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ABSTRACT
Creating agents that properly simulate and interact with
people is critical for many applications. Towards creating
these agents, models are needed that quickly and accurately
predict how people behave in a variety of domains and prob-
lems. This paper explores how one bounded rationality the-
ory, Aspiration Adaptation Theory (AAT), can be used to
aid in this task. We extensively studied two types of prob-
lems – a relatively simple optimization problem and two
complex negotiation problems. We compared the predic-
tive capabilities of traditional learning methods with those
where we added key elements of AAT and other optimal and
bounded rationality models. Within the extensive empirical
studies we conducted, we found that machine learning mod-
els combined with AAT were most effective in quickly and
accurately predicting people’s behavior.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Experimentation

Keywords
bounded rationality, cognitive models, agent learning

1. INTRODUCTION
The challenge of creating agents that effectively simulate

and interact with people is of utmost importance in many
systems [7, 8, 9, 16]. These agents form the backbone of
many mixed human-agent systems such as entertainment
domains [7], Interactive Tutoring Systems [9], and mixed
human-agent trading environments [8]. In order to effec-
tively interact with people, the agents have to understand
and predict people’s behavior. To date, these agents have
often been created based on the perspectives of unbounded
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rationality including expected utility, game theory, Bayesian
models, or Markov Decision Processes (MDP) [10, 15].

While these models are mathematically elegant and have
proven effective in some situations [10, 15], several funda-
mental obstacles exist in applying them to many real-world
applications. First, previous research in experimental eco-
nomics and cognitive psychology has shown that human de-
cision makers often do not adhere to fully rational behav-
ior. For example, Kahneman and Tversky [3] have shown
that individuals often deviate from optimal behavior as pre-
scribed by Expected Utility Theory. Second, decision mak-
ers often lack complete information and thus do not neces-
sarily know the quantitative structure of the environment in
which they act. Thus, even assuming that people act ratio-
nally, they cannot always compute the optimal solution for
a given problem, as they lack facts required to arrive at this
decision. Finally, even if people wish to act rationally and
have complete information about a given problem, it may
still be impossible for them to compute the optimal solu-
tion. Previous research has found that many classes of real-
world problems exist for which finding the optimal sequence
of actions is of intractable computational complexity [12].
Thus, even in the best of circumstances, expecting people
to behave optimally based on full rationality is unrealistic.

We posit that models based on Bounded Rationality hold
the most promise to best predict people’s behavior. This re-
search direction, initiated by Simon [17], assumes that peo-
ple – except in the simplest of situations – lack the cognitive
and computational capabilities to find optimal solutions. In-
stead they proceed by searching for non-optimal alternatives
to fulfill their goals. Simon coined the term “satisfice” to
capture that bounded decision makers seek “good enough”
solutions and not optimal ones. In this tradition, Sauermann
and Selten proposed a framework called Aspiration Adap-
tation Theory (AAT) [16] as a boundedly rational model of
decision making.

This paper’s major contribution is support for the claim
that learning models that aim to predict people’s behavior
should be based on bounded rationality models, and specifi-
cally AAT. To empirically support this claim, we studied two
types of problems – one relatively simple optimizing problem
and two complex negotiation problems. Within the opti-
mization problem, we found that traditional machine learn-
ing methods such as decision trees were successful in discov-
ering the strategies most people used. We note that these
strategies were consistent with AAT and were not represen-
tative of other bounded theories or the problem’s optimal
policy. Furthermore, we found that an AAT based predic-
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tion policy was extremely accurate, even when trained with
very limited data. Second, in the negotiation domains we
studied, traditional learning algorithms such as those in the
Weka learning package [21] were unable to effectively pre-
dict how people would behave due to the inherent problem
complexity. Nonetheless, by adding statistical information
about people’s bounded AAT strategies, we were able to sig-
nificantly improve models’ prediction accuracy beyond the
base algorithm.

2. RELATED WORK
Many multi-agent researchers have found that classical

models based on rigid models of expected utility often are
not effective in domains they studied. [1, 4, 5, 6, 8, 14].
Consequently, a key research question is what should be
used in place of these models. For example, designers of
automated negotiation agents found that when the auto-
mated agents follow their equilibrium strategies, the human
negotiators who negotiate with them become frustrated as
the equilibrium strategy requires the automated agent to re-
peatedly propose the same offer. Thus, negotiation sessions
often ended with no agreement [4]. Similarly, Lin et al. [6],
created an equilibrium agent for the negotiation domains
studied in this paper. They also found that in many situ-
ations the equilibrium agent failed to reach any agreement
when playing with people [6]. Thus, both the KB and QO
agents they created also intentionally steered away from the
equilibrium strategies [6]. In fact, a survey article of auto-
mated negotiators [5] found that none of the reviewed agents
implemented equilibrium strategies. They attributed this to
the assumption that people avoid equilibrium strategies in
complex environments due to their bounded nature.

