
Solving Election Manipulation Using Integer Partitioning
Problems

Andrew Lin
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
apl8378@cs.rit.edu

ABSTRACT
An interesting problem of multi-agent systems is that of vot-
ing, in which the preferences of autonomous agents are to
be combined. Applications of voting include modeling so-
cial structures, search engine ranking, and choosing a leader
among computational agents. In the setting of voting, it is
very important that each agent presents truthful informa-
tion about his or her preferences, and not manipulate. The
choice of election system may encourage or discourage vot-
ers from manipulating. Because manipulation often results
in undesirable consequences, making the determination of
such intractable is an important goal.

An interesting metric on the robustness of an election sys-
tem concerns the frequency in which opportunities of manip-
ulations occur in a given election system. Previous work by
Walsh has evaluated the frequency of manipulation in the
context of very specific election systems, particularly veto,
when the number of candidates is limited to at most three,
by showing that manipulation problems in these systems can
be directly viewed as problems of (Two-Way) Partition, and
then using the best known heuristics of Partition. Walsh also
claimed similar results hold for k-candidate veto election by
way of problems involving multi-way partitions.

We show that the results for k-candidate veto elections
do not follow directly from common versions of partition
problems and require non-trivial modifications to Multi-Way
Partition. With these modifications, we confirm Walsh’s
claim that these elections are also vulnerable to manipula-
tion. Our new computational problems also allow one to
evaluate manipulation in the general case of k-candidate
scoring protocols. We investigate the complexity of manip-
ulating scoring protocols using new algorithms we derive by
extending the known algorithms of Multi-Way Partition.

It is our conclusion that the problems of manipulation in
more general scoring protocols of four or more candidates
are not vulnerable to manipulation using extensions of the
current known algorithms of Multi-Way Partition. This may
be due to weaknesses in these algorithms or complexity in
manipulating general scoring protocols.

Cite as: Solving Election Manipulation Using Integer Partitioning Prob-
lems, Andrew Lin, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Yolum,
Tumer, Stone and Sonenberg (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
583Ð-590.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems

General Terms
Algorithms, Theory, Experimentation, Performance

Keywords
computational social choice, manipulation, scoring proto-
cols, partition

1. INTRODUCTION
A multi-agent system is composed of multiple interacting

intelligent agents, and is used to solve problems that are
otherwise difficult or impossible for an individual agent to
solve. An interesting problem in multi-agent systems is that
of voting [15], in which individual preferences of these agents
are to be combined. Voting is used by multi-agent systems in
interesting applications such as search engine ranking [17].
To ensure the integrity of the outcome of an election, an
important goal in designing election systems is to eliminate
or at least limit the opportunity for an agent to have an
incentive to report false preferences for personal gain.

An unfortunate result, the Gibbard-Satterthwaite theo-
rem [8, 16], shows that manipulation in inevitable in all
reasonable election systems. Manipulation, also known as
strategic voting, occurs when one or more voters vote con-
trary to their true preference ordering. A typical manipula-
tor may bury his or her 2nd true preference to give his first
preference a larger relative advantage.

Bartholdi, Tovey, and Trick [2] attack this problem by
evaluating the worst-case time complexity of computing such
manipulations, and show that in many cases this problem is
NP-hard, making NP-hardness the standard for worst-case
hardness in manipulation problems. It has since been shown
that most non-trivial weighted elections, and particularly
scoring protocols, are NP-hard to manipulate [4, 9].

Since NP-hardness only demonstrates worst-case hardness
and may not fully reflect the difficulty of finding manipula-
tions in typical settings of interest, more recent work has
been done to demonstrate the tradeoffs between fairness of
elections and frequency of manipulation, as well as hardness
of manipulation in random elections. It is now known that
in some cases of random elections, as well as elections in-
volving correlated voters such as single-peaked preferences
[1, 6], manipulation is easy either in the worst-case or for
the nearly all cases asymptotically.

583



Walsh [18] furthers the study empirically, to investigate
issues such as hidden constants in theoretical asymptotic
results, as well as the effects of realistic assumptions such
as election systems being bounded in size. It is of interest
to discover how the known asymptotic behavior applies in
practice.

The weighted veto rule of three candidates was studied
in Walsh, particularly because it is most directly related
to the NP-hard problem of Partition, for which reason-
able heuristics, particularly the Complete Karmarkar-Karp
(CKK) Algorithm, are known [12]. The runtime of invok-
ing the CKK algorithm, in particular as measured by the
number of search-tree branches generated, is thus utilized
throughout the study as a metric to evaluate the hardness
of finding a manipulation in an election, or showing that
none exists. Particularly of interest is the result that hard
instances of manipulation for instances of veto elections of
three candidates are ”rare”and require highly correlated vot-
ers. Walsh also remarks that the Partition problem also ap-
plies in other cases of 3-candidate scoring systems, as well as
veto systems of multiple candidates, without demonstrating
the constructions involved.

In Walsh, the frequency of which manipulations occur for
this system is determined for varying election sizes, and is
shown to exhibit a smooth transition in probability in rela-
tion to the number of manipulators. More specifically, it is
shown that the probability that a coalition of m manipula-
tors can influence the outcome in an election of n elections is
directly correlated with the ratio

√
n

m
, and is independent of

the problem size. This is known as a phase transition, and
the majority of NP-complete problems exhibit their worst-
case complexity in instances defined by this region.

