to allow reinforcement?
A natural extension is to consider that a move may also

be relevant as long as it reinforce (or symmetrically weak-
ens) an edge which, if deleted and all other things being
equal, would change the status of the issue. Essentially, be-
sides the relevant moves as defined in the previous section,
this would allow agents to augment the weight of an exist-
ing attack, and we refer to this as a reinforcement move.
Symetrically, agents may weaken an attack even if its does
not directly delete it, and we refer to this as a weakening
move. This extended protocol would allow any number of
such relevant moves during a group’s turn, but (as before)
would only switch to the other side after a change of the
current status of the issue. However, the following propo-
sition tells us that it is not beneficial for an agent to play
reinforcement moves. Worse, and rather counter-intuitively,
it can actually be damaging for agents to do so.

Proposition 4.4. Let D1 be sequences where no agent
plays reinforcement or weakening moves, and D2 be sequences
such that X only may play reinforcement moves (but X may
play weakening moves).

If X = PRO (resp. CON), then (i) for any σ2 ∈ D2 with
d ∈ E(AS(GBσ2

t→∞)) (resp. d 6∈ E(AS(GBσ2
t→∞))), there ex-

ists σ1 ∈ D1 such that AS(GBσ1
t→∞) = AS(GBσ2

t→∞). Fur-
ther (ii) there exists σ2 ∈ D2 with d 6∈ E(AS(GBσ2

t→∞))
(resp. d ∈ E(AS(GBσ2

t→∞))), such that for any σ1 ∈ D1 it
is not the case that AS(GBσ1

t→∞) = AS(GBσ2
t→∞).

Proof. (Sketch.) We show (ii) by constructing an exam-
ple where an agent loses some destructive control by using
reinforcement. It involves 6 agents.

ab

ec

d f

agent a1

ab

ec

d f

agent a2

ab

ec

d f

agent a3 + a4

ab

ec

d f

agent a5

ab

ec

d f

agent a6

The issue of the debate is a. There are four agents PRO and
two agents CON. The key to the analysis is to see that PRO
agents initially hold constructive and destructive control on
(c, b). Now compare the following sequences of moves. In
the first one, a5 plays bRa. Then a1 plays cRb and a2 re-
inforces this move. At this point, PRO loses its destructive
control on (c, b). Assume a CON agent plays dRc. a1 can
remove bRa. Then a5 can play eRa, a3 can defend with
bRe. Now, with a CON agent playing fRd, the debate is
doomed with the issue out. In the alternative case where no
reinforcement is played, we are in the case discussed in the
first protocol: PRO can remove the attack cRb, and win the
debate. �

This result tells us that in the absence of coordination,
agents are better off employing moves that are directly rele-
vant, hence adopting a “wait and see” approach. Still, using
reinforcement moves may prove useful in practice, in con-
texts where the debate is limited: for instance, agents may
be impressed by seemingly large majorities and avoid these
issues to concentrate on some other ones.

5. RELATED WORKS AND CONCLUSION
As already mentioned, our work is close in spirit to the

work of Rahwan and Larsson [12]. An important differ-
ence with our approach though is that agents control the
arguments they can advance in the debate, but that no dis-
agreement takes place regarding the attack relations between
these arguments. Another recent proposal of great interest is
that of Caminada and Pigozzi [2]. The authors propose dif-
ferent procedures to aggregate different labellings for a given
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argumentation system into a collective one. The property
they want to ensure is that the obtained collective outcome
is in some sense compatible with the individual ones. A re-
lated contribution of Rahwan and Tohmé [14], which inves-
tigates the same question and derives general conclusions on
the possibility (or impossibility) to perform such an aggre-
gation, under classical assumptions. As mentioned already,
these approaches assume that agents agree on the underly-
ing argumentation system, even though they may have dif-
ferent views on the preferred labelling. Finally, a multiparty
protocol for agents equipped with defeasible logic reasoning
abilities is investigated in [9]. Each agent initially puts for-
ward an initial claim and the protocol lets iteratively each
agent defend his claim or attack the claim of opposing agents
(by relying on a sophisticated technique to identify the most
effective counter-arguments).

In our proposal, a multiagent protocol regulates the ex-
change of arguments among focused agents on the basis of
the relevance of the moves as proposed by [10]. Although
all the agents share the same set of arguments, they may
have different views on the attack relations among these ar-
guments. In case of discrepancy on a relation we have opted
for a majoritarian approach: the side supported by the high-
est number of agents wins (more sophisticated approaches
are discussed in [15]). Furthermore, even though agents ex-
change arguments on a common gameboard, it is important
to note that no central authority gets to know the whole
argumentation system of each agent. We have investigated
some formal properties of this protocol. In particular, we
have shown that there are cases where the outcome is not
entirely pre-determined from the initial situation, and dis-
cussed non-trivial circumstances which may give rise to such
debates (based on different notions of control of attacks by
a group of agents). We have also given conditions under
which the merged outcome can be reached, and discussed
a natural extension of the protocol where moves can be re-
inforced (but showed that agents can only be worse off by
using these extended set of moves).

A natural follow-up of this work would be to provide some
insights regarding how often the debate is indeed open or
how often coincidence with merged outcome is observed.
Experiments could prove instructive in this respect. As for
possible extensions of this work, it is clear that any relax-
ations of these assumptions brings about some complexity.
If agents do not focus on a single issue, among other things,
we may not simply distinguish two groups PRO and CON,
and it becomes necessary to specify complex preferences over
combinations of issues. If we relax the assumption of the set
of arguments being shared, we then need to deal (see [3])
with the complex problem of how agents would react in the
presence of arguments they were not aware of before. In the
perspective of modeling practical debate platforms as men-
tioned in the introduction, all these aspects will require of
course careful study.
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