However, once classical rationality models have been re-
jected, the question then becomes what model to use in-
stead. Towards this goal, previous works typically model
people’s preferences based on historical information. For
example, Gal and Pfeffer use a statistical approach to learn
which bid a person will select from a known number of pos-
sibilities [1]. Pardoe and Stone used machine learning tech-
niques to create a trading agent to predict the likelihood
that a person would accept a given bid price [11]. How-
ever, a key methodology difference exists between these and
works similar to ours. While previous works typically used
existing machine learning algorithms, our goal is to find a
general model of bounded rationality and use it to better
learn people’s actions. This important difference impacts
two key research issues. First, by using only generalized
bounded theories, we can prove or disprove the applicability
of psychological or economic bounded models in new prob-
lem domains. Possibly more importantly, and as we demon-
strate in this paper, once a generalized theory is found to be
accurate, it can be applied to new problems in order to fur-
ther improve existing learning algorithms’ accuracy above
traditionally used machine learning methods.

Previously, we studied the applicability of bounded ra-
tionality models, and even AAT [14]. However, that study
focused on validating if AAT was relevant, and not how it
could be used for improving learning accuracy. Additionally,
that work used human judges to decide if AAT was being
used, and thus leaves open concerns regarding possible hu-
man bias. This paper is the first that uses classic decision
tree models [13] to decide what decision model, bounded
or not, is used and how to use these theories for improved
learning.

3. ASPIRATION ADAPTATION THEORY
Aspiration Adaptation Theory (AAT) was proposed by

Selten as a general economic model for how people make cer-
tain economic decisions without any need for expected util-
ity functions [16]. AAT was originally formulated to model
how people make decisions where utility functions cannot
be constructed. For example, assume you need to relocate
and choose a new house to live in. There are many factors
that you need to consider, such as the price of each possible
house, the distance from your work, the neighborhood and
neighbors, and the schools in the area. How do you decide
which house to buy? While in theory utility based models
could be used, many of us do not create rigid formulas in-
volving numerical values to weigh trade-offs between each of
these search parameters.

AAT provides an alternative to utility theory for how deci-
sions can be made in this and other problems. First, m goal
variables are sorted in order of priority, or their urgency. Ac-
cordingly, the order of G1, . . . , Gm refers to goals’ urgency,
or the priority by which a solution for the goal variables is
attempted. Each of the goal variables has a desired value,
or its aspiration level, that the agent sets for the current pe-
riod. This desired valued is not necessarily the optimal one,
and the agent may consider the variable “solved” even if it
finds a sub-optimal, but yet sufficiently desired value. The
agent’s search starts with an initial aspiration level and is
governed by its local procedural preferences. The local pro-
cedural preferences prescribe which aspiration level is most
urgently adapted upward if possible, second most urgently
adapted upward if possible, etc. and which partial aspiration
level is retreated from or adapted downward if the current
aspiration level is not feasible. Here, all variables except for
the goal variable being addressed are assigned values based
on ceteris paribus, or all other goals being equal a better
value is preferred to a worse one.

The search procedure as described by AAT is different
from traditional search methods such as Hill-climbing or ma-
chine learning methods such as Gradient Descent techniques
in two aspects. First, within traditional learning or search,
optimal values for all variables are sought for simultaneously
[15]. In contrast, within AAT only one goal is attempted to
be satisfied at a time. Second, in AAT, the focus is on “sat-
isficing” goal values based on their aspiration levels. This
approach makes no attempt to find optimal values beyond
these “good enough” values – something machine learning
methods do search for.

It is important to note that two key differences exist be-
tween classic AAT, and how we apply AAT within this study.
First, AAT assumes that the m goal variables used to solve
G are incomparable as no utility function is possible to con-
nect goal variables. For example, in buying a house the goal
variables for location, price and size are likely to be incom-
parable with no evident utility function to compare them. In
this paper, we consider simpler problems where a concrete
function between G and the m goal variables clearly exists.
Nonetheless, we hypothesize that people will not attempt to
calculate G due to their bounded nature. This represents a
significant generalization to AAT’s theory and its relevance
even within domains that contain concrete, albeit difficult
to quantify, utility functions. Second, AAT is based on the
premise that the person’s search will be based on an aspira-
tion scale which sorts the m goal variables and attempts to
satisfice values for these goals. As we consider optimization

424



and negotiation problems were utility can be calculated, it
is more natural for people to consider optimizing the instru-
ment variables that constitute the basis of these goals rather
than the more abstract general goal variables. This differ-
ence again represents a significant generalization of AAT.