It is then shown that in most cases of uncorrelated voters,
including uniform votes, as well as when voter weights are
normally distributed, on average one may find a manipu-
lation or prove that none exists with very minimal search,
averaging slightly more than one search-tree branch in a
CKK search. This is true even in the range of the phase
transition, and is in direct contrast with other NP-complete
problems, in which hard problems are highly associated with
this transition.

In the extreme case of correlated voters, a case in which
all non-manipulative voters veto the candidate of interest,
and which the manipulators have a total weight of twice
the non-manipulative voters, is considered. In this case, the
runtime of invoking the CKK algorithm exhibits a phase
transition and grows exponentially in relation to the num-
ber of manipulators in the election. However, a further case
was studied in which the election is highly correlated as be-
fore but with one additional agent who votes at random
among the three candidates. Surprisingly, the runtime, as
measured in search-tree branches of CKK of manipulating
such an election rapidly decreases as the distribution of the
weight of this non-correlated voter increases, and exhibits a
strong phase transition into a constant as this distribution
approaches that of the correlated voters. Based on these re-
sults, it is concluded that in the case of 3-candidate weighted
veto systems, hard manipulation problems only occur when
all of the votes are highly correlated, and are thus exceed-
ingly rare in any reasonable distribution of voters. Unlike
common NP-complete problems, hard instances in such ma-
nipulation problems are also not directly related to the phase
transition of frequency of manipulation.

Although it is remarked in [18] that this technique can be
applied to that of all scoring systems of three candidates,
and that heuristics of the more general k-Way Partition to
that of veto systems of more than three candidates, this
construction as well as the problem of manipulating other
scoring systems of more than three candidates was left open.
We propose a solution remedy these open problem. We con-
firm the results of Walsh for that of k-candidate veto elec-
tions, but show that this problem does not directly relate to
the problem of (k− 1)-Way Manipulation, and require non-
trivial adjustments. We then show how these adjustments
allow one to evaluate general scoring protocols of more than
three candidates.

We attack the open problem of Walsh by introducing
an analogous partition-like problem for the case of general
scoring systems, and extending the known algorithms and
heuristics of Partition and k-Way Partition to that of our
new problem in a very natural way. We show how problems
involving partitions are related to that of manipulation, as
scores given by the voters need to be partitioned among the
candidates in a way to ensure a certain desirable outcome.
In doing so we are able to investigate whether the known
algorithms of these problems will give new results to scoring
systems of interest.

Based on our analogous testing of the results of Walsh
for these cases, we conclude that the algorithms of Korf, the
best-known algorithms for some partition problems, support
the results of Walsh for k-candidate veto elections of k >
3, but require some non-trivial adjustments to the problem
instances and algorithms involved.

As our adjustments further allow one to attack the prob-
lems of manipulation in more general scoring protocols, we
also study the runtime of invoking these new algorithms on
such instances. It is our conclusion that the problem of ma-
nipulating general scoring protocols, as well as families of
scoring protocols, such as veto, are not vulnerable to the
best-known algorithms of k-Way Partition and analogous
extensions thereof.

This may either support the fact that elections of more
than three candidates are inherently more resistant to ma-
nipulation, or weaknesses in these partition algorithms. We
leave these options as an open problem.

We organize the paper as follows. In the preliminaries
section, we formally define relevant problems and known al-
gorithms, as well as the connection between partition prob-
lems and election manipulation. In Section 3, we introduce
our extensions of the known problem of k-Way Partition,
which we will use to solve some instances of manipulation,
and introduce analogous extended algorithms. In the next
two sections, we define the connection between the prob-
lem of manipulation and the new partition problems, and
demonstrate the experimental results graphically.

2. PRELIMINARIES

2.1 Election Systems
An election E = (C, V ) consists of a set of candidates

C = {c1, . . . , cm} and voters V = {v1, . . . , vn}. Each voter
v ∈ V presents a preference ordering over the candidates
C, in the form of a complete linear ordering ci1 > · · · >
cim . An election system E : E → C+ maps an election
to winning candidates(s) based on the preferences of the
voters, for which it aggregates. An interesting set of election

584



systems, scoring protocols, which we will evaluate in this
paper, encompasses systems such as plurality, veto, and the
Borda count where the number of candidates is fixed.

An m-candidate scoring protocol is defined as a vector
(α1, . . . ,αm). In such an election system, each voter con-
tributes αi points to the ith choice of his or her preference
ordering. The candidate with the highest score wins. An
election defined by such a scoring protocol can further be
weighted, in which each voter v is given a non-negative in-
teger weight w(v). In this case, the vote is counted as w(v)
non-weighted votes, and thus the ith choice of candidate c is
awarded w(v)αi points. A prominent example of weighted
elections occurs in the U.S. Presidential Elections, in which
the Electoral Colleges are given different weights. Weights
are also commonly used in computational elections, such as
search engine ranking aggregation [17, 5].

