
Distributed Cooperation in Wireless Sensor Networks

Mihail Mihaylov
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium

mmihaylo@vub.ac.be

Yann-Aël Le Borgne
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium

yleborgn@vub.ac.be

Karl Tuyls
Maastricht University

Minderbroedersberg 6a
Maastricht, The Netherlands

k.tuyls@maastrichtuniversity.nl

Ann Nowé
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium

ann.nowe@vub.ac.be

ABSTRACT
We present a game-theoretic self-organizing approach for
scheduling the radio activity of wireless sensor nodes. Our
approach makes each node play a win-stay lose-shift (WSLS)
strategy to choose when to schedule radio transmission, re-
ception and sleeping periods. The proposed strategy relies
only on local interactions with neighboring nodes, and is
thus fully decentralized. This behavior results in shorter
communication schedules, allowing to not only reduce en-
ergy consumption by reducing the wake-up cycles of sen-
sor nodes, but also to decrease the data retrieval latency.
We implement this WSLS approach in the OMNeT++ sen-
sor network simulator where nodes are organized in three
topologies — line, grid and random. We compare the per-
formance of our approach to two state-of-the-art scheduling
protocols, namely S-MAC and D-MAC, and show that the
WSLS strategy brings significant gains in terms of energy
savings, while at the same time reduces communication de-
lays. In addition, we show that our approach performs par-
ticularly well in large, random topologies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems, coherence
and coordination; C.2.1 [Computer Communication Net-
works]: Network Architecture and Design—distributed net-
works, wireless communication

General Terms
Algorithms, Performance

Keywords
multiagent learning, collective intelligence, teamwork, coali-
tion formation, coordination, implicit cooperation, emergent
behavior

Cite as: Distributed Cooperation in Wireless Sensor Networks, M. Mi-
haylov, Y-A. Le Borgne, K. Tuyls and A. Nowé, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 249-256.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are a recent class of

networks able to monitor our daily environment with a high
spatiotemporal accuracy [10, 2]. WSNs are composed of
small sensing devices, also known as wireless sensor nodes,
endowed with sensing, processing and wireless communi-
cation capabilities. Given the current technological trend,
WSNs are envisioned to be mass produced at low cost in
the next decade, for applications in a wide variety of do-
mains. These include, to name a few, ecology, industry,
transportation, or defense [2].

A typical WSN scenario consists of a set of sensor nodes,
scattered in an environment, which report their data pe-
riodically to a centralized entity called base station. The
resources of the untethered sensor nodes are often strongly
constrained, particularly in terms of energy and communi-
cation. The base station usually possesses much larger re-
sources, comparable to those of a standard laptop or desktop
computer [10, 2].

The limited resources of the sensor nodes make the de-
sign of a WSN application challenging. Application require-
ments, in terms of latency, data throughput, or lifetime, of-
ten conflict with the network capacity and energy resources.
The standard approach for addressing these tradeoffs is to
rely on wake-up scheduling [10], which consists in alternat-
ing the active and sleep states of sensor nodes. In the active
state, all the components of a node (CPU, sensors, radio)
are active, allowing the node to collect, process and commu-
nicate information. In the sleep state, all these components
are switched off, allowing the node to run with an almost
negligible amount of energy. However, nodes in sleep mode
cannot communicate with others, since their radio transmit-
ter is switched off. The fraction of time in which the node
is in the active mode is referred to as duty cycle [19].

Wake-up scheduling offers an efficient way to significantly
improve the lifetime of a WSN application, and is well illus-
trated by S-MAC, a standard synchronized medium access
control (MAC) protocol for WSN [20]. In S-MAC, the duty-
cycle is fixed by the user, and all sensor nodes synchronize in
such a way that their active periods take place at the same
time. This synchronized active period enables neighboring
nodes to communicate with one another. The use of rout-
ing then allows any pair of node to exchange messages. By
tuning the duty-cycle, wake-up scheduling therefore allows

249

to adapt the use of sensor resources to the application re-
quirements in terms of latency, data rate and lifetime [19].

In this paper we demonstrate how the performance of a
WSN network can be further improved, if nodes not only
synchronize, but also desynchronize with one another. Desyn-
chronization refers to the term where nodes on different
branches of the routing tree are active at different times
to avoid radio interference. In WSNs nodes can be logically
organized in groups. More precisely, the activity schedules
of nodes that need to communicate with one another are
synchronized to improve message throughput. We say that
those nodes belong to one coalition. At the same time, the
schedules of groups of nodes which do not need to communi-
cate are desynchronized in order to avoid radio interferences
and packet losses. We refer to this type of coordination for
short as (de)synchronization.