We recognize that AAT is not the only possible model
that can predict human decisions. In both of the problems
we studied, optimal search methods or negotiation strategies
could have been used. Additionally, other bounded strate-
gies other than AAT are possible. Psychological models of
bounded rationality have suggested that people use domain
specific biases or heuristics to solve problems sub-optimally
[2, 3]. Following the psychological approaches, simple prede-
fined or greedy heuristics could be used. In the optimizing
domains, predefined values could have been used instead of
attempting to solve the problems. Within the negotiation
domains simple compromise heuristics could have been used.
Possibilities of such heuristics include always countering the
middle position between the previous offer of both sides or
offering the middle position between all previous offers of
both sides. These types of approaches would be consistent
with basic implementations of Gigerenzer and Goldstein’s
fast and frugal heuristics [2] and involve using simplistic pre-
set values that are seen as “good enough”.

4. EXPERIMENT SETUP
We studied how people solved two types of problems –

a relatively simple optimization problem and more complex
negotiation problems. We used the optimization problem as
a baseline as we believe it would be easier to understand
the decision making models used by people in this problem.
By focusing on more complex problems as well, we show the
applicability of our findings to real-world applications.

We specifically studied negotiation problems as various
real-world tasks are based on negotiation capabilities. These
can be as simple and ordinary as haggling over a price in the
market or deciding what television show to watch. Negoti-
ation issues can also involve issues where millions of lives
are at stake, such as interstate disputes [20]. The use of
simulation and role-playing is common for training people
in negotiations (e.g., the Interactive Computer-Assisted Ne-
gotiation Support system (ICANS)) [18]. These simulations
can be used in conjunction with people to alleviate some of
the efforts required of people during negotiations and also as-
sist people that are less qualified in the negotiation process.
Additionally, there may be situations in which simulations
can even replace human training procedures.

4.1 Optimization Domain
In the first optimization problem, we consider a problem

where a person must minimize the price in buying a com-
modity (a television) given the following constraints. As-
sume a person must personally visit stores in order to ob-
serve the posted price of the commodity. However, some
cost exists from visiting additional stores. We assume this
cost is due to factors such as an opportunity cost with con-
tinuing the search instead of working at a job with a known
hourly wage. For any given discrete time period, the person
must decide if she wishes to terminate the search. At this
point, we assume she can buy the commodity from any of
the visited stores without incurring an additional cost. The
goal of the agent is to minimize the overall cost of the pro-
cess which is the sum of the product cost and the aggregated

search cost.
From a strategic point of view, the game is played un-

der a time constraint. An optimal solution to this problem
can be found as an instance of the Pandora’s problem [19]
resulting in a stationary threshold below which the search
should be terminated. Formally, we can describe this prob-
lem as follows: We assume that there is a finite timeline
T = {1, 2, ..., k}. In each time step t, t ≤ k, the agent ob-
serves a cost and needs to decide whether to end the search.
All of the observed costs, regardless of the time step, are
drawn from the same distribution. We denote ct as the low-
est price the agent observed up to and including the time
period t (i.e., ct ≤ ct−1). At the end of the game the agent’s
cost is cost(t, ct) = ct + λ ∗ t, λ > 0. The agent’s goal is
to minimize this cost. As has been previously proven, the
optimal strategy in such domains is as follows: exists c̄ such
that if ct ≤ c̄ the agent should stop the search [19].

Intuitively, it seems strange that the decision as to whether
the agent should stop the search does not depend on how
much time is left, i.e., c̄ does not depend on k − t. How-
ever, the reason for this is as follows. If the agent’s overall
expected benefit from continuing the search (i.e., the reduc-
tion in price that it will obtain) is lower than the overall cost
due to the added search time, the agent clearly should not
continue the search. Furthermore, it was proven that it is
enough for the agent to consider only the next time period,
i.e., it should stop the search if and only if the expected re-
duction in the price in the next time period is less than the
cost of continuing one time period (λ) [19].

In our implementation, the prices are distributed normally
with a mean µ and a standard deviation σ. We denote by
x the price for which the expected reduction in the price for
one time period is equal to λ. For a given price p the benefit
is x− p and the probability1 for p is

1

σ
√

2π
e−

1
2 ( p−µ

σ
)2

Given these definitions we must generally solve:

∫ x

0

(x− p) 1

σ
√

2π
e−

1
2 ( p−µ

σ
)2dp = λ

In our specific implementation, µ = 1000, σ = 200 and
λ = 15. Thus we specifically solve,

∫ x

0

(x− p) 1

200
√

2π
e−

1
2 ( p−1000

200 )2dp = 15

Solving this equations yields a solution of x = 789.