A family of scoring protocols is an infinite se-
ries of scoring protocols (α1, . . . ,αm, . . .) in which αm =
(αm

1 , . . . ,αm
m) is an m-element scoring protocol.

2.2 Manipulation
A common problem with many election systems is the

incentive for some voters to vote contrary to their true pref-
erences, either individually or collectively in a coalition, ma-
nipulating the outcome. This can occur when some voters
vote for their 2nd preference to avoid ”wasting a vote” on
their favorite candidate whom is not popular, or bury their
2nd preference to give their first preference a larger relative
advantage. Unfortunately, several early results have shown
that the existence of such strategies in elections is inevitable
[8, 16], and an early compromise was made to make the de-
termination of such results at least NP-hard [2]. We define
manipulation as a decision problem as follows.

Name: E-Manipulation

Instance: Candidates C, established voters V , unestab-
lished voters V ′, and distinguished candidate p ∈ C.

Question: Is there an assignment of preference profiles over
C for V ′ such that p is a winner of the election (C, V ∪
V ′)?

Although this problem is indeed NP-hard for some rela-
tively simple election systems, in particular almost all non-
trivial weighted scoring protocols [9], more recent papers
have focused outside of worst-case complexity. A notable
result [18] shows that for some election systems, particu-
larly the veto system and other systems for three candidates,
instances where it is easy to find a manipulation, or demon-
strate none exists, are very rare. This result was shown
using the known algorithms and heuristics for Partition, an
NP-hard problem closely related to manipulating weighted
three-candidate election systems. We make a definition in
the next section.

2.3 Set Partition
A primitive set partition problem is Two-Way Partition,

more simply known as Partition, which is NP-complete. We
give the decision version of the problem as follows.

Name: Partition[11] (See also [7])

Instance: A multi-set of positive integers S = {s1, . . . , sn}.

Question: Is there a subset A ⊆ S such that
P

A =P
(S −A)?

In the optimization version of Partition, we wish to
minimize the maximum of the two subsets, namely,
Max(

P
A,
P

(S −A)). Several heuristics exist to approxi-
mate this figure.

We give an example of the connection between election
manipulation of three-candidate veto election systems and
Partition given in Walsh as follows.

Consider a three-candidate veto election over the candi-
dates p, c1, and c2, in which we wish for p to win. Suppose
that initially, five voters, of weights 10, 8, 6, 4, and 2 veto
p, c1, p, c2, and c2 respectively. In addition, our coalition
consists of four voters of weights 6, 5, 4, and 3.

Without loss of generality, none of the four manipulators
will veto p, and in this example, we must distribute vetoes
of weights {6, 5, 4, 3} among candidates c1 and c2, currently
with vetoes of total weight 8 and 6, such that each receives
vetoes of weight totaling at least 16.

Since 8− 6 = 2, this corresponds to a partitioning of the
elements {6, 5, 4, 3, 2} such that each side has weight at most
10 (or equally, at least 10).

For this application, as well as many others, Partition has
been extended to that of k-Way Partition, in which the goal
is to divide the set into k equal subsets. It is noted in [14]
that there are at least three optimization functions of inter-
est: we may wish to minimize the maximum subset sum,
maximize the minimum subset sum, or minimize the max-
imum difference between the sums of each two subsets. It
is further demonstrated that all three of these optimization
functions can produce different optimal partitions. The first
two functions are of interest in our problem. The first opti-
mization is interesting because we want the maximum score
given to the non-distinguished candidates not to exceed the
final score of our distinguished candidate. The second opti-
mization is of interest in cases where vetoes are counted. We
define the problem and these two optimizations as follows.

Name: k-Way Partition[11] (See also [7])

Instance: A multi-set of positive integers S = {s1, . . . , sn}.

Question (decision): Are there disjoint and covering sub-
sets S = A1 ∪ · · ·∪Ak such that

P
A1 = · · · =

P
Ak?

Question (optimization #1): Find disjoint and covering
subsets S = A1 ∪ · · · ∪Ak that minimizes

Max(
P

A1, . . . ,
P

Ak).

Question (optimization #2): Find disjoint and covering
subsets S = A1 ∪ · · · ∪Ak that maximizes

Min(
P

A1, . . . ,
P

Ak).

In the coming sections, we will describe the algorithms
for the first optimization. The algorithms for the second
optimization follow symmetrically with some minor adjust-
ments.

Although it is mentioned in [18] that manipulation of veto
elections of more than three candidates can be resolved as
problems of multi-way partition, some adjustments must be
made to this problem. We give an example and demonstrate
the adjustments as follows.

585



Consider a four-candidate veto election over the candi-
dates p, c1, c2, and c3, in which we wish for p to win. Sup-
pose that initially, four voters, of weights 20, 12, 9, and 7
veto p, c1, c2, and c3 respectively. In addition, our coalition
consists of six voters of weights 10, 8, 4, 4, 3, and 3.

In this example, we must distribute vetoes of weights
{10, 8, 4, 4, 3, 3} among candidates c1, c2, and c3, currently
with vetoes of total weight 12, 9, and 7, such that each re-
ceives vetoes of weight totaling at least 20.