We show that coordinating the activities of the sensor
nodes can successfully be done using a win-stay lose-shift
(WSLS) strategy, drawn from game theory. We call the
approach DESYDE, which stands for DEcentralized SYn-
chronization and DEsynchronization. The coordination is
achieved by rewarding successful interactions (e.g., trans-
mission of a message) and penalizing the ones with a neg-
ative outcome (e.g., message loss or overhearing). This be-
havior drives the sensor nodes to repeat actions that result
in positive feedback more often and to decrease the prob-
ability of unsuccessful interactions. Nodes that tend to se-
lect the same successful action naturally form a coalition.
The main benefit of the proposed approach is that global
(de)synchronization emerges from simple and local inter-
actions without the need of central mediator or any form
of explicit coordination. An additional advantage is that
DESYDE works with any routing algorithm that forms a
routing tree connecting the nodes to the base station.

We implement DESYDE in the OMNeT++ simulator [9],
and study three different wireless sensor network topolo-
gies, namely line, grid, and random. We compare it to
S-MAC [20] and D-MAC [12], two state-of-the-art coordi-
nation mechanisms for WSNs, and show that nodes form
coalitions which improve data communication and reduce
packet collisions. This enables a quicker delivery of the data
packets to the base station, allowing shorter active periods
and lower energy consumption.

The rest of the paper is organized as follows: Section 2
presents the background of our research. It outlines the ap-
plication domain, explains the communication and routing
protocols and guides the reader through related work. The
DESYDE approach is described in Section 3, and experi-
mentally compared on different topologies in Section 4. We
finally discuss the results in Section 5 shortly before we con-
clude in Section 6.

2. BACKGROUND AND RELATED WORK
A Wireless Sensor Network is a collection of densely de-

ployed autonomous devices, called sensor nodes, which gather
data with the help of sensors [10, 2]. The untethered nodes
use radio communication to transmit sensor measurements
to a terminal node, called the base station or sink. The sink
is the access point of the observer, who is able to process
the distributed measurements and obtain useful information
about the monitored environment. Sensor nodes communi-
cate over a wireless medium, by using a multi-hop commu-
nication protocol that allows data packets to be forwarded

3

2 1

4

Sink

Figure 1: Sensor nodes connected to a base station
by means of a multi-hop routing tree. Grayed circles
indicate overlapping communication regions.

by neighboring nodes to the sink.
When the WSN is deployed, the routing protocol requires

that the nodes determine a routing path to the sink [3, 10].
This is achieved by letting nodes broadcast packets immedi-
ately after deployment in order to discover their neighbors.
Nodes in communication range of the sink propagate this
information to the the rest of the network. During the prop-
agation process, each node chooses a parent, i.e. a node to
which the data will be forwarded in order to reach the sink.
The choice of a parent can be done using different metrics,
the standard one being the hop distance, i.e. the minimum
number of nodes that will have to forward their packets [4,
18]. An example of multi-hop shortest path routing struc-
ture is given in Fig. 1, together with the radio communica-
tion ranges of sensor nodes.

Since wireless sensor nodes operate in most cases on finite
energy resource, low-power operation is one of the crucial de-
sign requirements in sensor networks [2, 10]. The challenge
of energy-efficient operation must be tackled on all levels of
the network stack, from hardware devices to protocols and
applications. Although sensing and data processing may in-
cur significant energy consumption, it is commonly admitted
that most of the energy consumption is caused by the radio
communication. A large amount of research has therefore
been devoted in recent years to the design of energy-efficient
communication protocols [10, 20].

Fig. 2 reports the radio characteristics of two represen-
tative and often used radio platforms: the CC2420 (used
in TelosB and IMote2) and the Xbee-802-15.4 (used in the
Waspmote). An important observation is that for these typ-
ical radios, the sleep power is at least two orders of magni-
tude lower than the transmit and receive power. Therefore,
the only way to significantly reduce power consumption is to
have the radio switched off most of the time, and to turn it
on only if messages must be received or sent. This problem
is referred to as wake-up scheduling.

Wake-up scheduling in wireless sensor networks is an ac-
tive research domain, and a good survey on wake-up strate-
gies in WSNs is presented in [19]. Three types of wake-up
solutions can be identified, namely, on-demand paging, syn-
chronous and asynchronous wake-up.

In on-demand paging, the wake-up functionality is man-

250

CC2420
50/100m
250 Kbps

60 µW sleep
63 mW receive

57 mW wmit
1 ms setup

Xbee-802.15.4
500 m

20 Kbps
<30 µW sleep

150 mW receive
135 mW xmit
2 ms setup

Radio
Outdoor range

Data rate
Sleep power

Receiving power
Transmit power

Startup time

Mote
Year

Tmote Sky
2005

Waspmote
2009

Imote 2
2007

Figure 2: Typical wireless sensor hardware devel-
oped in the recent years, together with their main
radio characteristics.

aged by a separate radio device, which consumes much less
power in the idle state than the main radio. The main radio
therefore remains in a sleeping state, until the secondary ra-
dio device signals that a message is to be received on the ra-
dio channel. This idea was first proposed with the PicoRadio
and PicoNode projects [7] for extremely low power systems,
and extended in [16, 1] with hand-held devices. On-demand
paging is the most flexible and energy-efficient solution, but
adds non-negligible costs in the hardware design.