4.2 Negotiation problems
We also studied two previously defined negotiation do-

mains [6] and focused on how people came to agreements
with other people in these problems. The goal of these prob-
lems was to negotiate as high a utility as possible given a
known weight of all issues. To reach an agreement, people
sent offers through a web interface which facilitated their
choosing the different values that constitute an offer. This
offer was then sent to the other person in plain English. A
time effect existed that assigned a time cost which influences

1In the domain, when a negative price was drawn, we drew
a new price. Since the probability of such an event is ex-
tremely small, we did not consider it in our analysis.
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the utility of each player as time passed (there can be differ-
ent time costs for each player). The time effect was either
negative or positive. If no agreement is reached by the end
of the final turn then a status quo agreement was imple-
mented resulting in a status quo value for each player. Each
player could also quit the negotiation session at any given
time if he/she decided that the negotiation session is not
proceeding in a favorable way. This resulted in the imple-
mentation of an opt out outcome. During each phase of the
negotiation session, the instructions and parameters subject
to negotiation were accessible to the players. The players
were also aware of the current turn and time left until the
end of the turn and until the negotiation session terminates.
The history of past sessions was also easily accessible. When
receiving an offer the player can choose whether to accept
or reject it, or make a counter-offer.

4.2.1 Employer / Employee Negotiation Domain
In the first problem, we consider a negotiation session that

takes place after a successful job interview between an em-
ployer and a job candidate. In the negotiation session both
the employer and the job candidate wish to formalize the
hiring terms and conditions of the applicant. Below are the
issues under negotiation: The Salary issue dictates the to-
tal net salary the applicant will receive per month. The
possible values are (a) $7,000, (b) $12,000, or (c) $20,000.
The Job Description issue describes the job description
and responsibilities given to the job applicant. The job de-
scription has an effect on the advancement of the candidate
in his/her work place and his/her prestige. The possible
values are (a) QA, (b) Programmer, (c) Team Manager, or
(d) Project Manager. In addition to the base salary, other
job benefits may also be negotiated. The Car Benefits is-
sue revolves around the possibility that the company will
provide a company car for use by the employee with possi-
ble values being (a) a leased company car or (b) no leased
car. Pension benefits must also be negotiated and set as
percentage of the work’s salary. The possible value for the
Pension benefits are (a) 0%, (b) 10%, or (c) 20%. The
Promotion possibilities issue describes the commitment
by the employer regarding the fast track for promotion for
the job candidate. The possible values are (a) fast promo-
tion track (2 years), or (b) slow promotion track (4 years).
The Working hours issue describes the number of work-
ing hours required by the employee per day (not including
over-time). The possible values are (a) 8 hours, (b) 9 hours,
or (c) 10 hours. In total, this scenario allows for a total of
1,296 possible agreements (3× 4× 12× 3× 3 = 1296)2.

Each turn in the negotiation simulation is equivalent to
two minutes of an actual negotiation session, and the total
negotiation session is limited to 28 minutes. If the sides do
not reach an agreement by the end of the allocated time,
the job interview ends with the candidate being hired with
a standard contract, which cannot be renegotiated during
the first year. This outcome is modeled for both agents as
the status quo outcome.

During negotiation, each side can also opt-out of the ne-
gotiation session if it feels that the prospects of reaching
an agreement with the opponent are slim or if they feel it
is no longer able to negotiate a fair deal. If the employer

2Note that it is possible for there to be no agreement for
many of these parameters. In these case, we considered the
negotiation to have failed.

opts out then she will incur an expense due to the lost time
and work from the potential employee. As we assume the
employer will be required to postpone the project for which
the candidate was interviewing, this cost can be consider-
able. Conversely, the employee also has some leverage. If
the employee accepts too little, he is likely to find better
work elsewhere. However, the employee also loses the time
and salary from lost wages in continuing their job search.
Additionally, opting-out will make it very difficult for him
to find another job, as the employer will spread his/her neg-
ative impression of the candidate to other CEOs of large
companies.

Time also has an impact on the interaction. As time ad-
vances the candidate’s utility decreases, as the employer’s
good impression has of the job candidate decreases. The
employer’s utility also decreases as the candidate becomes
less motivated to work for the company.