Since 12 − 9 = 3 and 12 − 7 = 5, we are interested in
partitions of the set {10, 8, 4, 4, 3, 3} ∪ {3, 5}. However, in
this case, we are interested in partitions in which 3 and 5
are not placed in the same subset, as these two subsets rep-
resent the vetoes given to candidates c2 and c3, respectively.
This requires some adjustments to the partition problem
and algorithms of interest, which our work in later sections
encompasses.

Furthermore, as k-Way Partition problems partition only
individual numbers, the application of this problem and its
algorithms in that of manipulation of scoring protocols is
limited to cases of plurality and veto, in which each vote
is determined by a single candidate. For general scoring
protocols such as Borda, we will need to introduce analogous
partition problems.

2.4 Algorithms of Partition and k-Way Parti-
tion

Because Partition is NP-complete, several heuristics have
been developed to approximate the best partition. Two
heuristics of common use are the greedy method, which first
sorts the elements of S in non-ascending order, and places
each element in the set that minimizes the difference itera-
tively, and the Karmarkar-Karp heuristic [10], also known as
the differencing heuristic, which decides that the two largest
elements are in different sets, but defers deciding in which
set each element is placed. Both of these heuristics can be
modified into pruned exhaustive searches [12].

We give an example of the Karmarkar-Karp heuristic as
follows. We are given the multi-set {6, 4, 3, 3, 2, 2}, which
we wish to partition. We place 6 and 4 in opposite subsets.
By inserting these two elements in opposite subsets, we ef-
fectively create a new element equal to the difference of the
two largest elements, since we are only concerned about the
total difference. We thus are creating the new element of
2, resulting in multi-set {3, 3, 2, 2, 2}. We then place each 3
in different subsets, and two elements of 2 in different sub-
sets, resulting in {2}. In the base case of a single element,
we must place it in one of the two subsets. In this case,
this algorithm gives a partition of difference 2. Note that
in this case the optimal partition has a difference of 0, as
6 + 4 = 3 + 3 + 2 + 2, and this algorithm is not optimal.

Both of these heuristics can be extended to that of a
complete algorithm using a depth-first tree search. The
construction of the Complete Karmarkar-Karp algorithm is
given in [12], which we briefly review. We note that in any
given instance of Two-Way Partition, the two largest ele-
ments may be in different subsets or the same subset. By
the heuristic, we always try the former first, and terminate
if the partition is perfect, or within our desired maximum.
The search is also pruned if the first element is greater than
or equal to the sum of the remaining elements, as the best
partition places the first element in one subset and the re-
maining elements in the other.

An early result by Korf [12] showed how the greedy and
Karmarkar-Karp heuristics, as well as the corresponding
complete algorithms, can be extended to the case of k-Way
Partition. In the case of the greedy algorithm, we search a
k-ary tree in which we try inserting elements into each of
the k subsets. In the corresponding CKK algorithm, we will
need to try each combination of the largest two tuples, of
which there are k!.

In [13], the runtime of the greedy and CKK heuristics
are evaluated k-Way Partition, and two new algorithms of
a different type, which utilizes CKK for 2-Way Partition
recursively, are introduced. Interestingly, while CKK is still
more efficient than the greedy heuristic for 3-Way Partition,
the greedy heuristic has a better runtime for k-Way Partition
for k ≥ 4, due to the k!-ary search tree.

Two new algorithms for k-Way Partition, Sequential
Number Partitioning (SNP) and Recursive Number Parti-
tioning (RNP) were also introduced in [13]. In Sequential
Number Partitioning, one complete subset is first chosen,
and the remaining unpartitioned numbers are partitioned
recursively using this algorithm for (k−1)-Way Partition. In
the base case, 2-Way Partition is evaluated using the CKK
algorithm. The subsets are generated by inclusion-exclusion
tree search with various pruning techniques.

There are several pruning techniques for the search of this
first complete subset. First, to avoid symmetry, the first
subset sum of this subset is restricted to be no more than
( t

k
), where t is the sum of the elements, and the subsets

are subsequently chosen in non-descending order by sum.
Also, if m is the maximum subset sum of the best partition
found thus far, or our target maximum, we restrict the first
subset sum to be at least t − (k − 1)m, as otherwise the
best partition found utilizing this first subset sum cannot
beat this difference. To induce as much pruning as early as
possible in the search tree, the elements are considered in
non-ascending order, and we try including first.

In Recursive Number Partitioning, on an instance of k-
Way Partition for k even, the set is first divided into two
subsets, each of which will be partitioned k

2
ways, by a top-

level CKK search. In [13, 14], it is shown that both SNP
and RNP show a marked improvement over CKK for k-Way
Partition when k ≥ 3, with RNP significantly faster than
SNP for k ≥ 4.

We wish to introduce a further extension of Partition in
order to investigate the complexity of manipulating a gen-
eral scoring system of weighted voters. In this paper, we
demonstrate a natural extension of the above algorithms to
this problem and also how to apply this new problem to the
problem of manipulation in scoring systems. In doing so,
we wish to gain a better understanding of the complexity of
such manipulation problems in relation to the current best
known algorithms of such partition-type problems.

