
Stochastic Dominance in Stochastic DCOPs
for Risk-Sensitive Applications

Duc Thien Nguyen
School of Information Systems

Singapore Management University
Singapore 178902

dtnguyen@smu.edu.sg

William Yeoh
School of Information Systems

Singapore Management University
Singapore 178902

williamyeoh@smu.edu.sg

Hoong Chuin Lau
School of Information Systems

Singapore Management University
Singapore 178902

hclau@smu.edu.sg

ABSTRACT
Distributed constraint optimization problems (DCOPs) are
well-suited for modeling multi-agent coordination problems
where the primary interactions are between local subsets of
agents. However, one limitation of DCOPs is the assumption
that the constraint rewards are without uncertainty. Re-
searchers have thus extended DCOPs to Stochastic DCOPs
(SDCOPs), where rewards are sampled from known prob-
ability distribution reward functions, and introduced algo-
rithms to find solutions with the largest expected reward.
Unfortunately, such a solution might be very risky, that is,
very likely to result in a poor reward. Thus, in this pa-
per, we make three contributions: (1) we propose a stricter
objective for SDCOPs, namely to find a solution with the
most stochastically dominating probability distribution re-
ward function; (2) we introduce an algorithm to find such
solutions; and (3) we show that stochastically dominating
solutions can indeed be less risky than expected reward max-
imizing solutions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Experimentation

Keywords
DCOP, DPOP, Uncertainty, Stochastic Dominance

1. INTRODUCTION
Distributed constraint optimization problems (DCOPs)

are problems where agents need to coordinate their value
assignments to maximize the sum of the resulting constraint
rewards. They are well-suited for modeling multi-agent co-
ordination problems where the primary interactions are be-
tween local subsets of agents, such as the scheduling of meet-
ings [15], the coordination of sensors in networks [5, 14], the
coordination of first responders in disasters [11], the man-
agement of power plant networks [10] and the generation of
coalition structures [24].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the limitations of DCOPs is that they only model
problems with (constraint) rewards that are both known a
priori and without uncertainty. Thus, researchers have intro-
duced various DCOP extensions to address this limitation.
One example is the Distributed Coordination of Exploita-
tion and Exploration (DCEE) model [8, 23], where agents
initially do not know the constraint rewards and can only
discover them through exploration. The agents in a DCEE
problem coordinate to balance exploration and exploitation
such that they accumulate the maximum amount of reward
over a finite time horizon. Another example is the DCOP
under Stochastic Uncertainty model [12], where there are
random variables that take on values according to known
probability distribution functions. The values of these ran-
dom variables affect the overall reward. Finally, researchers
have introduced a Stochastic DCOP (SDCOP) model where
the constraint rewards are no longer deterministic values
but are sampled from known probability distribution func-
tions called reward functions [1]. Agents in these latter two
problems coordinate to maximize the expected reward of the
overall solution.

Finding a solution that maximizes the expected reward in
an SDCOP can be done in a straightforward manner if the
means of the probability distribution functions are known.
Since the sum of the expected reward of two functions equals
the expected reward of the convolution of the two functions
according to the linearity of expectations, one can map an
SDCOP to a DCOP by mapping the reward function in an
SDCOP to the mean of that function in a DCOP. One can
then use existing DCOP algorithms to solve the problem.

Our concern with the approach above is that a solution
with the maximum expected reward might be very risky,
that is, very likely to result in a poor reward, particularly in
high variance environments. As an example, one might pre-
fer to have a solution whose overall reward function follows a
unimodal distribution rather than a bimodal distribution es-
pecially if the expected reward of the unimodal distribution
is only slightly smaller than that of the bimodal distribution.
Thus, in this paper, we propose a stricter objective for SD-
COPs, namely to find a solution with the most stochastically
dominating probability distribution function of the reward
of the solution [6]. Intuitively, a stochastically dominating
function is less risky than the dominated function.

We also introduce Stochastic Dominance DPOP (SD-
DPOP), an extension of DPOP [18], to solve SDCOPs. Our
results show that stochastic dominating solutions found by
SD-DPOP are less risky compared to expected reward maxi-
mizing solutions found by DPOP for common risk functions.

Figure 1: Illustration of Mobile Agents

2. MOTIVATING DOMAIN
First responders in an earthquake hit area or soldiers in

the battlefield might need to deploy mobile agents to cre-
ate a mesh of communication network to coordinate their
actions [16]. Therefore, we motivate our work in this paper
with the problem of maximizing the signal strengths be-
tween neighboring mobile agents in a network [8]. Figure 1
shows an illustration of three mobile agents, whose positions
are represented by triangles. Straight dotted lines connect
neighboring agents. Each mobile agent can choose to be in
one of three possible nearby locations, which are denoted by
circular dotted lines. We assume that the mobile agents can
only move within a small range from their starting locations
and the topology of the network thus remains unchanged.
The signal strength between two neighboring agents depends
on their locations. For example, the further their distance,
the weaker the signal strength. The small movements of the
mobile agents can affect the signal strength significantly due
to radio interference. However, the signal strength between
a pair of neighboring agents can be modeled as an inde-
pendent random number drawn from some distribution [9].
In this paper, we will use Gaussian functions to model the
signal strengths. The objective in this problem is for the
agents to coordinate their choice of locations such that the
sum of the signal strength between every pair of neighbor-
ing agents is maximized. We use these two domains as our
motivating domains because they are examples that call for
one to be risk-averse. In both domains, losing the ability to
communicate can result in the loss of lives.

