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ABSTRACT

A key challenge to widespread deployment of mobile robotkén
real-world is the ability to robustly and autonomously setie en-
vironment and collaborate with teammates. Real-world dosa
are characterized by partial observability, non-deteistimaction
outcomes and unforeseen changes, making autonomous gensin
and collaboration a formidable challenge. This paper poisésn-
based sensing, information processing and collaborasceman-
stance of probabilistic planning using partially obseteddarkov
decision processes. Reliable, efficient and autonomoustiqe is
achieved using a hierarchical decomposition that inclu@®scon-
volutional policies to exploit the local symmetry of higevel vi-
sual search; (b) adaptive observation functions, polieyeehting,
automatic belief propagation and online updates of the domap
for autonomous adaptation to domain changes; and (c) alpitiizba
tic strategy for a team of robots to robustly share belieféakyo-
rithms are evaluated in simulation and on physical robatallring
target objects in dynamic indoor domains.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence ]: Robotics

General Terms
Algorithms, Experimentation

Keywords

Integrated perception, cognition, and action; Robot glegnrin-
cluding action and motion planning); Robot teams, mulbeatsys-
tems, robot coordination.

1. INTRODUCTION

Autonomous and robust sensing and collaboration is a kdy cha
lenge to widespread deployment of mobile robots in the wealel.
Real-world application domains are characterized by alad-
servability, non-deterministic action outcomes and uedeen dy-
namic changes. A robot equipped with multiple sensors,(eam-
eras and range finders) can use different algorithms to psazen-
sory inputs with varying levels of reliability and computatal
complexity. It is not feasible for the robot to observe théiren
domain or process all sensory inputs with all available itlyms
and still respond to dynamic changes. At the same time, tobus
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operation requires that the robot make best use of relenéort- i
mation. Furthermore, each robot in a team can possessedtitfer
capabilities and communication between robots can beiabtel
Autonomous and robust sensing and collaboration on robets d
ployed in the real-world is hence a formidable challenge.

This paper poses vision-based sensing and collaboratian as
planning task and uses partially observable Markov detipi@-
cesses (POMDPs) [8] to enable each robot in a team to taihsr se
ing and processing to the task at hand. Although POMDPs ele-
gantly model the non-determinism and partial observatilitreal-
world domains, the state space of these domains typicalte@ises
exponentially and even state of the art (approximate) PONGNErs
have high computational complexity [14, 19]. Our prior wamnk
troduced a hierarchical decomposition in POMDPs for rédiamd
efficient visual sensing and processing in simulation angpBstic
tabletop scenarios [22, 23]. This paper builds on our priorkto
enable a robot to autonomously direct sensing to relevaatitons,
and consider the reliability and complexity of availablgaithms
to determine the sequence of sensing and processing abishs
suited to a given task. Each robot then shares beliefs (@b
processing sensory cues) with teammates to collaboratstiglin
real-world domains. The following novel contributions arade:

e Local symmetries in visual sensing are exploited to leanvee
lutional policies for efficient operation over large stgpaces.
Adaptive observation functions, policy re-weighting andca
matic belief propagation in the hierarchy are used in cartjon
with online revisions to domain map (based on range data) to
enable the robot to adapt to dynamic changes.

A probabilistic belief sharing strategy is used to enabksart of
robots to merge individual and communicated beliefs toatsll
orate robustly despite unreliable communication.

These contributions enable the use of POMDPs for relialife, e
cient and autonomous visual sensing and collaboration drileno
robots. All algorithms are evaluated in simulation and ogsh
ical robots deployed to localize target objects in dynamitoor
domains. The remainder of the paper is organized as foll®es-
tion 2 summarizes related work, while Section 3 describehitr-
archical planning approach. Experimental results areritestin
Section 4, followed by conclusions in Section 5.

2. RELATED WORK

Research in vision, planning and robotics has producedisoph
ticated algorithms for planning a pipeline of visual operatfor
a high-level goal. Many such algorithms use deterministitoa
models whose preconditions and effects are propositiatsaed
to be true apriori, or are made true by executing the operetimw-
ever, such formulations are insufficient for applicatiomadans with
partially observable state and non-deterministic actisicames.