4.2.2 Political Dispute Negotiation Domain
The second negotiation is based on a scenario where Eng-

land and Zimbabwe attempt to reach an agreement evolv-
ing from the World Health Organization’s Framework Con-
vention on Tobacco Control, the world’s first public health
treaty. The principal goal of the convention is “to protect
present and future generations from the devastating health,
social, environmental and economic consequences of tobacco
consumption and exposure to tobacco smoke.”The leaders of
both countries are about to meet at a long scheduled sum-
mit and must reach an agreement on the following issues:
The Creation of a Global Tobacco Fund issue describes
the total amount to be deposited into the Global Tobacco
Fund to aid countries seeking to rid themselves of economic
dependence on tobacco production. This issue has an im-
pact on the budget of England and on the effectiveness of
short-range and long-range economic benefits for Zimbabwe.
The possible values are (a) $10 billion, (b) $50 billion, or (c)
$100 billion. The Impact on other aid programs is-
sue affects the net cost to England and the overall benefit
for Zimbabwe. If other aid programs are reduced, the eco-
nomic difficulties for Zimbabwe will increase. The possible
values are (a) no reduction, (b) reduction equal to half of
the Global Tobacco Fund, or (c) reduction equal to the size
of the Global Tobacco Fund. Both Zimbabwe and England
must negotiate Trade Issues. Countries can use restrictive
trade barriers such as tariffs (taxes on imports from the other
country) or they can liberalize their trade policy by increas-
ing imports from the other party. There are both benefits
and costs involved in these policies: tariffs may increase rev-
enue in the short run but lead to higher prices for consumers
and possible retaliation by affected countries over the long
run. Increasing imports can cause problems for domestic
industries. But it can also lead to lower consumer costs and
improved welfare. For both Zimbabwe and England possi-
ble values for this are: (a) reducing tariffs on imports or (b)
increasing tariffs on imports. The Forum to Study Long-
Term Health Issues issue revolves around the scope of a
forum to explore comparable arrangements for other long-
term health issues. This issue relates to the precedent that
may be set by the Global Tobacco Fund. If the fund is estab-
lished, Zimbabwe will be highly motivated to apply the same
approach to other global health agreements. This would be
very costly to England. The possible values are (a) creation
of a fund, (b) creation of a committee to discuss the cre-
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ation of a fund, or (c) creation of a committee to develop an
agenda for future discussions. Consequently, a total of 576
possible agreements exist (4× 4× 3× 3× 4 = 576)3.

5. EXPERIMENTAL RESULTS
In this section we detail the shortcomings of using op-

timal models to predict people’s behavior, and how AAT,
and not other bounded methods, should be used instead. In
general, we found that in the optimization and negotiation
problems we studied, key elements of AAT were present in
decisions people made. When sufficient data was present, as
we found was the case in the relatively simple optimization
problem, clear strategies consistent with AAT were learned
by standard machine learning algorithms such as C4.5 [13].
We found that estimates of people’s aspiration scales in this
problem were useful for formulating a very accurate predic-
tion model even without an extended learning period and
with only sparse data. Within the more complicated negoti-
ation problems, we found that adding statistical information
about people’s typically aspiration scales was critical for im-
proving the prediction models as using both the equilibrium
strategies and traditional learning methods yielded an ex-
tremely poor predictor of how people would act.

5.1 AAT to Predict Optimization Decisions
Our first goal was to use machine learning techniques to

determine if optimal polices, fast and frugal heuristics [2] or
AAT best predict people’s optimizing decisions. Recall from
Section 3.1 that an optimal policy exists based on price alone
– buy if the price in the current store is less than 789. Thus
classical expected utility theory would predict that people
would similarly buy the commodity at this price. Assuming
people used fast and frugal search heuristics, we would ex-
pect them to formulate simple strategies involving only one
variable (e.g. search until price < X, or visit Y stores and
buy in the cheapest store). However, using an AAT based
model for prediction would assume some type of combina-
tion strategy exists where one variable is first searched for,
but then retreated from assuming that value could not be
satisfied. For example, a person might initially search for
a price less than 650, but will settle on even a higher price
(e.g. the lowest found so far) after unsuccessfully finding
this price after 5 stores.

We did in fact find strong support that AAT best pre-
dicted when people would buy the commodity. To study
this point, we studied the log files taken from 41 people and
how they chose to buy the commodity. Each person was
presented with a simulated implementation of the problem
described in Section 3.14. Every interaction with the simula-
tion randomized the values for the commodity as described
in Section 4.1, and all people were told to interact with this
simulation until they formulated a clear policy for how they
would decide to buy the commodity. After this point, we
then logged a minimum of 20 additional interactions (aver-
age 25.56) where each interaction ended in a decision to buy
the commodity in a certain store. Our goal was to predict
where each person would end his search process.