Active ActiveSleep Sleep

Frame

Figure 3: Structure of S-MAC with duty cycle and
synchronous wake-up scheduling.

In synchronous wake-up approaches, nodes duty-cycle their
radio in a coordinated fashion. Several MAC (Medium Ac-
cess Control) protocols have been proposed, allowing nodes
to wake-up at predetermined periods in time at which com-
munication between nodes becomes possible. A standard
paper detailing this idea is that of S-MAC (Sensor-MAC)
[20]. The basic scheme is that nodes rely on a fixed duty-
cycle, specified by the user, where nodes periodically switch
between the active and sleep states. The period is called a
frame, and an example of periodic schedule is illustrated in
Fig. 3. Several extensions to S-MAC have been proposed.
In particular, authors in [12] proposed D-MAC, which aims
at improving the efficiency by both reducing the latency and
the active period of the sensor nodes. This is achieved by
dividing the frame into slots, and by staggering the wake-up
cycles along the routing tree, as illustrated in Fig. 4. The
active period consists in receiving and sending only one data
packet, and active periods are staggered so that nodes send
data when their parent’s radio is in the receive mode. If
multiple packets need to be sent by a node, a more data flag
is set to warn the parent node that additional data must
still be received. If the flag is set, the node and its par-
ent schedule the pending communication to happen after a
small backoff period (a few milliseconds), to avoid collisions.
This approach was recognized in the MAC review of Lan-
gendoen [11] to be particularly compelling for collecting data
from a WSN in a timely and energy-efficient manner. The
main concern with protocols based on synchronous wake-up
is however the overhead which can be caused by maintaining

the nodes synchronized.

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Rx Tx Rx Tx.......... sleep

Frame
Slot

..........

Additional reception/transmission slots possible

Figure 4: D-MAC scheduling protocol: Nodes are
synchronized so that data flows from leaf nodes to
the root node in the routing tree.

Finally, in asynchronous wake-up solutions, the wake-up
schedules need not be coordinated, and may possibly be dif-
ferent. The communication therefore comes at an increase
cost for either the sender or the receiver. In sender-based
asynchronous wake-up, the sender continuously sends bea-
cons until the receiver is awake. Once the receiver gets the
beacon, it sends an acknowledgment to notify the sender
that it is ready to receive a packet. This scheme is the ba-
sis for the low-power listening [8] and preamble sampling [5]
protocols. The receiver-based wake-up solution is the mir-
ror image of sender-based, and was exposed in the Etiquette
protocol [6]. Sender-based and receiver-based asynchronous
protocols can achieve very low power consumption. Asyn-
chronous wake-up solutions however require an overhead due
to the signaling of wake-up events, which makes them inef-
ficient when wake-up events are relatively frequent [19].

3. DESYDE
This section presents DESYDE, an acronym for DEcen-

tralized SYnchronization and DEsynchronization, which aims
at improving communication performances in wireless sensor
networks by coordinating the radio activity of neighboring
sensor nodes. Our approach belongs to the category of syn-
chronous wake-up strategies, and is intuitively motivated by
an important (although not apparent at first sight) weakness
of D-MAC. Recall from the previous section that D-MAC
schedules the radio activity of sensor nodes in such a way
that children and parents in the routing tree synchronize
their radio transmission/reception slots. While this strat-
egy appears at first sight to offer great benefits over S-MAC,
it only works well if nodes are arranged in a line topology
(cf. Fig. 5, middle). Indeed, whenever the routing tree
contains several branches, neighboring nodes which are the
same number of hops away from the base station may in-
terfere, causing packet losses, and possibly important delays
(once a transmission fails in D-MAC, the packet is queued
until the next frame).

A better schedule is therefore one where nodes along the
same branch of a routing tree are staggered, as in D-MAC (so
that end-to-end latency is improved), while at the same time
being desynchronized with nodes on neighboring branches
of the routing tree (so that communication interference is
minimized). Synchronized groups of nodes will be referred

251

Figure 5: Examples of routing and coalition forma-
tion

to as coalitions. Figure 5 illustrates the concept of coalitions
in three different topologies. Intuitively, nodes on the same
branch of a routing tree should form a coalition so that data
can be relayed efficiently from a leaf node to the root node.
At the same time, nodes which are the same same number of
hops away from the base station should desynchronize since
they belong to separate branches of the routing tree.

