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ABSTRACT
This demonstration shows a team of small humanoid robots
traverse an environment through a set of obstacles. The
robots’ brain are implemented using mobile phones for vi-
sion, balance, and processing. The robots use particle fil-
ters to localize themselves and to map the environment. A
frontier-based exploration algorithm is used to direct the
robots to overcome obstacles and to explore all regions of
the environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
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Algorithms
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This demo shows a team of robots perform a team ver-
sion of the HuroCup obstacle run event [1]. This event does
not only require dexterity and balancing of the humanoid
robot, but also the ability simultaneously localize itself and
to map a previously unknown environment, the so-called
SLAM problem. A SLAM solution gradually builds a map
by mapping visible spatial area relative to the current esti-
mated pose of an agent. Our approach to this problem has
the following unique features:

Limited Computational Ability: the processors our
robots work with are mobile embedded systems of limited
processing power. Much of this limited power must be de-
voted to interpreting visual frames, as well as to the robot
application at hand. This both leaves little remaining com-
putational ability to a SLAM algorithm, and compounds the
previous problem in that there is a low frame rate for vision
and greater noise in visual interpretation.
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Vision: The only sensor that our robots use for detecting
features in the environment are a single camera. This results
in far noisier input data than other sensors such as ladar
scanners and also adds a significant computational burden
on the robots. The use of vision alone also means that the
sensing range of the robots is severly limited, since they can
only recognize obstacles in direct line of sight.

Humanoid Robots: This demonstration uses humanoid
robots. Humanoid robots pose interesting problems for
SLAM, since their motion model has a much wider spread
than wheeled robots. For example, the robots often stub
their toes leading to very large turns instead of forward
movement.Furthermore, the robots have many degrees of
freedom, which means that estimating the pose of the robot,
which is necessary to measure the angle and distances in the
environment, is more complex.

Obstacle Run: the goal of the demonstration is for both
robots to cover a field, with three types of obstacles: wall
obstacles, step obstacles, and gate obstacles. Wall obstacles
are coloured in blue and represent flat walls in the environ-
ment. Step obstacles are coloured in yellow and represent
small steps that a robot can step over. Red obstacles are
gates that a robot can crawl underneath and stand up on
the other side.

The constraints of the SLAM problem, along with the de-
sire for efficient exploration and limited computational abil-
ities, point to the use of multiple agents in this problem.
Using more than one agent should be able to increase the
accuracy of a map through multiple perceptions and the
ability to reduce one another’s localization error.

The presence of multiple agents should also work to counter
limitations on individual robots. Assuming communication
is available, the amount of information that can be obtained
about the environment by multiple agents in communica-
tion with one another should have a greater impact on the
SLAM problem than that of n agents operating individu-
ally, since each new landmark serves to make future work in
SLAM more accurate. Another significant limitation is the
battery power available on any one robot: working with a
single agent would mean that any significant domain would
be impossible to completely map. Other forms of individual
limitation can be similarly overcome: Battery life may in-
hibit an agent from mapping a large environment, and some
areas may be inaccessible due to a particular agent’s loco-
motion abilities. Multiple agents, possibly heterogeneous,
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can increase the coverage percentage by using each agent’s
resources more effectively.

This paper presents a novel approach to Multi-Agent
SLAM. While others (most notably [2, 4]) have developed
approaches to multi-agent SLAM, we are moving beyond the
limitations of these works.

1. HOMOGENEOUS HUMANOID ROBOTS
The homogeneous robots used to conduct this research

are humanoid robots based on Robotis’s Bioloid kit. An on-
board Atmel AVR ATmega128 micro-controller and Nokia
5500 cellular telephone are interfaced by a custom made in-
frared data association (IrDA) board containing a Microchip
MCP2150 standard protocol stack controller. The on-board
micro-controller is used for communication with the servos,
such as position interpolation and load checking. This is all
made possible by our custom firmware running on our multi-
threaded real time operating system (RTOS) FreezerOS also
developed by us.