3. BACKGROUND
In this section, we provide a brief description of the DCOP

and Stochastic DCOP model as well as the DPOP algorithm.

3.1 DCOPs
A distributed constraint optimization problem

(DCOP) [17, 18] is defined as a tuple 〈A,X,D, F 〉.
A = {ai}n0 is the finite set of agents. X = {xi}n0 is the set of
variables, where xi is owned by agent ai. D = {di}n0 is the
set of finite domains, where domain di is the set of possible
values for agent ai ∈ A. F = {fi}m0 is the set of binary
constraints, where each constraint fi : di1 × di2 → R+ ∪ {0}
specifies its non-negative reward as a function of the values
of the two different variables xi1 , xi2 ∈ X that share the
constraint. Although the general DCOP definition allows
one agent to own multiple variables as well as the existence
of n-ary constraints, we restrict our definition here for sim-

a1

a3

a2

a1

a3

a2

for i < j

xi xj Rewards Reward Functions
0 0 5 N (5, 1)
0 1 8 N (8, 1)
1 0 20 N (20, 1)
1 1 3 N (3, 1)

(a) (b) (c)

Figure 2: Example DCOP

plification purposes. One can transform a general DCOP to
our DCOP using pre-processing techniques [2]. A solution
is a value assignment for a subset of variables. Its reward is
the sum of the constraint rewards of all constraints shared
by variables with assigned values. A solution is complete
iff it is a value assignment for all variables. Solving a
DCOP optimally means finding a reward-maximal complete
solution.

DCOPs are commonly visualized as constraint graphs,
whose vertices are the agents and whose edges are the
constraints. Most complete DCOP algorithms operate on
pseudo-trees, which are spanning trees of fully connected
constraint graphs such that no two vertices in different sub-
trees of the spanning tree are connected by an edge in the
constraint graph. Figure 2(a) shows the constraint graph of
an example DCOP with three agents controlling variables
that can each be assigned the values 0 or 1, Figure 2(b)
shows one possible pseudo-tree (the dotted line is called a
backedge, which is an edge of the constraint graph that does
not connect a pair of parent-child nodes), and the third col-
umn in Figure 2(c) shows the constraint rewards. We will
use this problem as a running example in this paper.

3.2 Stochastic DCOPs
Stochastic DCOPs (SDCOPs) are extensions of DCOPs

where each constraint fi : di1×di2 → P (xi1 , xi2) now speci-
fies a (potentially discretized) probability distribution func-
tion of the reward as a function of the values of the two
different variables xi1 , xi2 ∈ X that share the constraint [1].
We call these functions reward functions in this paper. For
example, the fourth column in Figure 2(c) shows the Gaus-
sian reward functions for the different pairs of values. We
assume that the reward functions are all independent of each
other. Solving an SDCOP optimally means finding a com-
plete solution X∗ that maximizes the expected sum of all
rewards:

X∗ = arg max
X∈d1×d2×···×dn

{
E
[∑

i

fi(xi1 , xi2 | xij ∈ X)
]}

(1)

One can solve for the this objective in a straightforward
manner if the mean of each reward function is known. Solv-
ing an SDCOP optimally is then equivalent to solving a
regular DCOP optimally, where the rewards of a constraint
are the means of the respective reward functions specified
by that constraint.

3.3 DPOP
Distributed Pseudo-tree Optimization Procedure

(DPOP) [18] is a complete DCOP algorithm that can
be viewed as a distributed version of the Bucket Elimina-
tion algorithm [3]. There are three phases in the operation
of DPOP:

x1 x2 Rewards
0 0 max(5+ 5, 8+8) = 16
0 1 max(5+20, 8+3) = 25
1 0 max(20+ 5, 3+8) = 25
1 1 max(20+20, 3+3) = 40

(a)

x1 Rewards
0 max(5+16, 8+25) = 33
1 max(20+25, 3+40) = 45

(b)

Table 1: UTIL Phase Computations in DPOP

(1) The first phase is the pseudo-tree generation phase,
where DPOP calls existing distributed pseudo-tree con-
struction algorithms like Distributed DFS [7] as a sub-
routine to construct its pseudo-tree.

(2) The second phase is the UTIL phase, where each agent,
starting from the leafs of the pseudo-tree, computes the
optimal sum of rewards in its subtree for each value
combination of its ancestor agents. The agent does so
by summing the rewards in the UTIL messages received
from its child agents and projects out its own variable
by optimizing over it. In our example problem, agent
a3 computes the optimal reward for each value combi-
nation of variables x1 and x2 as shown in Table 1(a)
and sends the rewards to its parent agent a2 in a UTIL
message. Agent a2 then computes the optimal reward
for each value of variable x1 as shown in Table 1(b)
and sends the rewards to its parent agent a2 in a UTIL
message.

