Reflection about Capabilities for Role Enactment
(Extended Abstract)

M. Birna van Riemsdijk! Virginia Dignum* Catholijn M. Jonker* Huib Aldewereld?
Delft University of Technology, Delft, The Netherlands®
Utrecht University, Utrecht, The Netherlands?
{m.b.vanriemsdijk,m.v.dignum,c.m.jonker}@tudelft.nl*

huib@cs.uu.nl?

ABSTRACT

An organizational modeling language can be used to specify an
agent organization in terms of its roles, organizational structure,
norms, etc. Using such an organizational specification to organize
a multi-agent system should make the agents more effective in at-
taining their purpose, or prevent certain undesired behavior from
occurring. Agents who want to enter and play roles in an organiza-
tion are expected to understand and reason about the organizational
specification. An important aspect that such organization-aware
agents should be able to reason about is role enactment. In partic-
ular, agents should be able to reflect on whether they have the ca-
pabilities to play a role in an organization. In future work it needs
to be made precise when an agent can be said to have a certain ca-
pability, and how an agent can reflect on its capabilities. This is
necessary for programming role enactment in organization-aware
agents.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; F.3.2 [Logics and
Meaning of Programs]: Semantics of Programming Languages

General Terms
Theory, Languages

Keywords

Organizational Modelling Languages, Organization-Aware Agents

1. INTRODUCTION

An organizational modeling language can be used to specify an
agent organization in terms of its roles, organizational structure,
norms, etc. (see, e.g., [2, 4]). Such an organizational specification
abstracts from the individual agents that will eventually play the
roles in the organization. Using an organizational specification is a
sine qua non for creating open multi-agent organizations that allow
agents to join or leave the organization.

Agents who want to enter and play roles in an organization are
expected to understand and reason about the organizational speci-
fication, if they are to operate effectively and flexibly in the orga-
nization. Agents that are capable of such organizational reasoning
Cite as: Reflection about Capabilities for Role Enactment (Extended Ab-
stract), van Riemsdijk, Dignum, Jonker, Aldewereld, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2-6, 2011, Taipei,
Taiwan, pp. 1231-1232.

Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1231

and decision making are called organization-aware agents [6]. Our
broader aim is the development of languages and techniques for
programming organization-aware agents.

An important aspect that organization-aware agents should be
able to reason about is role enactment. In particular, an agent has
to reason about whether it wants to play a role and whether it has
the capabilities to behave as the role requires. Here we focus on
the latter. We are in particular interested in how agents can be pro-
grammed to perform such reasoning and take this into account in
their decision making about role enactment.

In order to investigate how to program this kind of reasoning, we
propose to develop a general pattern for modelling capabilities in
the OperA organizational modelling language, in which we distin-
guish several capability types. We propose that agents should be
able to reflect on their capabilities using their beliefs. These in-
vestigations will contribute to the development of languages and
techniques for programming organization-aware agents.

2. BLOCKS WORLD FOR TEAMS

The Blocks World For Teams (BW4T) simulated environment
[5] has been developed as a testbed for human-agent/robot team-
work. The environment consists of nine rooms that are connected
through halls. Colored blocks are placed inside the rooms. Simu-
lated robots should work together to pick up blocks from the rooms,
bring them to the so-called drop zone and put them down there, in
the specified color sequence. Blocks only become visible once a
robot enters the room where these blocks are. Robots cannot see
each other. Once a robot enters a room (including the drop zone),
no other robots can enter. Blocks disappear from the environment
when dropped in the hall or in the drop zone. Robots can be con-
trolled by agents or humans, thereby providing the possibility to
investigate human-agent robot teamwork. Here we consider agent-
only teams since human-agent interaction is not the focus of this
paper.

An interface that allows GOAL agents to control the simulated
robots has been developed using the Environment Interface Stan-
dard (EIS) [1]. Broadly speaking, this standard specifies that agents
can control entities in the environment through actions, and agents
can observe the environment through percepts that are sent from
the environment to the agents. The actions made available to agents
are, e.g., goTo (<Place>) to move to the specified place (a room,
the drop zone or a hall) and pickUp to pick up a block (the robot
has to be close to the block). Percepts made available to agents
are, for example, at (<Me>, <Place>) which specifies in which
place the robot currently is, and color (<Block>, <Color>)
which is sent once an agent enters the room where <Block> is
located.



3. ORGANIZATIONAL SPECIFICATION

The OperA framework [2] proposes an expressive way for defin-
ing open organizations distinguishing explicitly between the orga-
nizational aims and the agents who act in it. That is, OperA enables
the specification of organizational structures, requirements and ob-
jectives independently from any knowledge on the properties or ar-
chitecture of agents, which allows participating agents to have the
freedom to act according to their own capabilities and demands.

The OperA framework consists of three interrelated models. Here
in particular the Organizational Model (OM) is relevant. This is the
result of the observation and analysis of the domain and describes
the desired behaviour of the organization, as determined by the or-
ganizational stakeholders in terms of roles, objectives, norms, inter-
actions and ontologies. The design and validation of OperA OMs
can be done with the OperettA tool [3]. The OM provides the over-
all organization design that fulfills the stakeholders requirements.