The resulting schedule of DESYDE for the 2 by 2 grid
in Fig. 5 (left) is illustrated in Fig. 6. In this example, the
frame contains 10 slots, and the four schedules reported are
those of the four nodes in the grid, arranged in the same
order as in Fig. 5 (left). At slot 2, the upper left node
transmits when the lower left node receives, while the right
nodes are synchronized for communication at slot 5. The
lower left node send its data to the base station at slot 7
and forwards that of the upper left node at slot 9. The lower
right node does the same at slots 4 and 6, respectively. Thus,
we observe the same coalitions as in our schematic model in
Figure 5 (left).

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

Transmit

Listen

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

1 2 3 4 5 6 7 8 9 10
Sleeping

Active

Slots in a frame
1 2 3 4 5 6 7 8 9 10

Sleeping

Active

Slots in a frame

Figure 6: Examples of DESYDE schedule for the
2x2 grid. Upper transmission slots are synchro-
nized with lower reception slots. Left active slots
are desynchronized with right active slots.

3.1 Learning Model
We present here the underlying approach that makes nodes

coordinate their behavior in a decentralized manner. We see
the WSN as a Multi-Agent System (MAS), where agents are
the sensor nodes. Recall that the frame stands for the fixed-
length activity period that nodes periodically repeat over
time. Each frame is divided in a number of slots that con-
stitute discrete time units, where agents can select only one
of three actions, namely transmit, listen or sleep.

At each slot, agents are therefore involved in a game with
their neighbors where all nodes have to independently choose

an action. The goal of agents is to forward all their messages
to the sink, minimizing the end-to-end latency of packets.
Upon executing any of the three actions, each agent receives
feedback from the environment. This feedback depends on
the event that the actions produced (for example successful
transmission, collision, or idle listening). These events will
be detailed in section 3.2, and may be either successful or
unsuccessful. The success of the resulting event is used by
the node to assess the quality of its action.

One can notice that the game our agents are involved
in at each time slot has certain characteristics of Graphical
Games [17], where neighboring agents have to independently
decide on an action. In our network, however, the graphical
game at each time step is dependent on the one played at
the previous slot, due to forwarding of messages. In other
words, our agents are engaged in sequential graphical games,
where each game is closely related to the preceding one. The
dependence between these sequential games is a result of the
forwarding of packets between nodes. Put differently, the
transmission of messages between neighbors influences their
choice of action at each time step. These actions, however,
have no immediate effect on agents further in the network.

Formally, we represent our learning system with the fol-
lowing notation:

• Each frame F is divided in N slots, and the set of time
slots in a frame is denoted S = {s1, . . . , sN}.
• A is the set of available actions a for each agent at

each slot.

• R : S × A → [0, 1] is the reward signal R(s, a) for
taking action a in slot s.

As specified above, the action space A at each time slot s for
each agent is identical and restricted to the following three
actions: atransmit, alisten and asleep. At every time step
each agent may detect a communication event, caused by
its own actions and those of its neighbors. Upon executing
action a, the agent receives a reward R(s, a), determined by
the outcome of the actions its neighbors chose at slot s and
its own action. This interaction between neighboring nodes
is further elaborated in the following subsections.

3.2 Rewards, Updates and Action Selection
We use Q(s, a) to indicate the expected reward (or “qual-

ity”) of taking action a at slot s. It represents the latest
reward obtained at that slot for that action. At first, this
value is initialized to 0 for Q(s, atransmit) and Q(s, asleep)
and 1 for Q(s, alisten). Upon executing action a at slot s,
the agent updates its action quality, based on the reward it
receives: Q(s, a)← R(s, a). Note that only one of the three
actions can be taken during a slot. Therefore, at every slot
s, Q(s, a) is 1 for exactly one action a and 0 for the two
others.

We classify each communication event, that a node can
detect, using a boolean value to signalize whether the event
was positive or negative for that node. Based on our sim-
ple update rule a boolean representation is sufficient in our
learning model. We modeled six different events, namely
successful transmission (if ACK received), successful recep-
tion, overhearing, idle listening, unsuccessful transmission
(if no ACK received), and collision. We consider these six
events to be the most energy expensive or latency crucial in
wireless communication. The reward for the two events is 1

252

(successful transmission or reception) and for the rest it is
0.