(3) The third phase is the VALUE phase, where each agent,
starting from the root of the pseudo-tree, determines
the optimal value for its variable. The root agent does
so using the UTIL messages received in the second
phase. In our example problem, agent a1 determines
from the UTIL message from agent a2 that the value
with the largest reward for its variable is 1 with a re-
ward of 45. It then sends this information down to its
child agent a2 in a VALUE message. Upon receiving
the VALUE message from its parent agent, agent a2
determines that the value with the largest reward for
its variable assuming that x1 = 1 is 0 with a reward
of 45. It then sends this information down to its child
agent a3 in a VALUE message. Finally, upon receiving
the VALUE messages from its parent agent, agent a3
determines that the value with the largest reward for
its variable assuming that x1 = 1 and x2 = 0 is 0 with
a reward of 25.

4. STOCHASTIC DOMINANCE
Although finding a solution that maximizes the expected

reward in an SDCOP is a reasonable and intuitive objec-
tive, it fails to characterize “risk” very well. To illustrate
this, Figure 3 shows two probability distribution functions,
where the expected reward of the unimodal distribution is
slightly smaller than that of the bimodal distribution but
the variance is also smaller. Hence if the problem domain
requires a decision maker to be risk-averse, then one might
prefer the unimodal distribution over the bimodal one. In
general, it is well-known (particularly in financial domains)
that maximizing utility without considering risk does not
yield good solutions in risky environments.

To incorporate the notion of risk, we propose a new
(stricter) goal for SDCOPs, namely, our aim is to find a com-
plete solution with the most stochastically dominating [6]

P
(R

e
w

a
rd

)

Reward

Figure 3: Unimodal and Bimodal Distributions

overall reward function. Intuitively, a stochastically domi-
nating function is less risky than any dominated function.
In this paper, we will use the second-order stochastic domi-
nance criteria [13] as the dominance criteria.

Let f1+2+...+m(X) denote the overall reward function for a
complete solution X, which is the convolution of the individ-
ual reward functions fi(xi1 , xi2 | xij ∈ X) over all i ∈ [0,m].

And let FXk (t) =
∫ t

−∞ f1+2+...+m(Xk)(t) dt denote the cor-
responding cumulative distribution function. We say that a
solution X1 dominates (written ≺) another solution X2 iff:∫ x

−∞
FX1(t)− FX2(t) dt ≤ 0 (2)

for all values of x.
Our goal is hence to find a complete solution X∗ with the

most stochastically dominating overall reward function, i.e.:

f1+2+...+m(X∗) ⊀ f1+2+...+m(X) (3)

Notice however that there may exist functions that do not
dominate each other. As such, there can be a number of
pareto-optimal solutions, where a pareto-optimal solution is
a solution that is not dominated by any other solutions in
the set.

Unfortunately, the agents in SDCOPs cannot compare the
dominance of overall reward functions without transmitting
the individual functions to a centralized agent. Therefore,
we compute the dominance of the individual reward func-
tions and find a complete solution X∗ such that

∀i : fi(x
∗
i1 , x

∗
i2 | x

∗
ij ∈ X

∗) ⊀ fi(xi1 , xi2 | xij ∈ X) (4)

which implies Equation (3) according to Theorem 1, which
we will prove in Section 5.4.

Moreover, it is guaranteed that for any arbitrary risk func-
tion, the optimal solution (i.e. the solution that maximizes
the expected reward for that risk function) is a pareto-
optimal solution [13]. Thus, finding the pareto set is useful
in applications where the risk-averse function is not known
a priori and users want to hedge against all possible risk
functions. And once the risk function is known, we can find
the optimal solution by evaluating only the pareto-optimal
solutions (rather than all possible solutions).

5. SD-DPOP
We now introduce Stochastic Dominance DPOP (SD-

DPOP), an extension of DPOP, to solve SDCOPs. The
objective of SD-DPOP is to find the set of pareto-optimal
solutions (when the risk function is not known a priori) and

x1 x2 Reward Functions
0 0 dom(N (5+ 5, 1+1), N (8+8, 1+1)) = N (16, 2)
0 1 dom(N (5+20, 1+1), N (8+3, 1+1)) = N (25, 2)
1 0 dom(N (20+ 5, 1+1), N (3+8, 1+1)) = N (25, 2)
1 1 dom(N (20+20, 1+1), N (3+3, 1+1)) = N (40, 2)

(a)

x1 Reward Functions
0 dom(N (5+16, 1+2), N (8+25, 1+2)) = N (33, 3)
1 dom(N (20+25, 1+2), N (3+40, 1+2)) = N (45, 3)

(b)

Table 2: UTIL Phase Computations in SD-DPOP

Algorithm 1: SD-DPOP

/* Phase 1: Pseudo-tree Generation Phase */

1 Generate pseudo-tree

/* Phase 2: UTIL Phase */

2 if xi is a leaf node then
3 UTILxi ← CalcUtils();
4 Send UTIL message (UTILxi) to parent

5 end
6 Activate UTILMessageHandler()

/* Phase 3: VALUE Phase */

7 Activate VALUEMessageHandler()

Procedure UTILMessageHandler(UTILxk)

8 Store UTILxk

9 if received UTILmessage from every child then
10 if xi is a root node then
11 v∗i ← ChooseBestV alue(NULL)
12 VALUExi ← {(xi, v∗i)}
13 Send VALUE message (VALUExi) to every child

14 else
15 UTILxi ← CalcUtils()
16 Send UTIL message (UTILxi) to parent

17 end

18 end

then find an optimal solution for the risk function (once
the function is known). It finds the set of pareto-optimal
solutions using stochastic dominance. It finds an optimal
solution by evaluating the set of pareto-optimal solutions.