To obtain a prediction model without bias, we first sep-

3We again consider the negotiation as having failed if no
agreement is reached on all issues.
4A web interface for this problem can be seen at:
http://www.jct.ac.il/∼rosenfa/costSearch.html

arated all logged interactions for each of the 41 people, en-
tered them as input for the Weka machine learning package
[21], and applied the C4.5 decision tree classification algo-
rithm as implemented by Weka to decide if each person’s
behavior was consistent with AAT. We chose this learning
algorithm, as opposed to others such as Bayes or Neural
Nets, as the output from the C4.5 algorithm would not just
predict the person’s behavior, but also provide the rules by
which the classifier operates. We could then judge if these
rules were consistent with the optimal rule (e.g. purchase if
price < 789) or if the classifier represented a fast and fru-
gal rule with only one rule (e.g. buy after 4 stores). Weka
found that 30 of the 41 strategies had decision rules based
on price and store combinations (e.g. buy immediately if
the price is less than 700, otherwise visit 5 stores and buy in
the cheapest one) which are clearly non-optimal and not fru-
gal. Instead, this decision process can be viewed as a classic
example of the urgency and retreat process within AAT. In
these strategies, a certain price threshold is desired (highest
urgency) but retreated from if believed to be unattainable.
Of the remaining 11 rules, 10 rules were found to be based
on the price variable alone, with one based on the number of
stores. While none of these 11 rules were optimal, they may
be viewed as fast and frugal heuristics. Thus, the C4.5 learn-
ing algorithm found that the majority of strategies (30 of 41
or 73%) were consistent with urgency and retreat concepts
of AAT, while the minority (27%) of the strategies were an
alternate bounded rationality model – namely simpler fast
and frugal heuristics. None of the strategies were found to
be optimal. This result provides strong support to the claim
that AAT, and not optimal or fast and frugal heuristics best
predict people’s behavior. Also note that these results are
consistent with our previous work [14] where human judges
were used instead of machine learning techniques.

Next, we wished to create a general prediction model and
check how AAT might be used to improve such a model.
To create and test such a model, we combined all 41 peo-
ple’s logged interactions to create a total of nearly 5000 in-
stances where people either decided to buy the commodity
or to continue their search. Using this data, we constructed
two baseline models, found in Figure 1. One baseline is a
Naive model that classifies all decisions based on the ma-
jority class, here assuming people will always continue the
search. As people didn’t typically buy the commodity right
away, the majority decision is to continue the search and
thus 78.56% of all decisions are of this type (see Column 1).
A second baseline class is a Learning decision tree model
constructed which was trained using Weka’s C4.5 classifier
on the combined data and tested with cross-validation (Col-
umn 2). It is interesting to note that this decision tree was
also consistent with AAT, but this result is not surprising
as most individual logs were consistent with AAT as well.

We then compared these baselines to models which con-
tained adding information about people’s AAT preferences.
Column 3 of Figure 1 is based on a learned C4.5 model, but
added information about people’s average AAT preferences
(e.g. buy immediately if the price is less than 750, other-
wise settle on the best price after visiting a total of 3 stores).
While this model is slightly better than the learned baseline,
this model was not significantly more accurate. We hypoth-
esized this is due to learned baseline being already based on
AAT. Thus, by adding additional information we did not
significantly aid the C4.5 to improve its accuracy.
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Figure 1: Comparing the Prediction Accuracy be-
tween AAT and non-AAT Based Models

We hypothesized that when AAT preferences are clear,
such as seems the case in this problem, even sparse data
could be used to form an accurate model. In this prob-
lem, the most urgent goal variable is the commodity price
in the current store. By sampling only a limited number
of instances where people stopped the search based on this
value, we believe it is possible to approximate the accuracy
of the learned model from nearly 5000 logged instances. To
support this claim, we formed a learning policy based on
the average price used in 50 decisions to buy the commod-
ity and simply averaged the threshold for this parameter
(average search stopped at price = 767). The accuracy of
this policy is presented in column 4 of Figure 1. Observe
that this model is nearly equally accurate to the learned
policies. In contrast, creating traditional models with such
small amounts of data were not successful and yielded the
naive model (Column 1). We also observed that even ex-
tremely small samples of only 10 decisions formed similar
models. We took 5 such samples and noted that the devia-
tion between these samplings was not great and the lowest
prediction accuracy was 81.92%. Thus, we conclude that in
relatively basic domains, an accurate learning model can be
made even with only limited AAT data based on the most
important search parameter(s).

5.2 AAT to Predict Negotiation Decisions
In order to study more complex, real-world problems, we

also studied if AAT could be used to better predict peo-
ple’s negotiation activities in the two problems described in
Section 3.2. Recall that in these problems people must ne-
gotiate either 5 or 6 parameters. In this section, we study
two key issues: 1) Is AAT applicable to negotiation prob-
lems? 2) Assuming AAT is applicable, will it facilitate a
better prediction model for people’s behavior?

According to AAT, one would expect people to rank the
importance of each of the negotiation parameters according
to his or her aspiration scale. Assuming people often have
the same aspiration scales, we would also see an order where
issues are addressed, e.g. certain parameters are typically
negotiated first, second, etc. For example, in the employer /
employee domain, we might find that negotiations first focus
on the salary amount parameter and only then move on to
other parameters such as pension or transportation benefits.
Our premise is that by understanding these scales, one can

Figure 2: Frequency of Parameter Change in Em-
ployer / Employer Negotiation Domain

add this information into traditional models such as C4.5 to
more accurately predict what bids people will offer.