3. EXTENSIONS OF k-WAY PARTITION
In our new problem of k-Way Permutation Partition, we

are given a multiset of tuples, each of cardinality k. We
wish to find permutations of each tuple such that, if we take
the sum of each of the k positions among the tuples, the k
sums are equal. As in the case of k-Way Partition, there
are a few interesting optimization functions, of which two
are of interest to manipulation problems. We give a formal
definition as follows.

586



Name: k-Way Permutation Partition

Instance: A multi-set of k-tuples, S = {x1, . . . , xn}, where
xi = {x1

i , . . . , x
k
i }. It can be assumed without loss of

generality that xk
i = 0 for all 1 ≤ i ≤ n, as one may

normalize the tuple, noting that only the difference
among tuple elements is crucial.

Question (decision): Is there a mapping P : {1, . . . , n}→
S{1,...,k}

1 such thatX
1≤r≤n

xP (r)1
r = · · · =

X
1≤r≤n

xP (r)k
r ?

Question (optimization #1): Find the mapping

P : {1, . . . , n}→ S{1,...,k} that minimizes

Max1≤i≤k

X
1≤r≤n

xP (r)i
r .

Question (optimization #2): Find the mapping

P : {1, . . . , n}→ S{1,...,k} that maximizes

Min1≤i≤k

X
1≤r≤n

xP (r)i
r .

Note that k-Way Partition is a special case of this prob-
lem, in which each k-tuple has the form (x1

i , 0, . . . , 0).
In this paper, we will examine extensions of algorithms

introduced by Korf in [12, 13, 14] from Partition and k-Way
Partition to that of k-Way Permutation Partition, their re-
lationship to that of more general scoring systems, the dis-
tribution of the complexity of instances in evaluating such
using these algorithms, and thus the frequency of hard in-
stances of this problem in a system of uniform voters. Using
these algorithms, we wish to show whether and when the re-
sults of [18] can be extended to that of other scoring systems
using these heuristics.

In the rest of this section, we examine how each of the
known algorithms for k-Way Partition may be extended to
that of k-Way Permutation Partition. Such algorithms allow
us to examine the complexity of manipulating some scoring
protocols.

4. K-WAY PERMUTATION PARTITION AS
A RESTRICTED K-WAY PARTITION
PROBLEM

Our extensions of the SNP and RNP algorithms to that
of k-Way Permutation Partition stem from the observation
that k-Way Permutation Partition is a restricted version of
the k-Way Partition problem. More specifically, given tuples
S = {x1 = {x1

1, . . . , x
k
1}, . . . , xn = {x1

n, . . . , xk
n}}, we wish to

find a k-Way Partition of the multiset of the union of all el-
ements, {x1

1, . . . , x
k
1 , . . . , x1

n, . . . , xk
n}, excluding zeros, with

the additional constraint that each of the k subsets contains
at most one element from each of the n tuples. As both the
SNP and RNP algorithm work in a divide-and-conquer man-
ner in which subpartitions are generated in sequence, this
constraint can be implemented by restrictions in branching
in each node of the search tree. We give a brief description
of how these restrictions are implemented.

1SA is the set of all permutations over A.

In the SNP algorithm, we wish to choose a set of elements
for our first subset. As in k-Way Partition, we consider the
elements in non-ascending order in an inclusion-exclusion
search tree. In the algorithm for k-Way Permutation Par-
tition, each element is labeled with its corresponding tuple,
and in the top-level inclusion-exclusion search, if an element
from this tuple has already been chosen, we must exclude
this element from the set. On the other hand, if this is the
last element from its tuple in the elements to be considered,
we must include it. We then partition the remaining ele-
ments k− 1 ways, normalizing the tuples if necessary. Note
that since zero elements are excluded, this algorithm is also
consistent with the SNP algorithm given by Korf.

There also exists a similarly well-defined extension of the
RNP algorithm proposed by Korf. In our extension of RNP
on k-Way Permutation Partition, we perform the CKK al-
gorithm on the elements, which are labeled with their corre-
sponding tuples, under the constraint that each of the two
subsets receive no more than k

2
elements from each tuple.

As each of the two branches in a CKK search node entail
combining two subpartitions, we achieve this by refraining
from combining subpartitions in which one or both subsets
exceeds k

2
elements from any tuple. There also exists sim-

ilar simple pruning techniques, that exclude search nodes
in which we cannot attain a subset minimum we used in
pruning, or that cannot beat the best partition found thus
far.

In both algorithms, the base case of 2-Way Permutation
Partition can be solved as a case of 2-Way Partition, as we
may normalize so that there is only one non-zero element in
each 2-tuple.