At a high level, SD-DPOP is similar to DPOP except that
the agents convolve the reward functions instead of sum the
rewards, choose values with the dominating convolved re-
ward function instead of values with the maximum reward,
and potentially find multiple pareto-optimal solutions in-
stead of one reward maximizing solution.

5.1 High Level Description
Algorithm 1 shows the pseudo-code of a simplified ver-

sion of SD-DPOP, where we assume that there is only one
stochastically dominating solution to ease readability.1 Like
DPOP, there are also three phases in the operation of SD-
DPOP. The first phase [Line 01] is identical to that of DPOP.
The second phase [Lines 2-6] is similar to that of DPOP ex-
cept for three differences:

1One can easily extend this simplified version to find mul-
tiple pareto optimal solutions by having each agent send in
its UTIL message a vector of reward functions in its pareto
set, and (b) send in its VALUE message a vector of values
corresponding to its value for each reward function in its
pareto set.

Procedure VALUEMessageHandler(VALUExk)

19 VALUExi ← VALUExk

20 v∗i ← ChooseBestV alue(VALUExi)
21 VALUExi ← VALUExi ∪ {(xi, v∗i)}
22 Send VALUE message (VALUExi) to every child

Function CalcUtils()

23 UTILxi ← Reward functions for all value combinations
of xi, its parent and pseudo-parents

24 UTILxi ← Join(UTILxi ,UTILxc) for all children xc
25 UTILxi ← Project(xi,UTILxi)
26 Return UTILxi

(1) The function Join() [Line 24] joins all constraints in-
volving xi by setting the reward function for each value
combination in the joined constraint to the convolu-
tion of the individual reward functions. In DPOP, the
reward for each value combination is the sum of the
individual rewards. In our example problem, agent
a3 convolves g13 = f13(x1 = 0, x3 = 0) and g23 =
f23(x2 = 0, x3 = 0) to determine the reward function
when x1 = 0, x2 = 0 and x3 = 0:∫ ∞

−∞
g13(s)g23(t− s) ds = (g13 ∗ g23)(t)

= N (5, 1) ∗ N (5, 1)

= N (5 + 5, 1 + 1)

= N (10, 2)

(2) The function Project() [Line 25] projects the joined con-
straint down on xi by setting the reward function for
each value combination in the projected constraint to
the stochastically dominating reward function between
all corresponding functions in the pre-projected con-
straints. In DPOP, the reward for each value combi-
nation is maximum over all corresponding rewards in
the pre-projected constraints. In our example problem,
agent a3 sets the reward function for x1 = 0, x2 = 0
to the stochastically dominating reward functions be-
tween the functions for x1 = 0, x2 = 0, x3 = 0 (which is
N (5 + 5, 1 + 1) = N (10, 2)) and x1 = 0, x2 = 0, x3 = 1
(which is N (8 + 8, 1 + 1) = N (16, 2)). Tables 2(a)
and 2(b) show the Project() computations of agent a3
and a2, respectively, where the function dom() returns
the stochastically dominating solution.

(3) The agents send the projected convolved reward func-
tions instead of the maximum summed rewards to their
parent agents in UTIL messages.

Thus, by the end of the second phase, the root agent knows

the overall reward function of each pareto-optimal solution.
Once the risk function is known, the root agent evaluates
the overall reward function of each pareto-optimal solution
to find an optimal solution for the given risk function. It
then starts the third phase.

The third phase [Line 7] is similar to that of DPOP ex-
cept that the function ChooseBestValue() [Lines 11 and 20]
returns the value of the optimal solution. In DPOP, the
function returns the value with the maximum reward. In
our example problem, there is only one pareto-optimal solu-
tion and, thus, that solution is also the optimal solution for
any given risk function. Agent a1 thus chooses its optimal
value 1 for its variable and sends this information down to
its child agent a2 in a VALUE message.2 Upon receiving the
VALUE message from its parent agent, agent a2 determines
that the optimal value for its variable assuming that x1 = 1
is 0. Finally, upon receiving the VALUE messages from its
parent agent, agent a3 determines that the optimal value for
its variable assuming that x1 = 1 and x2 = 0 is 0.

5.2 Implementation Details
We now describe how one implement the convolution and

stochastic dominance determination of continuous and dis-
crete reward functions:

Case 1: The reward functions are continuous. One can
use the conv() and int() functions in Matlab to con-
volve two functions and compute integrals to check for
stochastic dominance, respectively. However, if the re-
ward functions are Gaussian functions, one can more ef-
ficiently convolve two functions – N (µ1 +µ2, σ

2
1 + σ2

2) =
N (µ1, σ

2
1) ∗ N (µ2, σ

2
2) – and check the stochastic dom-

inance of two functions – N (µ1, σ
2
1) � N (µ2, σ

2
2) if

µ1 ≥ µ2 and σ1 ≤ σ2 with at least either one being a
strict inequality. Lastly, instead of checking all pairs of
functions for stochastic dominance, one can also opti-
mize this check by using the property that if fi � fj and
fj � fk, then fi � fk.