In vision research, image interpretation has been modeded u UEU HEU Where to look?
ing MDPs and POMDPs. Li et al. [12] used human-annotated im- 00 Communication (55
ages to determine the reward structure, explore the statesmd Visual Sensing ((—=) Visual Sensing )
compute value functions—actions that maximize the leafaed- [VS-POMDP| [VS-POMDP| =
tions are chosen during online operation. Similarly, actensing Il
has been used to decide sensor placement and informaticessro Hierarchical / /IJBOOtSFrap
2 Learning What and how to process?

ing, using particle filters and relative entropy maximiaatfor es-

timating a joint multitarget probability density [10]. Ssor place- X ST
ments in spatial phenomena have also been modeled as Gaussia ‘ Two-layer POMDP Planner‘
processes using submodular functions [9]. However, masyavi or

planning tasks are not submodular, and it is difficult to mqadeb- ‘ Visual Feature Matching ‘
ability densities using manual feedback over many trialsofiots.

Since a POMDP formulation can become intractable due to the

exponential state explosion of real-world domains, redeas have Figure 1: Overview of POMDP hierarchy for target localipati
focused on imposing structure on application domains. &Rir@ad

Thrun [16] proposed a hierarchical approach for behaviottrod poses sensing as the task of maximizing information gaén, rie-

of a robot assistant. The top level action is a collectioniofxer ducing the belief state entropy in a grid withcells. The POMDP
actions modeled as smaller POMDPs and solved completely-to e  typle (S A, T,Z,0,R) is defined as:

able bottom-up planning and top-down plan execution. Sinaip- e S:s, i € [1,N]is the state vectos corresponds to the event that
proaches have been used for robot navigation [7] but a Signifi the target is in grid cell.

amount of data for the hierarchy and model creation is hamntbd. e A:g,i€[1,N]isthe setof actions. Executimgcauses the robot
Recent work has focused on learning POMDP observation mod-  to move to and analyze grid céll

els [1]; using information maximization for POMDP-basedual e T:SxAxS— [0,1] is the state transition function. It is an
search [4, 23], and developing factored representatiodsfaster identity matrix here because actions do not change state.
POMDP solvers [14, 19]. Researchers have also focused enint o 7 : {present, absehtis the observation set that indicates if the
grating human input in POMDPs for human-robot interactitd] [ target is detected.

However, these methods are still not suitable for dynaminalos e O:SxAxZ— [0,1] is the observation function (see below).
with large state spaces, and do not enable automatic maietlan e R:Sx A — Ris the reward specification that is based on belief
and belief propagation that is essential for robot domains. entropy (see below).

Many algorithms continue to be developed for multiagent and The robot maintains aelief state a probability distribution over
multirobot collaboration in a variety of domains [15]. Ségifcated the state. Thentropyof belief distributionB; is given by:
algorithms have also been developed recently for usingniiete N i i
ized POMDPs (Dec-POMDPs) for multiagent and multirobot col H(By) = *Zlbtlog(bt) 1)

i=

laboration [11]. However, the computational complexitytioése

formulations is more than that of POMDP formulations [2].-Re  \yherel is theith entry of the belief distributed over thé grid
search has also shown that using complex communicatiofestra  ce|ls, With no prior knowledge of target location, the biigeuni-
gies does not necessarily improve task completion times 2is formly distributed and entropy is maximum. The VS-POMDPsim
paper addresses these challenges using hierarchical POMBP 5 choose actions that significantly reduce the entropy giog
enable autonomous active visual sensing on each robot &8tro  he pelief distribution to converge to likely target locats. The re-
collaboration between a team of robots. ward of actiorg at timet is hence defined as the entropy reduction