We did in fact find that aspiration scales existed whereby
certain negotiation parameters were stressed more frequently
than others. To study this point, we analyzed how fre-
quently the given parameters were changed, on average, over
the course of all collected negotiation interactions. As a
baseline, we also considered the actual weights these issues
were given [6]. This allowed us to compare if people stressed
negotiation issues differently from this baseline value.

Figure 2 presents how frequently each of the 6 parameters
in the employer / employee domain were changed. These re-
sults were taken from 47 negotiation sessions between peo-
ple. The first column in this Figure shows the frequency
people changed each of these issues (either a raised or lower
value). The second value represents the actual weights these
issues had. Note that clear aspiration scales existed, and
these scales were different from the actual issues weights.
Certain parameters, say promotion possibilities, clearly had
a lower urgency as these issues were typically not discussed.
In comparison, other parameters, such as working hours and
salary, were discussed frequently. Furthermore, we observed
that even within issues such as working hours and salary
that seemed to be equally discussed, the point where they
entered in negotiation was often not the same. Often the
salary point was discussed first, and only then the number
of hours. For example, within the first two negotiation inter-
actions, the salary issues was discussed in 45% of all session,
while the number of hours issues was only discussed in 24%
of the sessions. Again, this would represent that the salary
issue had a higher urgency at the start of negotiations.

Figure 3 presents how frequently each of the 5 parame-
ters in the tobacco trade domain were changed. These re-
sults were taken from 56 negotiation sessions between peo-
ple. Again, certain issues such as the Impact on other Aid
and Forum on Other Health Issues were clearly discussed
more frequently than issues such as England and Zimbabwe’s
Trade Policy. We again noted that certain issues were typ-
ically negotiated at different points of sessions. Also note
that the aspiration scales here differ greatly from the actual
weights of the issues. The actual weight for the Size of Fund
parameter was equal to all of issues combined (0.5 of the
total weight). Yet, people typically focused on other issues
more, such as the Impact on Other Aid and Forum on Other
Health Issues parameters. Thus, deriving aspirations from
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Figure 3: Frequency of Parameter Change in Trade
Negotiation Domain

the actual utility weights is not possible.
We then proceeded to study if adding AAT information

was helpful in predicting how people will negotiate. In the
problems we considered, the parameters to be negotiated
could have between 2 and 4 discrete values. Please refer
back to Section 3.2 for a description of these parameters
and their possible values. The goal of the models was to
accurately predict what changes, if any, would be made by
a person in the next offer.

In order to study this point we considered several models
for both negotiation problems (see Tables 1 and 2). The
goal of all of these models was to predict the next value for
each parameter. In the learning models, each parameter was
training and tested separately through cross-validation, but
did have access to the previous values for all parameters.
First, we considered the Majority Rule model. Given the
full log file, this rule assumes that a person would offer the
most popular value for any given parameter. For example,
in the employer / employee domain, the most popular ti-
tle was “Programmer”. Second, we implemented two mod-
els based on the equilibrium strategy. This strategy is
based on previous work in these problems [6]. However, as
the equilibrium strategy will change based on which person
is allowed to offer the last bid, we checked both what equilib-
rium strategies would predict for all parameters. Next, we
created a baseline strategy that uses the C4.5 algorithm to
predict the next offer for each parameter. This model used
historical information about the previous offer and the cur-
rent negotiation iteration. Next, we created a C4.5 with
AAT statistical information prediction model. As we
previously demonstrated, each parameter had different ur-
gencies. Thus, we attempted to create a more accurate
model by adding information about which parameters were
typically raised or lower for any given iteration. Specifically,
we added a field with a binary flag value to differentiate
between the iterations for which people typically changed
a given parameters’ value with a frequency of ≥ 0.5, and
those which were typically not changed and added informa-
tion would likely not help. This was done to avoid overfit-
ting the AAT statistics for any training / testing pair, and
to thus keep the generality of the results. Finally, we created
a C4.5 + Complete Behavior Knowledge model. This
final baseline had knowledge about what the previous offer
was, and also added perfect knowledge if the person would
revise upwards, downwards, or leave unchanged their previ-

ous offer. In cases where only two options exist, one would
expect this baseline to guarantee 100% accuracy. However,
when more than 3 values exist for a given parameter, even
this model cannot guarantee 100% accuracy. For example,
if a previous salary offer was $7,000 per month and we know
the next offer will be higher, we still do not know if it will be
raised to $12,000 or $20,000. Nonetheless, the goal of this
model was to provide an upper bound for how much AAT
based information could theoretically help.