Case 2: The reward functions are discrete and are repre-
sented by samples in discretized bins. To convolve two
reward functions, one can create a new sample whose
value is the sum of a pair of samples, one from each
reward function, for all possible pairs of samples. The
new samples represent the convolved reward function.
However, such a method does not scale up well with
the number of samples since the number of operations
is quadratic in the number of samples. We thus de-
scribe an optimized method whose number of operations
is quadratic in the number of bins. Algorithm 2 shows
the pseudocode, where function Sample(k, fi(j)) returns
the k-th sample in the j-th bin of function fi and nj

fi
is the number of samples in that bin. We now associate
a probability P (x) with each sample x, which we use to
compute the probability P (fi(j)) and mean µ(fi(j)) of
each bin j of each function fi [Lines 1-4], which we use
to create new samples [Lines 5-11]. One can further opti-

2In the more complicated case where there might be mul-
tiple pareto-optimal solutions, each agent stores all the re-
ward functions sent by its child agents and sends back the
reward function corresponding to the optimal solution down
to its child agents in VALUE messages. To reduce mem-
ory and message complexity, the agents can store and send
hash functions of the reward functions instead of the actual
reward functions.

Algorithm 2: Convolve(f1, f2)

1 foreach function fi and bin j do

2 P (fi(j))←
∑n

j
fi

k=1 P (Sample(k, fi(j))

3 µ(fi(j))←
∑n

j
fi

k=1 P (Sample(k, fi(j)) · Sample(k, fi(j))

P (fi(j))

4 end
5 foreach bin i of function f1 do
6 foreach bin j of function f2 do
7 Create a new sample x← µ(f1(i)) + µ(f2(j))
8 P (x)← P (f1(i)) · P (f2(j))
9 Place x in the appropriate bin of the convolved

function
10 end

11 end

mize the algorithm by ignoring empty bins and merging
neighboring bins if the probability of one of the bin is
less than a threshold.

To determine the stochastic dominance of two reward
functions f1 and f2, one first computes the cumulative
distribution function Fi(t) =

∑t
k=1 fi(k) of each reward

function fi. One then checks whether the following con-
dition hold for all values of x:

∑
t≤x F1(t)−F2(t) ≥ 0. If

so, then the reward function f1 stochastically dominates
f2.

5.3 Complexity Analysis
In DPOP, VALUE messages contain only the value of the

sending agent and UTIL messages contain a reward value
for each combination of values of the parent and pseudo-
parent of the sending agent. Thus, its message complexity
is O(maxDomw), where maxDom = arg maxi |di| and w is
the induced width of the pseudo-tree.

In SD-DPOP, VALUE messages contain each pareto-
optimal value of the sending agent and UTIL messages con-
tain a representation of the reward function for each pareto-
optimal solution and each combination of values of the par-
ent and pseudo-parent of the sending agent. Thus, if the
reward functions are continuous and one can represent the
function analytically with a constant number of parameters,
such as the Gaussian function, which can be represented
just by the mean and variance, then the message complex-
ity is O(p ·maxDomw), where p is the size of the pareto set.
If the reward functions are discrete and are represented by
samples in discretized bins, then the message complexity is
O(b · p ·maxDomw), where b is the largest number of bins
used to represent one reward function.

Therefore, like DPOP, SD-DPOP also suffers from an ex-
ponential memory requirement. However, one can likely ex-
tend SD-DPOP to make it memory-bounded, similar to how
researchers have bounded the memory of DPOP in exten-
sions like MB-DPOP [19] and PC-DPOP [20].

5.4 Correctness and Completeness
The completeness of SD-DPOP follow quite trivially from

that of DPOP since the main differences are that agents now
convolve reward functions instead of sum up reward values
and it chooses stochastically dominating reward functions
instead of the maximal reward value.

We now prove the correctness of SD-DPOP. Let fi+j de-
note the convolution of reward functions fi and fj and Fi

denote the cumulative distribution function of fi.

Lemma 1. For any two arbitrary reward functions fi and
fj, Fi+j(t) =

∫∞
−∞ Fj(t− x) fi(x) dx

Proof: Let fi and fj be two arbitrary reward functions.

Fi+j(t)
def
=

∫ t

−∞
fi+j(y) dy

=

∫ t

−∞

∫ ∞
−∞

fj(y − x) fi(x) dx dy

=

∫ ∞
−∞

∫ t

−∞
fj(y − x) fi(x) dy dx

=

∫ ∞
−∞

∫ t

−∞
fj(y − x) dy fi(x) dx

=

∫ ∞
−∞

Fj(t− x) fi(x) dx

Lemma 2. For any three arbitrary reward functions fi, fj
and fk, if fi � fj, then fi+k � fj+k.