between belief statB;_, and the resultant belief stale:
3. PROBLEM FORMULATION

Figure 1 summarizes the POMDP hierarchy for visual sensing, R(@) = (Br-1) %(Bt), ) )
processing and collaboration. Each robot uses the higraocl- = Z b't‘log(btk) — Z bt[llog(bt’fl)
cate one or more target objects. The top-level visual sgr(si8)- ]
POMDP determines the sequence of 3D scenes to process to lo- . . o .
cate a specific target, as described in Sections 3.1-3.3 ededr 12 2?3?;?@“;”;:;“%&; gI(;)Sciiﬁ(I)sntZﬁdng)gaet;lI:)t())/sci)tfict)ir:medtlon
chosen scene, the scene processB®)-POMDP determines the
sequence of regions to process in a sequence of images bsing t if isBlockeds;,ay) (©)]
appropriate set of algorithms. The SP-POMDP has one or tyvo la O(z = presents;,a) = Pr(z = presents;, ay) = B
ers depending on the characterization of the learned ofnjedels, ' '
as described in Section 3.4. The hierarchy is then augmevitad
acommunication layethat enables each robot in a team to share O(z = presentsj,a) = 1 -exp{—A u?/20°}
beliefs with teammates to collaborate robustly despitesliatsle O(z = absents;,a,) = 1— O(z = presents;, ay)
communication, as described in Section 3.5. 1 P

else

where the probability of observation “present” in cetliven that

3.1 POMDP Planmng the target is in celf and the focus is on cel, i.e., p(z|sj, a), is a
In real-world domains, the robot has to move and analyzeriff =~ Gaussian distribution whose mean depends on the targeidioca
ent scenes to locate target objects that can exist in diffdéoea- the grid cell being examined and the field of view= f(sj,ay).

tions. Consider the situation where a robot has learned aiiom  The variance of the Gaussian represents the sensitivitgrefasy
map [6] and has to locate a specific target. The 3D area is-repre cues to the object’s distance from the sensor—there is more u
sented as a discrete 2orcupancy gridand each grid cell stores  certainty associated with the observation of a target ateatgr
the probability of occurrence of the target object. The GMDP distance. The factag is a normalizer. If there is any obstacle be-



tween the robot and the target, i.sBlockedsj,ay), B is a small
probability that the target can still be observed. This olet@on
function is used to perform belief updates after sensinigaspro-
vide observations, and to generate observations in thelatiea
experiments. Given these model parameters, belief updateei
VS-POMDP proceeds as follows:

_ O(s,a41,041) 35T (S 841, 5) - Bi(s)
P(Ot+1laes1,br)

POMDP solvers take such a model and compuyteliy that maps
belief states to actionsmr: B; — a1 . In the VS-POMDP, the
computed policy has to minimize entropy B over a planning
horizon. Policy gradient algorithms are used to computgtiiey
in the form of stochastic action choices, i.e., the polidg&ned as
a matrix of “weights” that are used (during plan executi@ptob-
abilistically choose an action for specific belief statgls [ctions

Brsa(s)

4)

in the VS-POMDP require the robot to physically move between

grid cells, expending time and effort. Instead of the foratioh
described above, motion costs are addressed in a postspioge
step, as described in Section 3.3.

3.2 Convolutional Policy

In real-world domains, the state space of the VS-POMDP can

increase exponentially, making it intractable to compiie pol-
icy in real-time even with sophisticated solvers. This Ehade is
addressed by exploiting the local shift and rotation syni@etof
visual processing. Specifically, if the robot is analyzingpecific
grid cell, only the beliefs immediately around that gridl eélange
substantially, i.e., the performance is a function of (aad affect)
only a small number of surrounding cells. The robot capttines
local influence by learning policy kernelbased on daselinepol-
icy for a map with a small number of grid cells. The policy for

a larger map with a larger number of grid cells is generated au

tomatically by an inexpensive convolution operation. Tdgstion
describes the creation of policy kernels and the use of dotigoal
policies for efficient sensing and processing.

3.2.1 Kernel Extraction

Consider the stochastic baseline policy generated for amap,
which has 25 states and 25 actions.

responds to a state. The matrix is re-organized into layensye
each layer corresponds to action weights for a particute sind

is a represented as a 2D matrix of the same size as the map. This

re-organization enables the robot to use the local symesetiie.,
shift and rotation invariance) to extract a kernel withdgngicant
loss of information:

K(s9) = (' @ )9 = [ n(9CK(s-9d5  (8)

= (s;esK) W

whereK is the un-normalized kernety¥ is baseline policy gener-
ated for the VS-POMDP over thex55 map andCK is the convolu-
tion mask of the same size as the target kernel. Since the onask
considers action weights within a local region, the laydrthe re-
sultant kernel are summed up and normalized uSihga matrix
that stores the count of the number of accumulated weightssc
all layers. For instance, ax33 policy kernel is computed by con-
volving a 3x 3 mask with the 5 5 policy layers and normalizing
the weights in the region covered by the mask.