Figure 1 shows the social structure of the BW4T organization,
and the corresponding role descriptions for the Searcher and
Deliverer roles. The arcs in the social structure diagram define
the dependency relations between the roles. These dependencies
indicate how the distribution of objectives in the organisation is
realized. The arcs are labelled with the objectives for which the
parent role depends on the child role. OperA identifies three types
of role dependencies: bidding [Market], request [Network], and
delegation [Hierarchy].

In the BWA4T example, the organizational objective of collecting
the colored blocks in a particular color order is split over the two
roles in the organization; the Searchers are responsible for check-
ing all rooms for the blocks and providing the information about
block locations and colors to other agents (allRoomsChecked), and
the Deliverers are responsible for picking up the blocks of the cor-
rect color and dropping them at the drop zone (allBlocksDelivered).
The deliverers thus depend on the searchers for finding the correct
blocks, and the searchers depend on the deliverers for collecting the
blocks and bringing them to the drop zone.

The Gatekeeper role is not specific to the BW4T domain, but
must be present in every OperA organizational model. The gate-
keeper is responsible for admitting agents to the organization by
means of asking agents about their capabilities and assigning roles
to agents on the basis of this. This is why the Gatekeeper role
has been marked as internal (“In”) in the social structure, which
means that the agent(s) enacting this role are to be programmed by
the designer of the organization herself, while the other roles are
marked as external (“Ex”). The latter kind of role can be played by
agents that are designed independently from the society. Individ-
ual agents consider joining an organization when they believe that
the enactment of role(s) will contribute to the achievement of some
of their own goals. When an agent applies, and is accepted for a
role, it commits itself to the realization of the role’s objectives and
it should function within the society according to the constraints
applicable to its role(s). This means that agents need to be able to
interpret the specification of the role and take this into account in
their decision making. These processes are specified in the interac-
tion structure. The social contracts generated in the Social Model
are the result of the these processes.

The normative structure enables the definition of norms that spec-
ify desired behavior that agents should exhibit when playing the
role. Examples of norms in the BW4T domain are the obligation
for deliverers to inform others of the blocks that they placed in
the drop zone, and the prohibition that more than one searcher is
present in the same room at any given moment. In particular, we
propose that norms can be used to express which capabilities an
agent should have for playing a certain role.

1232

@ M admitted

N allBlocksDelivered

Gatekeeper
“In*

N allRoomsChecked

M admitted

Property
Concept Name
Dependant On
Dependee In

Value

4 Concept Searcher

N Network Dependency allBlocksDelivered, |
N Network Dependency allBlocksDelivered, |

Name = Searcher
Norms <> Norm capN1: able to go to a place, Norm
Objectives <> Objective allRoomsChecked
Role Type != Ext
Property Value

Concept Name
Dependant On

<4 Concept Deliverer
N Network Dependency allBlocksDelivered,

Dependee In N Network Dependency allBlocksDelivered,
Name ! = Deliverer

Norms <> Norm capN6: able to go to a place, Norm
Objectives <> Objective allBlocksDelivered

Role Type '= Ext

Figure 1: Role dependencies (top), properties of Searcher (mid-
dle) and Deliverer (bottom).

In order to reason about role enactment, agents should be able
to reflect on the capabilities that they have. In future work it needs
to be made precise when an agent can be said to have a certain
capability, and how an agent can reflect on its capabilities. This is
necessary for programming role enactment in organization-aware
agents.

4. REFERENCES

[1] T. Behrens, K. Hindriks, J. Dix, M. Dastani, R. Bordini,

J. Hiibner, L. Braubach, and A. Pokahr. An interface for
agent-environment interaction. In Pre-Proceedings of
ProMAS’10, 2010. To appear in LNAL

V. Dignum. A Model for Organizational Interaction: based on
Agents, founded in Logic. SIKS Dissertation Series 2004-1.
Utrecht University, 2004. PhD Thesis.

V. Dignum and H. Aldewereld. OperettA:
Organization-oriented development environment. In
Proceedings of the 3rd International workshop on Languages,
Methodologies and Development Tools for Multi-agent
Systems (LADS2010@ Mallow), 2010.

J. F. Hiibner, J. S. Sichman, and O. Boissier. Developing
organised multiagent systems using the MOISE+ model:
programming issues at the system and agent levels.
International Journal of AOSE, 1(3/4):370-395, 2007.

M. Johnson, C. M. Jonker, M. B. van Riemsdijk, P. J.
Feltovich, and J. M. Bradshaw. Joint activity testbed: Blocks
world for teams (BW4T). In Proceedings of ESAW’09, volume
5881 of LNAI, pages 254-256. Springer, 2009.

M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker.
Programming organization-aware agents: A research agenda.
In Proceedings of ESAW’09, volume 5881 of LNAI, pages
98-112. Springer, 2009.

(2]

(3]

(4]

[5

—

(6]