Recall that only one action can have a quality of 1 for
each slot. We use policy π(s) to denote the action a that
the agent selects at slot s, based on the quality Q(s, a) for
that action in that slot. More precisely,

π(s) =

 atransmit, if Q(s, atransmit) = 1
alisten, if Q(s, alisten) = 1
asleep, if Q(s, asleep) = 1

(1)

This behavior resembles a win-stay lose-shift strategy [15],
where agents repeat successful actions and avoid unsuccess-
ful ones. In particular, at slot s an agent will repeat action
a only if it had a positive outcome at slot s in the previ-
ous frame. Recall that frames capture the periodic behavior
of nodes. Thus, in every frame the agent repeats those ac-
tions that had positive outcome in the previous frame. For
example, according to policy π(s), if Q(s, atransmit) = 1
for slot s, the node will choose to transmit a packet dur-
ing that slot (provided that it has a packet in its queue).
As a result, a reward R(s, atransmit) will be generated and
stored in Q(s, atransmit). If its transmission was acknowl-
edged, Q(s, atransmit) will stay 1 and the agent will repeat
the same action next frame at slot s. Otherwise, based on
the event that occurred, it will choose a different action. In
the same way the agent will select an action in every slot
within the frame F .

3.3 Exploration
We would like to note that the outcome of each of the

actions atransmit and alisten gives us information about the
quality of the other two actions as well. Both these actions
require that the radio transmitter of the node is switched
on, which enables the agent to detect events in its environ-
ment and therefore obtain feedback. Consider the following
example. If π(s) = atransmit, upon observing the outcome
the agent will know whether it would have been more bene-
ficial to listen or sleep during slot s instead. Provided that
its message is acknowledged, transmitting is indeed the best
action. If no acknowledgment is received, its parent is prob-
ably busy (or sleeping) and therefore it would be better to
listen for packets at slot s next frame, rather than transmit.
In case it detects a collision during that slot, for next frame
sleeping would be most beneficial in order to avoid receiving
in vain. The same reasoning holds if the agent selects action
alisten.

Action asleep on the other hand turns the energy-consuming
antenna off and consequently prevents the agent from receiv-
ing any information from its environment. For this reason,
during a short exploration stage, fixed by the user, the agent
never selects the latter action to keep its radio transmitter
on. In other words, during exploration if π(s) = asleep the
agent will select alisten at that slot instead. This behavior
enables the node to constantly acquire feedback and there-
fore update its quality values. In the WSN domain, such an
exploration is very costly in terms of battery consumption.
However, we determined empirically that nodes require no
more than 3 to 4 frames of exploration for their policies
to converge. After the exploration stage expires, the agent
reverts to the policy described in Formula 1. Intuitively,
when an agent finds a “win” action for a certain slot, its
win-stay lose-shift strategy will prevent it from choosing a
different action at the same slot next frame. Thus, every

agent learns a periodical schedule based on the events that
happen as a result of its actions. We therefore say that no
explicit form of agent coordination is necessary to achieve
equilibrium. Instead, coordination “emerges” as a result of
packet forwarding and reasoning based on local interactions.

4. EXPERIMENTAL STUDY

4.1 Experimental Setup
We apply our approach on three networks of different size

and topology – a 4-hop line, a 16-node (4 by 4) grid topology
and one with 50 nodes scattered randomly with an average
of 5 neighbors per node. The first topology requires nodes
to synchronize in order to successfully forward messages to
the sink. Intuitively, if any one node is awake while the
others are asleep, that node would not be able to forward
its messages to the sink. The second topology illustrates
the importance of combining synchronization and desyn-
chronization, as neither one of the two behaviors alone is
an efficient strategy. The random topology shows the scala-
bility of our approach to larger networks where the topology
is not known a priori. In our simulations we use a shortest
path routing scheme that creates a static routing tree. A
similar experimental setup is also used in [13, 14].

Each of the three networks was ran for 200 seconds in the
OMNeT++ simulator [9] and results were averaged over 30
runs. This network runtime was sufficiently long to eliminate
any initial transient effects. To illustrate the performance of
the network at high data rates, we set the sampling period of
nodes to one message every 10 seconds. To simulate periodic
data collection, this message is generated at the beginning
of each frame for all nodes. Frames have the same length as
the sampling period and were divided in N = 2000 slots of 5
milliseconds each. The duration of the slot was chosen such
that only one DATA packet can be sent and acknowledged
within that time. All hardware-specific parameters, such as
transmission power, bit rate, etc., were set according to the
data sheet of our radio chip — CC2420 (cf. Table 2). In
addition, we chose the protocol-specific parameters, such as
packet header length and number of retransmission retries
as specified in the IEEE 802.15.4 communication protocol.
We set the duration of the exploration stage to 5 frames, or
50 seconds. It was empirically measured that this duration
was enough for the policies of all agents to converge.