Proof: Let fi, fj and fk be three arbitrary reward functions
where fi � fj .∫ z

−∞
Fi+k(t)− Fj+k(t) dt

=

∫ z

−∞

∫ ∞
−∞

(
Fi(t− x)− Fj(t− x)

)
fk(x) dx dt

(Lemma 1)

=

∫ ∞
−∞

fk(x)

∫ z

−∞
Fi(t− x)− Fj(t− x) dt dx

=

∫ ∞
−∞

fk(x)

∫ z−x

−∞
Fi(y)− Fj(y) dy dx

We know that (1)
∫ k

−∞ Fi(y) − Fj(y) dy ≤ 0 for all val-

ues of k according to Equation 2 since fi � fj and (2)∫∞
−∞ fk(x) dx ≥ 0 since it is an integral of a probability

distribution function. Combining both inequalities, we get∫∞
−∞ fk(x)

∫ z−x

−∞ Fi(y)− Fj(y) dy dx ≤ 0, which implies that
fi+k � fj+k according to Equation 2.

Theorem 1. For any 2m arbitrary reward functions
fi1 , . . . , fim , fj1 , . . . , fjm , if fik � fjk for all values of k,
then fi1+...+im � fj1+...+jm .

Proof: Let fi1 , . . . , fim , fj1 , . . . , fjm be arbitrary reward
functions where fik � fjk for all values of k.

fi1+...+im � fj1+i2+i3+...+im (fi1 � fj1 and Lemma 2)

� fj1+j2+i3+...+im (fi2 � fj2 and Lemma 2)

� . . .
� fj1+j2+j3+...+jm (fim � fjm and Lemma 2)

Thus, fi1+...+im � fj1+...+jm .

Therefore, since convolving stochastically dominating in-
dividual reward functions result in a stochastically domi-
nating overall reward function according to Theorem 1, SD-
DPOP is correct.

6. RELATED WORK
Motivated by risk-sensitive applications, other researchers

have also independently investigated the use of dominance
to solve SDCOPs. For example, Stranders et al. defined
dominance with respect to a given risk function, where a
random variable X dominates a random variables Y for a
given function U iff E[U(X+Z)] ≥ E[U(Y +Z)] for all possi-
ble random variables Z with strict inequality for at least one
Z [22]. They then derived sufficient and necessary conditions
for such dominance to hold for one example risk function,
proposed U-GDL, an extension of the GDL algorithm that
uses the new conditions, and experimentally demonstrated
the benefits of their approach. Our work is different from
theirs in that SD-DPOP uses a stochastic dominance crite-
ria, which is applicable for the class of concave risk functions.

Another piece of related work is the Multi-Objective Max-
Sum (MOMS) algorithm by Delle Fave et al., which is an
algorithm that finds pareto-optimal solutions for a set of
objective functions [4]. Our work is different from theirs
in that MOMS needs to know the set of risk functions (set
of objectives) prior to finding the pareto-optimal solutions
while SD-DPOP does not. SD-DPOP actually finds the set
of pareto-optimal solutions for all possible risk functions,
which is an infinite set. However, MOMS can find pareto-
optimal solutions for arbitrary utility functions, while SD-
DPOP can only do so for concave risk functions. However,
we expect all these extensions to easily apply to all GDL-
based DCOP algorithms including DPOP, Max-Sum [5] and
Action-GDL [25].

7. EXPERIMENTAL EVALUATION
We now compare the stochastically dominating solutions

found by the SD-DPOP algorithm to the solutions that max-
imize the expected reward found by DPOP. We run our ex-
periments on a MacBook Pro with a 2.7GHz Intel Core i7
and 8GB memory. We use the same sensor network prob-
lem that we used as our motivating domain, where we ar-
ranged the sensors in a grid and each sensor can move in
the four cardinal directions or stay stationary. Thus, each
sensor has 5 possible values. Additionally, each sensor can
be constrained with any one of its four neighboring sensors.
We varied the size of the problem by increasing the number
of sensors in the grid and the number of constraints. Each
constraint between two sensors consists of 25 reward func-
tions corresponding to the 25 pairs of possible values of the
two sensors. Each reward function is a Gaussian function
whose mean and variance are randomly generated between
the ranges of 80 to 100 and 0 to 80, respectively.

We use the following risk functions to evaluate the utilities
of the solutions found:

g1(x, α, th) =

{
αx− (α− 1) th x ≤ th
th otherwise

g2(x, α, th) = − exp(−α (x− th)) + th

Both functions are commonly used risk functions in the lit-
erature [13, 21]. In both functions, the parameter α rep-
resents the level of risk aversion. The larger the value of
α, the higher the level of risk aversion. The parameter th
represents the threshold after which one obtains close to no
utility with increasing x.

