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ABSTRACT
In [1], we introduced a novel distributed inference algorithm
for the multiagent Gaussian inference problem, based on the
framework of graphical models and message passing algo-
rithms. We compare it to current state of the art techniques
and we demonstrate that it is the most efficient one in terms
of communication resources used. Moreover, we show exper-
imentally that it outperforms the other methods in terms of
estimation error on a general class of problems, even in pres-
ence of data loss.
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1. INTRODUCTION
Distributed inference tasks are becoming more and more

important as myriads of tiny inexpensive sensing devices
are being deployed. In many such problems, a network
G = (V, E) of sensing devices that are capable of local com-
munication is used to collect information about the state of
the world, that is then used as evidence to solve inference
problems according to a known global probabilistic model.

In many real world problems, it is fundamental for such
probabilistic models to capture the spatio-temporal dynam-
ics of the system, for example in the case of tracking a mov-
ing target or monitoring the temperature of an environment
over time. In this work we consider the case of linear Marko-
vian dynamics, where the global state x ∈ Rn changes over
time according to the following difference equation:

xk+1 = Akxk + wk , (1)
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where wk is a white Gaussian noise. This type of model is
often used as a first order approximation (by linearization)
of more general nonlinear dynamics. We also assume that
each sensing agent i ∈ V obtains at each time step k an
observation yk(i), that is a linear combination of the state
variables xk corrupted by additive Gaussian noise.

The inference problem we consider is that of computing at
each node i ∈ V and for each time step k the minimum mean
square error estimate of the global state xk given all the
evidence up to time k available at node i, assuming latencies
in the communication links. In our jointly Gaussian setting,
it corresponds to a complete characterization of the posterior
probability distribution of the state given the evidence.

Given the severe communication and energy restrictions
of many real world networks, centralized solutions where a
single node receives and elaborates all the information are
not sufficiently scalable so that there is a need for distributed
solutions. In [1], we introduced a novel distributed inference
algorithm (BP-approx) based on the framework of graphi-
cal models and message passing algorithms, where inference
is performed locally at each node on the basis of informa-
tion that is retrieved both locally and by communication
with neighboring nodes. By using Belief Propagation (BP)
inspired updates, nodes locally elaborate and fuse the in-
formation they receive before transmitting it again, thus re-
ducing the total number of messages needed and distributing
the computational burden over the network.

In BP-approx, each message represents a Gaussian prob-
ability distribution, that can be completely described using
a mean and covariance pair. The size of each exchanged
message is therefore proportional to n2 + n, where n is the
dimensionality of the hidden state space. A key feature of
the protocol is that to enforce an ordered flow of informa-
tion it imposes an hierarchy among the nodes by using a
spanning tree of the network. As a consequence of the hi-
erarchical structure, only 2(N − 1) messages are exchanged
every time step in a network with |V | = N nodes.

In contrast, a standard centralized Kalman filter (CKF)
requires to exchange messages of size n2+n from every node
in the network to every other node, so that a total of N2

messages are exchanged every time step. The most popular
alternative distributed approach (DKF) introduced in [2]) is
based on consensus filters and exchanges messages of size
n+n2 +n. In that case, every node sends a message to each
of its neighbors, so that 2|E| (that is O(N2)) messages are
exchanged every time step.
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As we can see from our analysis, thanks to the spanning
tree infrastructure used BP-approx is the most efficient so-
lution in terms of communication resources used.

In our simulation experiments, we compare the perfor-
mance of these algorithms in terms of the average empirical
variance of the estimation error, defined as ||x̂(k)− x(k)||2,
where x̂(k) and x(k) are respectively the estimated and true
state of the world at time k. A network is generated by ran-
domly scattering 50 sensing devices in a target area and
assuming that they can communicate if their distance is
smaller than a threshold r. Moreover, we assume that there
is fixed constant probability of loosing a data packet over
each communication link, independently of the distance r.
We also assume that each communication link has a latency
of 1 time step associated with it. To fix a baseline in our ex-
periments, we assume that CKF is not affected by any data
loss and does not experience any communication latency.
We also introduce a baseline for the latency constrained case
called KF-delayed, a version of CKF that is affected by la-
tencies but not by data-losses.

As a benchmark application, we consider a second-order
ODE system of the form ẍ = n where velocity ẋ is modeled
as a Brownian motion. The system is discretized with time
step ǫ to
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where w is white Gaussian noise. As shown in [3], this model
can be used for monitoring the temperature at several loca-
tions in en environment using a network of sensors. However,
the same equations can be used to model the dynamics of a
moving object and electrical networks.

The first experiment shown in Figure 1(a) is performed
without any data-loss. The improvement of BP-approx over
DKF on the average error is of about 19%. Empirically we
have also seen that the performance gap tends to increase
with higher noise levels, measured by a larger variance of
w. Moreover we can see that the approximation given by
BP-approx is almost as good as the theoretical optimum in
presence of latencies given by KF-delayed. An intuitive ex-
planation of the performance gap is that DKF uses a “loopy”
inference method and therefore it might overcount informa-
tion significantly, despite its attempt to reduce the effect of
these errors using a consensus or a high-pass filter.

We study the effect of a 5% data-loss in the communica-
tion packages in Figure 1(b). While the performance of both
methods decreases, the improvement of BP-approx over DKF
is still over 15%. In practice, the gap would be even larger
because BP-approx is allowed to organize the nodes of the
network into a spanning tree using the best quality com-
munication links. With the BP-approx method, information
about the past history of the process is always maintained
locally by the nodes but never exchanged using the mes-
sages. This fact ensures a high-level of tolerance against
communication losses. Moreover it greatly reduces the risk
of double counting information when nodes drop out and
then join the network again, a common scenario in wireless
sensor networks caused by frequent temporary communica-
tion failures.

In conclusion, the hierarchy among the nodes imposed by
the spanning tree plays a key role in this approach, both be-
cause it enforces an ordered flow of information and because
it greatly reduces the communication requirements.
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(a) Performance comparison without data loss.
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(b) Performance comparison with 5% data loss.

Figure 1: Simulative comparison between the algo-
rithms.
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