Tables 1 and 2 demonstrate the effectiveness of adding
AAT information to boost prediction accuracy. The first row
of these tables show the parameter to be negotiated and the
number of possible values. The second row presents the ma-
jority rule baseline. The third and fourth rows present how
effective the equilibrium policies were in predicting what
people actually offered. Note that both of these policies in
both problems fall well below the naive majority baseline.
This again demonstrates the ineffectiveness of using equi-
librium theoretical policies to predict how people actually
behave. The fifth row presents the accuracy of the learned
C4.5 model. This model represents the effectiveness of this
traditional learning method in predicting each of the param-
eters. We then added AAT information, and reran the same
C4.5 algorithm, the results of which are in the sixth row.
Note that in both domains the improvement gained from
the AAT information is significant. However, in the To-
bacco Trade Domain (Table 2), the prediction improvement
is much larger from the base C4.5 algorithm (over a 10%
accuracy boost for many parameters), yet falls short of the
accuracy in the Employer / Employee Work Domain (Table
1). Also, in both domains, only one parameter did not gain
from the added aspiration information. For both of these
parameters, few instances existed where people had clear
general aspiration changes, preventing any accuracy boost
from this approach. Finally, the last line in both domains
presents the accuracy of the C4.5 algorithm with complete
behavior knowledge, or perfect information about whether a
person will retreat from (decrease) a given parameter value,
or upwardly revise its aspiration (increase). Note that as
expected even complete AAT information could not yield
100% prediction accuracy for parameters with more than 2
values.

6. CONCLUSIONS AND FUTURE WORK
This paper makes several significant contributions towards

creating more effective agents to interact with people in op-
timization and negotiation problems. First, we found that
“traditional” rationality models were often poor indication
how people will act. Consistent with previous research [1,
11], we found that a better alternative is to use traditional
learning techniques to predict how people will behave. How-
ever, in contrast to previous works, we used decision trees
[13] to formulate exactly which policy was used instead.
This classifier found that bounded rationality theories, and
specifically AAT, were used. Second, this paper represents
a unique approach where this general theory was then reap-
plied to improve learning models. Within the complex ne-
gotiation domain, this approach significantly improved pre-
diction accuracy, often by over 10%. Within the simpler
optimization problem, this approach was useful in produc-
ing accurate learning models even when extremely limited
learning data was available.

For future work, several directions are possible. First,
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Salary-3 Title-4 Car-2 Pension-3 Promotion-2 Hours-3 Average
Majority Rule 60.1852 67.5926 57.4074 70.3704 62.963 62.963 63.5803

Equilibrium Strategy 1 44.4444 67.5926 69.4444 66.6667 41.6667 67.5926 59.568
Equilibrium Strategy 2 25.9259 17.5926 69.4444 19.4444 43.5185 61.1111 39.5062

C4.5 Without AAT 61.111 68.5185 68.5185 67.5926 83.3333 69.4444 69.7531
C4.5 with AAT stats 62.963 68.5185 75.9259 71.2963 91.6667 76.8519 74.53705

C4.5 + Complete Knowledge 95.3704 89.814 100 96.2963 100 96.2963 96.2962

Table 1: Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Employer /
Employer Negotiation Domain

Fund Size-3 Aid-3 Zim. Tariff-2 Eng. Tariff-2 Forum-3 Average
Majority Rule 57.3333 45.3333 58.2222 62.6667 44 53.5111

Equilibrium Strategy 1 35.088 42.3849 41.962 61.9443 46.5569 45.58722
Equilibrium Strategy 2 35.088 42.3849 51.337 44.7568 41.9177 43.09688

C4.5 Without AAT 61.8257 46.888 57.7778 64 49.3776 55.97382
C4.5 with AAT stats 71.1111 56.4444 67.1111 64 55.5556 62.84444

C4.5 + Complete Knowledge 95.5556 93.7778 100 100 87.1111 95.2889

Table 2: Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Tobacco
Trade Negotiation Domain

once we have demonstrated that knowing people’s aspira-
tions improves learning, one may wish to study how these
values can be quickly and accurately identified to further
aid in the learning process. Second, this paper focuses on
how to best learn how people interact with each other. One
important application of this work is to create automated
agents that use this paper’s lessons to better interact with
people. State of the art automated negotiation agents [5, 6]
currently do not use this information. Third, we were suc-
cessful in demonstrating that AAT is more useful than tra-
ditional rationality or fast and frugal bounded heuristics to
predict how people in the problems we studied. However, an
open question is what other, likely bounded, general theories
will be helpful in creating learning agents in other real-world
environments where AAT might not be relevant.
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