To better illustrate the importance and effect of combining
synchronization and desynchronization in these topologies,
we compare our approach to two state-of-the-art MAC pro-
tocols, viz. S-MAC and D-MAC. In addition, we present the
case where all nodes remain active for the entire duration of
the simulation and never switch off their radio transmitter
(called ALL-ON for short). The latter behavior serves only
as a benchmark in terms of end-to-end latency, because the
energy consumption of this protocol renders it impractical
for real-world scenarios. Since nodes have a duty cycle of
100%, packets will not experience any sleep latency and will
be quickly forwarded to the sink. The S-MAC protocol il-
lustrates network performance under synchronized behavior,
where all nodes are active at the same time. D-MAC on the
other hand shows whether staggering the short duty cycles
across hops is an efficient strategy to improve latency and
lifetime.

253

4.2 Evaluation
Figures 7 and 8 display the average battery consumption

and latency for all three topology using the S-MAC protocol.
According to S-MAC, all nodes wake up at the beginning of
the frame for a duration specified by the user. We there-
fore vary the duty cycle and observe the performance of the
system in terms of lifetime and throughput. Intuitively, the
energy consumption under S-MAC increases linearly with
increasing duty cycle for all three topologies, as Figure 7
displays.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Duty Cycle (%)

B
a
tt
e
ry

 U
s
a
g
e
 (

m
W
!

s
)

Figure 7: Average battery usage under the S-
MAC protocol for different duty cycles (same for
all topologies)

Since collisions constitute the biggest obstacle in the pur-
suit of low latency, each node contends for the channel for
a small random duration within a fixed contention window.
To facilitate the throughput of messages at high data rates,
we deviated from the contention policy of S-MAC that uses
the entire active time as a contention window. Instead, in
our simulations we fixed the maximum contention window of
S-MAC to 5 slots for a more fair comparison. Even though
short duty cycles are appealing from an energy perspective,
nodes do not manage to forward all their packets within one
active interval for all three topologies. The latter result can
be observed in Figure 8, where error bars signify one stan-
dard deviation across 30 runs. For duty cycles below 2% (or
1% in the line topology) nodes do not manage to forward
all their packets within one active interval. The reason for
this high latency is the large number of collisions when all
nodes wake up at the same time. This phenomenon is par-
ticularly visible in the grid topology, where every node has
exactly one parent and at least one neighbor who belongs to
a different branch of the routing tree.

For duty cycles larger than 2% nodes in the line and grid
topologies manage to send all their packets within one ac-
tive interval and therefore the average end-to-end latency is
reduced to around 0.1 seconds. Nodes in the random net-
work, however, require two active periods to forward their
messages and therefore the latency settles at around 10 sec-
onds, or 1 frame duration. Still, we measured around 20%
packet loss on average for the latter topology, due to the
large number of retransmissions necessary when all nodes

are active at the same time. The large standard deviation
is due to the different random topologies across runs.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
!10

0

10

20

30

40

50

60

70

Duty Cycle (%)

L
a
te

n
c
y
 (

s
)

S!MAC (line)

S!MAC (grid)

S!MAC (rand)

Figure 8: End-to-end latency under the S-MAC pro-
tocol for different duty cycles

S-MAC illustrates the effect of full synchronization on the
network performance. We see that large networks suffer
from high sleep latency for small duty cycles. D-MAC on
the other hand makes sure that sleep latency is reduced by
“staggering” the wake-up cycles of nodes according to their
hop distance to the sink (cf. Figure 4). In other words, all
nodes that lie at the same distance from the sink are syn-
chronized to wake up at the same time and send a packet
to their parents, who wake up at the slot just after their
children. This behavior is designed to reduce the sleep la-
tency that S-MAC suffers from. The duty cycle of each node
under D-MAC is dependent on its traffic load (i.e., its po-
sition in the data gathering tree), as it is the case with our
learning algorithm. Similar to S-MAC, to reduce collisions
we let each node contend for the channel for a small random
time within a fixed contention window. The size of this win-
dow, however, affects performance. Large contention win-
dow will lower the probability of collision, but at the cost
of delayed transmissions. A small one, on the other hand,
will speed up communication, but will cause more unsuc-
cessful transmissions. We therefore present the performance
of each protocol for different contention window sizes. To
abide by the specifications of D-MAC, we define the size of
its contention window in terms of the duration of a DATA
packet. The design of DESYDE, however, requires us to set
the contention window as a factor of the slot length instead
(which is a DATA packet + an acknowledgment). We use
the latter setting in S-MAC and ALL-ON as well. Since the
difference between the two contention windows is negligible,
we use the same axis in Figures 9 and 10 to plot the perfor-
mance of both protocols. We write “contention window size”
to signify the factor of the contention window, which is fixed
for each run. Due to space limitations we graph the battery
consumption of D-MAC and DESYDE for each topology on
the same plot.