We run experiments for both continuous and discretized

(a) SD-DPOP with Stochastic Dominating Solutions

no. of no. of runtime msg size g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
agents constraints (ms) (kB) µ σ µR µ σ µR µ σ µR µ σ µR

9 12 539 368 1391 92 1160 1412 103 1292 1369 84 1194 1390 91 1199
16 24 2588 7240 2613 142 2176 2611 141 2395 2542 115 -3261 2571 123 2397
25 37 81821 65963 4055 177 3619 4058 179 3698 3971 151 -1596 4004 159 3698

(b) DPOP with Expected Reward Maximizing Solutions

no. of no. of runtime msg size g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
agents constraints (ms) (kB) µ σ µR µ σ µR µ σ µR µ σ µR

9 12 100 75 1455 167 949 1455 167 1283 1455 167 -2.13E8 1455 167 11260
16 24 172 139 2689 225 1840 2689 225 2389 2689 225 -1.66E14 2689 225 -7336
25 37 252 215 4162 278 3397 4162 278 3694 4162 278 -1.34E16 4162 278 -775615

Table 3: Experimental Results for Continuous Reward Functions

(a) SD-DPOP with Stochastic Dominating Solutions for 9 Agents and 9 Constraints

no. of runtime msg size error error g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
samples (ms) (kB) in µ in σ µ σ µR µ σ µR µ σ µR µ σ µR

10 3203 2417 91 185 971 86 373 971 86 889 962 80 -1472 965 81 897
100 7775 3032 25 44 971 73 544 972 74 893 959 67 849 965 69 898
1000 12786 2909 30 41 972 74 546 972 74 893 958 66 847 968 71 898
10000 15802 2803 31 43 972 74 546 972 75 893 957 66 854 966 70 898

(b) SD-DPOP with Stochastic Dominating Solutions for 16 Agents and 16 Constraints

no. of runtime msg size error error g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
samples (ms) (kB) in µ in σ µ σ µR µ σ µR µ σ µR µ σ µR

10 35845 9458 340 258 1751 132 1143 1751 132 1591 1741 128 -2.76E7 1741 127 1562
100 58125 9792 65 85 1750 105 1399 1750 105 1596 1721 93 1092 1736 97 1599
1000 69050 9088 80 59 1751 106 1402 1750 105 1596 1719 91 1057 1734 97 1599
10000 79235 8869 79 58 1750 104 1403 1750 105 1596 1717 90 1178 1734 96 159

Table 4: Experimental Results for Discretized Reward Functions

reward functions. Tables 3 and 4 show our experimental re-
sults, where we average over 50 problem instances for each
configuration. For each problem instance, we run SD-DPOP
to find the pareto set, and for each risk function, we eval-
uate the risk of a pareto-optimal solution by taking 10,000
samples of the overall reward function for that solution and
evaluating those samples using the risk function. We then
return the solution with the largest mean as the optimal so-
lution. The root agent performs this sampling process since
it knows the overall reward function for each pareto-optimal
solution. After it determines the optimal solution, it prop-
agates that information down the pseudo-tree to the other
agents.

For each problem configuration, we use four risk functions:
g1(x, 50, th), g1(x, 0, th), g2(x, 0.05, th) and g2(x, 0.025, th),
where we set th to 100 times the number of constraints in
the problem. For each risk function, we report the mean (µ)
and standard deviation (σ) of the overall reward function of
the optimal solution as well as the mean (µR) of the evalu-
ation of overall reward function using the risk function. We
also report the error in the mean and standard deviation
(compared against the true mean and standard deviation)
of the overall reward function of the optimal solution for ex-
periments with discretized reward functions. We make the
following observations:

• The runtime and message size of DPOP and SD-DPOP
increases with the number of agents and constraints,
which is to be expected. The runtime and message size

of SD-DPOP is larger than that of DPOP. The run-
time is larger because agents in SD-DPOP find mul-
tiple pareto-optimal solutions while agents in DPOP
find only one solution. The message size is larger be-
cause agents in SD-DPOP sends more information in
each message, as described in Section 5.3.

• The means (µ) of the expected reward maximizing so-
lutions are larger than the means of the stochastic
dominating solutions, which is to be expected. How-
ever, the means (µR) of the evaluations of the expected
reward maximizing solutions using the risk functions
are smaller than those of the stochastic dominating
solutions, which implies that the solutions found by
SD-DPOP is less risky. The difference in the means in-
creases as α increases. Thus, the higher the level of risk
aversion, the more important it is to find stochastic
dominating solutions. An interesting future direction
of research would be to compute a theoretical bound
between µ and µR. However, this bound would be use-
ful for risk functions with small values of α only. The
reason is that if α is large or, equivalently, the risk
function has an almost vertical slope, then µ is likely
to be finite while µR is likely to be negative infinity.

• The runtime of SD-DPOP increases with the number
of samples, which is to be expected. The message size
increases as we increase the number of samples from 10
to 100. The reason is that the number of bins needed
by the samples increases. However, the message size

does not increase further, and can sometimes decrease
instead, as we increase the number of samples to 1000
or 10000. The reason is that as the number of samples
increases significantly, the samples all converge near
the mean of the distribution. As a result, the proba-
bility of bins at the tail ends become small. Since we
optimize the number of bins by merging neighboring
bins if the probability of one of the bin is less than a
threshold of 0.001, these bins at each of the tail ends
are merged into a single large bin.

• The errors in the mean and standard deviation de-
crease as we increase the number of samples from 10
to 100. The reason is that 10 samples is too small to ac-
curately represent the reward function. However, the
errors do not decrease further, and actually increase
instead, as we increase the number of samples to 1000
or 10000. The reason is that 100 samples is sufficient
to accurately represent the reward function and the
increase in error is likely due to sampling approxima-
tions.