We consider an example as follows: partition the tuples
{{8, 0, 0, 0}, {6, 2, 0, 0}, {5, 5, 2, 0}, {5, 5, 0, 0}, {5, 4, 3, 0}}
optimally. In this algorithm we sort the union of the ele-
ments of each tuple, excluding zero, arriving at the multiset
{81, 62, 53, 53, 54, 54, 55, 45, 35, 22, 23}. We note the tuple
each element originates from as a subscript. The first branch
of the top-level CKK search combines elements 81 and 62,
adding a new element of net weight 2 to this set. Since
we are interested in the further partitioning of the 2-Way
Partition of this set, we must keep track of how we arrive at
our net elements. We could represent this resulting multiset
as follows: {53, 53, 54, 54, 55, 45, 35, 2 = 81 − 62, 22, 23}.
Skipping a few steps, eventually this top-level CKK al-
gorithm produces a partition of sets {62, 53, 54, 45, 35, 23}
and {81, 53, 54, 55, 22} at its first left-hand-side leaf.
This corresponds to two instances of 2-Way Permuta-
tion Partition: {{0, 0}, {6, 0}, {5, 2}, {5, 0}, {4, 3}} and
{{8, 0}, {2, 0}, {5, 0}, {5, 0}, {5, 0}}. In this case, since we
are interested in 4-Way Permutation Partition, we evaluate
two instances of 2-Way Permutation Partition for each leaf
of the top-level CKK instance.

We give some pseudocode for an implementation of such
an algorithm. In our code below, the RNPinner function takes
a multi-set of weights, each associated with a difference
between the sums of two sets of elements. In each of these
two sets of elements, each element is associated with the
tuple it originated from. For example, in the example
above, in the first node, we formed an element 2, which was
derived from the difference of element 8 and 6 from tuples
1 and 2 respectively. In the code below, recall that we are
minimizing the maximum subset sum. We store this figure
in the variable best.

587



RNPinner(S = {(s1, A1, B1), (s2, A2, B2), . . . , (sn, An, Bn)},
k), where s1 ≥ · · · ≥ sn, si =

P
Ai −PBi. Ai and Bi are

multisets of elements, each element labeled with the tuple
it originated from.

if n = 1 [Base case.]
[Recursively partition the tuples corresponding to sets
A1 and B1

k
2

ways, after normalizing.]
return Max(RNP(Normalize(A1)), RNP(Normalize(B1)))

else
[Try difference if possible.]
if each of A1∪B2 and B1∪A2 sum to at most k(best−1)
and contain at most k

2
elements from each tuple

best← Min(best, RNPinner({
(s1 − s2, A1 ∪B2, B1 ∪A2), . . . ,
(sn, An, Bn)}, k))

[Try sum if possible.]
if each of A1∪A2 and B1∪B2 sum to at most k(best−1)
and contain at most k

2
elements from each tuple

best← Min(best, RNPinner({
(s1 + s2, A1 ∪A2, B1 ∪B2), . . . ,
(sn, An, Bn)}, k))

return best

At the top level, we break the tuples into individual
elements, with corresponding trivial element sets.

RNP(S = {(s1
1, . . . , s

1
k), . . . , (sm

1 , . . . , sm
k )})

best←∞
[Each element by itself, labeled with its originating tuple.]
return RNPinner({(s1

1, {(s1
1, 1)}, ∅), . . . ,

(sm
k , {(sm

k , m)}, ∅)}, k)

The main difference between the implementation of RNP
for this restricted RNP problem and that of Korf’s imple-
mentation for k-Way Partition is the extra restriction for
combining weights, as the subsets involved must not exceed
k
2

elements from any tuple. The SNP algorithm can be im-
plemented.

5. MANIPULATION AS A PARTITION
PROBLEM

We resolve manipulation in scoring systems into instances
of k-Way Permutation Partition. There are two relevant
cases.

Theorem 1. Consider an election of the scoring sys-
tem (α1, . . . ,αk) and candidates c1, . . . , ck with initial scores
s1, . . . , sk. Let the set of manipulative voters be V ′ of cardi-
nality ||V ′|| = m with weights w1, . . . , wm.

There exists a manipulation ensuring the victory of
c1 iff there exists a (k − 1)-way permutation partition
of the tuples {{s2, . . . , sk}} ∪ {{w1α2, . . . , w1αk} , . . . ,
{wmα2, . . . , wmαk}} with maximum subset sum of at most

s1 + α1

X
1≤i≤m

wi.

It should be noted that in order to apply this reduction,
it is only necessary that the each voter’s contribution to the

scores of each candidate depend only upon his or her position
in the voter’s preference ordering. It is not necessary for the
system to have a fixed scoring vector. Such elections may or
may not be of interest to computational social choice theory,
and will not be evaluated in this paper.

Proof. Without loss of generality, each voter from V ′

will choose c1 as his or her first preference, giving it a final

score of s1 + α1

X
1≤i≤m

wi. To ensure the victory of c1, none

of the final scores of candidates c2, . . . , ck can exceed this
figure. As each voter of weight wi is free to choose a permu-
tation of scores wiα2, . . . , wiαk for candidates c2, . . . , ck, this
corresponds to the problem of k-Way Permutation Partition
containing a vector containing these scores for each voter in
V ′, as well as a vector representing the current scores of the
k − 1 non-distinguished candidates.

A manipulation ensuring the victory of c1 thus exists iff a
such a (k− 1)-way permutation partition not exceeding the
final score of c1 mentioned earlier exists.

Theorem 2. Consider a q-veto election of candidates
c1, . . . , ck with initial scores s1, . . . , sk. Let the set of ma-
nipulative voters be V ′ of cardinality ||V ′|| = m with
weights w1, . . . , wm. Without loss of generality, suppose
sk ≥ s2, . . . , sk−1.