In Figure 9 we see that in all three topologies DESYDE
outperforms D-MAC in terms of energy consumption, irre-
spective of the contention window size. Due to the “win-stay

254

2 4 6 8 10
0

50

100

150

Contention Window Size

B
a

tt
e

ry
 U

s
a

g
e

 (
m

W
!

s
)

DESYDE (line)

D!MAC (line)

DESYDE (grid)

D!MAC (grid)

DESYDE (rand)

D!MAC (rand)

Figure 9: Battery usage under D-MAC and
DESYDE for different contention windows across
different topologies

lose-shift” strategy, after the exploration stage our learning
algorithm remains invariant to the contention window size.
In other words, contention is used only during exploration.
Each node, thereafter, learns to transmit in a different time
slot within the frame and thus contention for the channel is
not necessary. Nodes under D-MAC, however, always wake
up for one listen and one transmit slot, regardless of the node
position in the network. A disadvantage is that leaf nodes
still listen for one slot, when they need not, while all other
nodes need to hold an additional listen + transmit slot for
every packet they generate. The energy consumption of D-
MAC is therefore higher than the one of DESYDE for each
topology. Moreover, according to specifications the active
period of D-MAC includes the time for channel contention.
Therefore its battery consumption increases with the size of
the contention window.

Lastly, we present the difference between ALL-ON, DESYDE
and D-MAC in terms of the end-to-end latency averaged over
30 random topologies, each consisting of 50 nodes. Figure 10
compares the three protocols for different contention win-
dows. One can notice that DESYDE once again outperforms
D-MAC. DESYDE enables nodes to both synchronize with
their parents and desynchronize with their same-hop neigh-
bors. Recall the example we presented in Figure 6, which
shows the resulting schedule of nodes under DESYDE in a
sample 2 by 2 grid topology. In some routing schemes, such
as ours, all nodes that lie on the same hop belong to different
branches of the routing tree. In D-MAC, however, all those
nodes wake up at the same time and therefore cause radio in-
terferences, followed by packet retransmissions. Intuitively,
latency under D-MAC decreases for larger contention win-
dows, but nodes still require more than one active period to
deliver all their packets. DESYDE, on the other hand, has
comparable latency to ALL-ON, where nodes never switch
off their antenna and therefore packets incur no sleep de-
lay. While ALL-ON requires 100% duty cycle, DESYDE is
able to achieve the same latency with only 0.8% active time
within a frame.

2 4 6 8 10
!5

0

5

10

15

20

25

30

Contention Window Size

L
a

te
n

c
y
 (

s
)

50 nodes, random topology

All!on

DESYDE

D!MAC

Figure 10: End-to-end latency under ALL-ON,
DESYDE and D-MAC for different contention win-
dows

5. DISCUSSION AND FUTURE WORK
The experimental results presented in the previous section

illustrate that DESYDE is able to significantly improve the
performance of a data collection task in wireless sensor net-
works. The two main metrics considered were the latency
and the energy consumption. For both metrics, large gains
could be observed, over a wide range of networking param-
eters. These results were particularly remarkable for large
and random topologies. The main reason is that DESYDE
relies on a learning strategy which can adapt to complex
topologies and traffic patterns.

The win-stay lose-shift (WSLS) strategy which underlies
DESYDE is a key aspect of the proposed approach. Several
research directions can be pursued in order to further im-
prove its performance. First, an advantage of the WSLS is
that it provides a way to reduce the exploration space and
to accelerate the convergence of the learning stage. A di-
rect drawback of this “aggressive” exploration is that more
efficient solutions to the coordination of sensor nodes may
be too quickly discarded. One of the research axes we plan
to focus on consists in relying on “smoother” updating rules
for the quality values of the actions. This could be done by
using a learning factor which keeps tracks of past rewards
during the learning process.

A second important parameter is the convergence time of
the learning process. We observed in all our experiments
that this time is in practice very short, in the order of a few
data collection rounds (around 5). It is still unclear under
which conditions convergence proofs can be brought. One
can easily notice that, using the WSLS approach, the con-
vergence is guaranteed if no node modifies its policy for two
consecutive rounds. This unfortunately does not seem to be
detectable without all nodes exchanging information about
their status, which would be energy costly. Further research
is therefore required to better characterize the convergence
criteria.

Finally, we assumed, as most protocols which fall in the
synchronous category, that the traffic patterns and the net-

255

work topology are stationary for every run. As proposed,
DESYDE is not robust to topology changes, or to variations
in the data collection rate. The common solutions to these
issues is to rely on periodic checks concerning the amount
of dropped packets, or queue sizes on the sensor nodes, and
to restart the coordination of the nodes if necessary. While
not specific to the approach presented in this paper, further
research is also required in this area.