8. CONCLUSIONS
The Stochastic DCOP (SDCOP) model is useful in model-

ing multi-agent coordination problems where the constraint
rewards are sampled from known reward functions. The goal
of SDCOPs is to find a solution that maximizes the expected
reward in such problems. However, these solutions might be
very risky and hence unacceptable in risk-sensitive appli-
cations. In this paper, we make three contributions: (1)
we propose a stricter objective for SDCOPs, namely to find
a solution with the most stochastically dominating reward
function; (2) we introduce SD-DPOP, an extension of DPOP
that finds such solutions; and (3) we show that stochastically
dominating solutions can indeed be less risky than expected
reward maximizing solutions. For future work, we would like
to bound the memory used by SD-DPOP in the same way
that researchers have done for MB-DPOP and PC-DPOP.
We believe that this is important since the exponential re-
quirement on memory prohibits the use of this algorithm in
large scale problems.

9. ACKNOWLEDGMENT
This research is supported by the Singapore National Re-

search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office. We would also like to thank our
anonymous reviewers for their comments and suggestions,
especially for pointing us to the work on the U-GDL and
MOMS algorithms.

10. REFERENCES
[1] J. Atlas and K. Decker. Coordination for uncertain

outcomes using distributed neighbor exchange. In Proc. of
AAMAS, pages 1047–1054, 2010.

[2] D. Burke and K. Brown. Efficiently handling complex local
problems in distributed constraint optimisation. In Proc. of
ECAI, pages 701–702, 2006.

[3] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[4] F. Delle Fave, R. Stranders, A. Rogers, and N. Jennings.
Bounded decentralised coordination over multiple
objectives. In Proc. of AAMAS, pages 371–378, 2011.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings.
Decentralised coordination of low-power embedded devices
using the Max-Sum algorithm. In Proc. of AAMAS, pages
639–646, 2008.

[6] S. Graves and J. Ringuest. Probabilistic dominance criteria
for comparing uncertain alternatives: A tutorial. Omega,
37(2):346–357, 2009.

[7] Y. Hamadi, C. Bessière, and J. Quinqueton. Distributed
intelligent backtracking. In Proc. of ECAI, pages 219–223,
1998.

[8] M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs
meet the real world: Exploring unknown reward matrices
with applications to mobile sensor networks. In Proc. of
IJCAI, pages 181–186, 2009.

[9] S. Kozono. Received signal-level characteristics in a
wide-band mobile radio channel. IEEE Transactions on
Vehicular Technology, 43(3):480–486, 1994.

[10] A. Kumar, B. Faltings, and A. Petcu. Distributed
constraint optimization with structured resource
constraints. In Proc. of AAMAS, pages 923–930, 2009.

[11] R. Lass, J. Kopena, E. Sultanik, D. Nguyen, C. Dugan,
P. Modi, and W. Regli. Coordination of first responders
under communication and resource constraints (Short
Paper). In Proc. of AAMAS, pages 1409–1413, 2008.

[12] T. Léauté and B. Faltings. E[DPOP]: Distributed
constraint optimization under stochastic uncertainty using
collaborative sampling. In Proc. of DCR, pages 87–101,
2009.

[13] H. Levy. Stochastic Dominance Investment Decision
Making under Uncertainty Studies in Risk and
Uncertainty. Springer, 1998.

[14] V. Lisỳ, R. Zivan, K. Sycara, and M. Péchoucek. Deception
in networks of mobile sensing agents. In Proc. of AAMAS,
pages 1031–1038, 2010.

[15] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and
P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed event scheduling. In
Proc. of AAMAS, pages 310–317, 2004.

[16] M. McClure, D. Corbett, and D. Gage. The DARPA
LANdroids program. SPIE, 7332:73320A, 2009.

[17] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149–180,
2005.

[18] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In Proc. of IJCAI, pages
1413–1420, 2005.

[19] A. Petcu and B. Faltings. MB-DPOP: A new
memory-bounded algorithm for distributed optimization. In
Proc. of IJCAI, pages 1452–1457, 2007.

[20] A. Petcu, B. Faltings, and R. Mailler. PC-DPOP: A new
partial centralization algorithm for distributed
optimization. In Proc. of IJCAI, pages 167–172, 2007.

[21] J. Pratt. Risk aversion in the small and in the large.
Econometrica, 32(1–2):122–136, 1964.

[22] R. Stranders, F. Delle Fave, A. Rogers, and N. Jennings.
U-GDL: A decentralised algorithm on DCOPs with
uncertainty. Technical report, Department of Electronics
and Computer Science, University of Southampton, 2011.

[23] M. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a “me” in “team”?: Distributed
multi-agent optimization under uncertainty. In Proc. of
AAMAS, pages 109–116, 2010.

[24] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition structure
generation based on distributed constraint optimization. In
Proc. of AAAI, pages 197–203, 2010.

[25] M. Vinyals, J. Rodŕıguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
DCOP algorithms via the Generalized Distributive Law.
Autonomous Agents and Multi-Agent Systems, 2010.