The Nokia 5500 provides a camera, communication medi-
ums (Bluetooth and IrDA), an ARM 9 235MHz processor,
and a three axis accelerometer (LIS302DL). The Nokia’s
processor is used for state generation, image processing, sen-
sor data smoothing, and application programs (including the
SLAM approach described here).

2. METHODOLOGY
Our SLAM approach, consists of the use of a particle filter

on individual robots to allow an estimation of their current
pose, a methodology for mapping, a methodology for ex-
changing and merging mapped information, and a method
for selecting frontiers to reduce redundant exploration. Each
of these are explained in the following subsections.

2.1 Particle Filter
The particle filter we employ is a variation on that used

by Rekleitis [3], differing in the motion model and particle
weight update method. After an action, the pose estimate of
each particle is updated based on the motion model. If there
was no sensor feedback, the pose estimate of each particle
would suffer from this accumulation of odometry error. Our
image processing returns the polar coordinates and rough
distance of objects in the camera’s field of view, but camera
data during the humanoid robot’s locomotion is extremely
noisy due to motion blur. Our weight update method uses
a certainty factor in the camera data and a constant decay.
The particle population size is 100, which is very small, but
manageable with our limited processing power. Population
depletion is handled with a simple select with replacement
re-sampling algorithm as used by Rekleitis [3].

2.2 Map Representation
Every agent’s local map is stored as an occupancy grid

with 25x25cm grid cells. A recency value [0, 255] is associ-
ated with each grid cell instead of the more common poste-
rior probability. If the recency value of a grid cell is greater
than zero, a landmark exists in the corresponding grid cell.

The recency value in occupancy grid cells is updated by
an increment or decrement depending on the current sensor
reading. If the sensor senses an object, and the coordinates
of the object relative to the best particle in the particle
filter map to a grid cell with a recency value greater than

zero, then the recency value is incremented; otherwise, the
grid cell recency value is initialized to 128. If the sensor
does not sense an object, landmarks are extended to circles
with radius r, if a line segment with length l (maximum
sensor range) extended from the best particle intersects a
landmark circle, the recency of the corresponding grid cell
is decremented.

2.3 Communication and Map Merging
A decentralized, asynchronous communication approach is

used between agents via Bluetooth over the logical link con-
trol and adaptation protocol (L2CAP) layer. No agent ever
waits or relies on information from other agents. An agent
uses only what information is available, therefore agents can
join or leave the SLAM team at any time without conse-
quence. This also means unreliable communication links
between agents are not a problem, beyond the lack of infor-
mation that results when communication goes down: each
agent can still operate independently. Each agent communi-
cates its estimated pose, all landmarks in its local map, and
its current target pose to other agents in messages encoded
such that the size of each message is as small as possible.

Because entire maps are not exchanged, there is no merg-
ing of occupancy grids. Instead, communicated landmarks
are integrated into the agent’s own map individually through
recency update. There are two important elements in this,
understanding the local coordinates of others, and actually
integrating this information.

To integrate communicated landmarks, we use the recency
update method described previously, and assume agents can
trust one another (in the sense that there is no duplicity in
communication, and that each agent is running an approach
such as this one to limit localization error). If the landmark
already exists in the agent’s map, the greater recency value
is selected and the corresponding grid cell is updated. If the
landmark does not exist in the agent’s map, the correspond-
ing grid cell is simply updated with the received recency.

3. REFERENCES
[1] J. Baltes. HuroCup Laws of the Game. University of

Manitoba, Winnipeg, Canada, May 2010.
http://www.fira.net/hurocup.

[2] W. Burgard, D. Fox, M. Moors, R. Simmons, and
S. Thrun. Collaborative multi-robot exploration. In
Proceedings IEEE ICRA-00, pages 476–481, San
Francisco, CA, USA, 2000.

[3] I. Rekleitis. Cooperative Localization and Multi-Robot
Exploration. PhD thesis, McGill University, January
2003.

[4] I. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot
exploration of an unknown environment, efficiently
reducing the odometry error. In Proceedings of
IJCAI-97, pages 1340–1346, Nagoya, Japan, 1997.

1320