6. CONCLUSION
Synchronous wake-up strategies can greatly reduce the

duty cycle of sensor nodes in a WSN. We however high-
lighted in this paper that they suffer from potential high la-
tency and energy waste due to radio interferences and packet
collisions. These deficiencies stems from the fact that neigh-
boring sensor nodes should only synchronize their activities
when they engage in a communication, and desynchronize
otherwise. The proposed approach, DESYDE, a DEcentral-
ized SYnchronization DEsynchronization strategy, aims at
tackling this problem. The core of the approach is based
on a win-stay lose-switch strategy, which we implement in a
fully decentralized way.

Our OMNeT++ implementation showed that state-of-the-
art synchronized protocols only perform well in simple net-
works, such as line topologies. As the network complexity
grows, these protocols resulted in high latency and energy
costs, due to the increased number of packet collisions and
packet retransmissions. DESYDE was able in all our exper-
iments to compete with standard approaches, and exhibited
significant gains in latency and energy especially for larger
networks.

Acknowledgments
The authors of this paper would like to thank the anony-
mous reviewers for their useful comments and valuable sug-
gestions. This research is funded by the agency for Innova-
tion by Science and Technology (IWT), project DiCoMAS
(IWT60837); and by the Research Foundation – Flanders
(FWO), project G.0219.09N.

7. REFERENCES
[1] Y. Agarwal, R. Gupta, and C. Schurgers. Dynamic

power management using on demand paging for
networked embedded systems. In Proceedings of the
Asia and South Pacific Design Automation
Conference, volume 2, pages 755–759, 2005.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks.
Communications Magazine, IEEE, 40(8):102–114,
2002.

[3] J. Al-Karaki and A. Kamal. Routing techniques in
wireless sensor networks: a survey. Wireless
Communications, IEEE, 11(6):6–28, 2004.

[4] D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless
routing. Wireless Networks, 11(4):419–434, 2005.

[5] A. El-Hoiydi. Aloha with preamble sampling for
sporadic traffic in ad hoc wireless sensor networks. In
IEEE International Conference on Communications,
volume 5, pages 3418–3423, 2002.

[6] S. Goel. Etiquette protocol for ultra low power
operation in energy constrained sensor networks. PhD
thesis, New Brunswick, NJ, USA, 2005.

[7] C. Guo, L. Zhong, and J. Rabaey. Low power
distributed MAC for ad hoc sensor radio networks.
GLOBECOM, 5:2944–2948, 2001.

[8] J. Hill and D. Culler. Mica: A wireless platform for
deeply embedded networks. IEEE micro, 22(6):12–24,
2002.

[9] http://www.omnetpp.org/ – a C++ simulation library
and framework.

[10] M. Ilyas and I. Mahgoub. Handbook of sensor
networks: compact wireless and wired sensing systems.
CRC, 2005.

[11] K. Langendoen. Medium access control in wireless
sensor networks. Medium access control in wireless
networks, 2:535–560, 2008.

[12] G. Lu, B. Krishnamachari, and C. Raghavendra. An
adaptive energy-efficient and low-latency MAC for
data gathering in wireless sensor networks. In Parallel
and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 224, 2004.

[13] M. Mihaylov, Y.-A. Le Borgne, K. Tuyls, and
A. Nowé. Decentralised Reinforcement Learning for
Energy-Efficient Scheduling in Wireless Sensor
Networks. International Journal of Communication
Networks and Distributed Systems, 6, 2011. To appear.

[14] M. Mihaylov, Y.-A. Le Borgne, K. Tuyls, and
A. Nowé. Self-Organizing Synchronicity and
Desynchronicity using Reinforcement Learning. In
Proceedings of the 3rd International Conference on
Agents and Artificial Intelligence, pages 94–103,
Rome, Italy, 2011.

[15] M. Posch. Win-Stay, Lose-Shift Strategies for
Repeated Games–Memory Length, Aspiration Levels
and Noise. Journal of theoretical biology,
198(2):183–195, 1999.

[16] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless:
An event driven energy saving strategy for battery
operated devices. In Proceedings of the 8th annual
international conference on Mobile computing and
networking, pages 160–171, 2002.

[17] D. Vickrey and D. Koller. Multi-agent algorithms for
solving graphical games. In Proceedings of the
National Conference on Artificial Intelligence, pages
345–351. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2002.

[18] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. In Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 14–27. ACM, 2003.

[19] W. W. Y. Li, M.T. Thai, editor. Wireless Sensor
Networks and Applications, chapter Wakeup Strategies
in Wireless Sensor Networks, page 195. Springer, 2008.

[20] W. Ye, J. Heidemann, and D. Estrin. Medium access
control with coordinated adaptive sleeping for wireless
sensor networks. IEEE/ACM Trans. Netw.,
12(3):493–506, 2004.

256