There exists a manipulation ensuring the victory of c1 iff
there exists a (k − 1)-way permutation partition of the tu-
ples {{sk − s2, . . . , sk − sk}} ∪ {{w1, . . . , w1| {z }

q

, 0, . . . , 0} , . . . ,

{wm, . . . , wm| {z }
q

, 0, . . . , 0} with minimum subset sum of at least

sk − s1.

Proof. In this case, we are counting the total weight
of the vetoes each non-distinguished candidates receives.
Without loss of generality, no vetoes are given to the dis-
tinguished candidate. With some modification, this reduc-
tion also applies to cases of scoring protocols of the form
(α, . . . ,α| {z }

k−q

,αk−q+1, . . . ,αk) for α >α k−q+1 ≥ . . . ≥ αk.

6. EXPERIMENTAL RESULTS
We test the feasibility of using algorithms of k-Way Per-

mutation Partition for solving manipulation problems of var-
ious election systems using the connections in the previous
section. To eliminate the issues of computer architecture and
focus on the algorithm computationally, in each case, as a
benchmark, we count the number of branches evaluated in
invoking the algorithms in question, as opposed to runtime,
for cases of interest. We also evaluate the standard error to
provide 95% confidence intervals on the experimental data,
to ensure statistical significance.

We choose voter weights uniformly from the range [0,
65536), and voter preference orderings uniformly as a ran-
dom permutation. This is consistent with the definition of
random voters in [18].

Our first test is for the case of manipulating weighted
2-approval and veto elections of a fixed number, k, of candi-
dates, as the (k−1)-Way Permutation Problem instances for
these cases are relatively similar to that of (k−1)-Way Par-
tition. We found that, for these simple cases, the runtime

588



is similar to that of the 3-candidate cases tested by Walsh,
that most cases can be solved in an average of about one
branch. Particularly of interest, hard instances are not di-
rectly related to the phase transition of this problem. How-
ever, these results require the use of (k−1)-Way Permutation
Partition, due to the arbitrary nature of the initial scores.
Due to the nature of the reductions involved, we presume
that this result also applies to scoring protocols of the form
(α1,α2, 0, . . . , 0) for α1 > α2.

We test the case of 4-candidate Borda elections, which
is the simplest case of a scoring protocol not of the form
mentioned above. As with all of the plots in this section, we
plot the 95% confidence interval of the mean of our testing.
As demonstrated in [18] for elections of three candidates,
the phase-transition of this problem also occurs for m = cn2

for some constant c > 0. In the following chart, we plot the
runtime of invoking the SNP algorithm for an instances of
manipulating 4-candidate Borda elections of m = n2 non-
manipulative voters and n manipulators, as this is within
the phase transition of the problem.

As we can see in this plot, the runtime of evaluating
uniformly random instances of manipulating weighted 4-
candidate Borda elections soars exponentially for instances
near the phase transition of this problem. This result is in
direct contrast to the results in Walsh for 3-candidate elec-
tions. Our next test case involves 5-candidate Borda elec-
tions, for which we have a choice between the SNP and RNP
algorithms. As seen below, we observe that the RNP algo-
rithm is significantly slower than that of SNP, contrary to
the results in Korf in the general setting. Neither algorithms
extend the results of Walsh.

Our next two tests involves scaling the number of candi-
dates in the election. We wish to investigate how the run-
time complexity of the algorithms in question scale with the
number of candidates in the election.

Below, we are plotting the runtimes of our algorithms on

the case of manipulating k-candidate Borda elections for a
fixed number of non-manipulators and manipulators, 4 and
2 respectively. The exponential results demonstrate that the
SNP and RNP algorithms do not scale well with the size of
the candidate set, even for a small voter set.

In our last test case below, we test a simplier family of
scoring protocols, that of k-candidate k

2
-approval elections,

using the SNP algorithm (the runtime of the RNP algorithm
is similar). This case is of interest as it is the most complex
approval case for our algorithms, as one may choose to par-
tition approvals or vetoes. The exponential nature of these
results also show that the runtime of these algorithms stem
from the number of candidates, as opposed to the complex-
ity within the scoring protocol itself.

7. CONCLUSIONS AND FUTURE WORK
These new algorithms show how the problems of k-Way

Partition and the known algorithms of such can be applied to
the seemingly unrelated problem of manipulating weighted
scoring systems. These new findings allow one to develop
a better understanding of the inner workings of these ma-
nipulation problems. Known algorithms of partition-type
problems, including Sequential Number Partitioning (SNP)
and Recursive Number Partitioning (RNP) have the prop-
erty of finding a good partition relatively quickly when one
exists, and this property appears to extend to that of our
new problems. Although RNP has been demonstrated to
be faster than SNP for the special case of k-Way Partition,
this simplification does not appear to extend more generally
here, particularly for more complex systems such as Borda.

In each case, the best-known algorithms for Korf, and
very natural extensions and generalizations thereof, do not
validate the conclusions of Walsh and Nisan for elections of
more than three candidates, but instead show that scoring
protocols in general are not directly vulnerable to manipu-

589



lation via the known algorithms of partition-like problems.
However, this may be due to either the strength of elections
having more than three candidates, or weakness of the best-
known algorithms for k-Way Partitioning and the extensions
given in this paper. We leave this as an open problem.

As an open problem, we note that there are also inherent
weaknesses of the known algorithms of partition. The ob-
vious weakness of RNP, for instance, is that it can only be
applied to cases of k-Way Permutation Partition for k even.
This weakness is demonstrated clearly in Korf, in which it
is shown that 3-Way Partition is almost as slow as 4-Way
Partition, and by extension, similar results hold for k-Way
Permutation Partition. In the cases where RNP would oth-
erwise be more efficient than SNP, it is not available as an
option for k odd as the CKK algorithm used at the top-level
division is designed to enumerate partitions which are very
close to even.

A second weakness of RNP relates to the top-level CKK
division, which divides the initial set of labeled elements
into two. Recall that in the CKK algorithm, the algorithm
tracks a list of 2-way partitions of subsets of the original
set. If either subset in any of the 2-way partitions in such a
list cannot be furthered partitioned k

2
ways in a way better

than the best partition found so far, it is clearly fruitless
to continue on this search branch, as the final 2-way par-
tition cannot yield a better overall k-way partition. One
way to capitalize on this insight is to perform the algorithm
recursively on the instances of k

2
-Way Permutation Parti-

tion at the search nodes of interest. Unfortunately, this will
only prune the top-level search tree only if a better parti-
tion does not exist, and may be expensive, as the number of
such nodes, absent pruning, may be exponential. A possible
open problem of interest is thus a study of the tradeoffs in
making such prunings, determining fast heuristics of when
to perform this test within the tree.

Resolving these two weaknesses of the RNP algorithm can
help explain the anomaly of why despite being faster than
SNP in k-Way Partition [13, 14], it behaved unusually slow
in general for k-Way Permutation Partition.

Another problem of interest involves using variations of
these new algorithms for polynomial-time approximation al-
gorithms, a problem studied in the context of different elec-
tion systems in [3]. Since it is also known that the CKK al-
gorithm, and possibly the extensions thereof, are especially
fast at finding a good partition when one exists, approxima-
tion and probabilistic algorithms may exist to capitalize on
the tradeoffs in performing an incomplete search. Interesting
optimization and approximation functions may include min-
imizing the number of manipulators needed, or relaxing the
restrictions of the manipulation problem. The problem Par-
tition has a polynomial-time approximation scheme (PTAS),
which may also be extended to some of the extensions used
here.

8. ACKNOWLEDGEMENTS
We wish to offer our special thanks to Dr. E. Hemaspaan-

dra and three anonymous referees for their input.
This work is supported in part by NSF grant IIS-0713061

9. REFERENCES
[1] M. Ballester and G. Haeringer. A characterization of

single-peaked preferences. UFAE and IAE Working
Papers, 2006.

[2] J. Bartholdi, C. Tovey, and M. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, pages 227–241, 1989.

[3] E. Brelsford, P. Faliszewski, E. Hemaspaandra,
H. Schnoor, and I. Schnoor. Approximability of
manipulating elections. Proceedings of the 23rd AAAI
Conference, pages 44–49, 2008.

[4] V. Conitzer, J. Lang, and T. Sandholm. When are
elections with few candidates hard to manipulate?
Journal of the ACM, Volume 54, Issue 3, Article 14,
pages 1–33, 2002.

[5] C. Dwork, R. Numar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. Proceedings of
WWW10, pages 613–622, 2001.

[6] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. The shield that never was: societies
with single-peaked preferences are more open to
manipulation and control. Proceedings of TARK,
pages 118–127, 2009.

[7] M. Garey and D. Johnson. Computers and
intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, 1979.

[8] A. Gibbard. Manipulation of voting schemes: a
general result. Econometrica, pages 587–601, 1973.

[9] E. Hemaspaandra and L. Hemaspaandra. Dichotomy
for voting systems. Journal of Computer and System
Sciences, pages 73–83, 2007.

[10] K. Karmarkar and R. Karp. The differencing method
of set partitioning. Technical Report, Computer
Science Division, University of California, Berkeley,
1982.

[11] R. Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, pages 85–103,
1972.

[12] R. Korf. From approximate to optimal solutions: A
case study of number partitioning. Proceedings of the
14th IJCAI Conference, pages 266–272, 1995.

[13] R. Korf. Multi-way number partitioning. Proceedings
of the 28th IJCAI Conference, 2009.

[14] R. Korf. Objective functions for multi-way number
partitioning. Third Annual Symposium on
Combinatorial Search, 2010.

[15] J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting
in multi-agent systems. The Computer Journal,
10.1093/comjnl/bxh164, 2006.

[16] M. Satterthwaite. Vote elicitation: Strategy-proofness
and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare
functions. Journal of Economic Theory 10 (April
1975), pages 187–217, 1975.

[17] L. Wai and L. Ho. Rank aggregation for meta-search
engines. Proceedings of the 13th international World
Wide Web conference on Alternate track papers and
posters, pages 384–385, 2004.

[18] T. Walsh. Where are the really hard manipulation
problems? the phase transition in manipulating the
veto rule. Proceedings of the 28th IJCAI Conference,
pages 324–329, 2009.

590