The computed kernel does not assign action weights to glisl ce
further away from the center of the convolution mask. Simese
action weights are usually much lower than values in thedédern

In the 2D matrix of action
weights, each column corresponds to an action and each new co

they can all be set to a small default value:

DAL
wd — & onsstates states ©)
NactionsX Nstates— ZW

where the default action weight is a function of the number of
states Kstateg and actions Nactiond. To prevent the summation
of “small weights” from overwhelming the kernel's weighthien
generating policies for large map&? is revised to make the ratio
of importance assigned to the area covered and left unab\sre
the kernel to be similar over maps of different sizes:

~d_od NsEtates* sZW)
I (e aw) "

whereNE .sandNK.care the number of states in the large map
and kernel respectively, arsd(W) is the number of entries W.

3.2.2 Policy Extension

Once a policy kernel has been learned, it can be used to effi-
ciently compute the convolutional policy for a larger map:

R(9) = (KeCh)(s) = [KECKs-9d5 (@)

Wherer% is the convolutional policyK is the policy kernel and
Cr'% is the convolution mask of the same size as the target map. For
instance, for a 1& 10 map,CE, is a 10x 10 mask over which the
3 x 3 policy kernel is convolved. The desired policy is genatate
one layer at a time by centering the kernel on the state repred
by the layer. Since the kernel covers only grid-cells in alseraa,
other cells are assigned the weight computed in Equatiorl Trem
resultant policy is normalized. Although it may take sonmeetifor
the robot to learn a baseline policy for a small map, it is a-tme
computation. The kernel extracted from a baseline poli@dsdo
be revised only when the robot’s sensors change substgntial

3.3 Motion Costs and Path Planning

Unlike visual search over an image, a mobile robot has tophys
ically move between grid cells. The movement takes time and i
associated with unreliability that has a cumulative eftecthe dis-
tance traveled increases. Each action is hence assignet proe
portional to the distance to be traveled by revising theoactipol-
icy weights during policy execution:

W(i) = w(i) 9)

1y
wheredp: (&, a;) is the distance between the current grid cell and
the candidate grid cell, which is computed using &tiesearch al-
gorithm [20]. TheA* search includes a heuristic cost to the target
grid cell and a path cost to account for obstacles (e.g. sjvallthe
domain map. The revised policy trades off the expectedifiked
of locating the target in a specific grid cell against the chstavel-
ing to that location. When the domain map changes due to esang
in object configurations (e.g., objects are moved and/or obw
stacles are created), the robot automatically revises e using
laser-based simultaneous localization and mapping (SLAY-
rithms. The modified map is used to recompute distances betwe
grid cells and revise action weights for subsequent contiputa

In addition to revising action weights to model motion-tthse
costs, hill-climbing is used to make the search more efficien
large maps. Consider Figure 2, which shows a domain map (sim-
ilar to Figure 8) discretized into grid cells. The green gedhe
current position of the robot after executing the most reaetion.
At this point, there are three grid cells in the map with digantly
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Figure 2: lllustration of hot-spot detection.

higher weights than the other cells: the orange and pinksdrave
w = 0.3 and the blue grid has = 0.2. Since the robot’s current
position is equidistant from the pink and orange grids, éhgrids
have an equal chance of being the next grid cell visited bydhet.
However, given that the robot has three valid candidategmifas
relevance, it makes sense to visit the pink cell first bec#isalso
close to the blue grid cell. Instead of looking for a grid eeth the
largestw’ (Equation 9), the robot therefore selects the path through
the candidate grid cells that has the largest summation @dl-"
ues. Since it is computationally expensive to estimate dimap
path by evaluating all paths through all grid cells in a langap,
the robot detects “hot-spots”, i.e., grid cells with suffitily large
beliefs, and plans a path through them.

To compute hot-spots\ seeds are randomly selected and then
refined based on hill-climbing to arrive at local maxima,,icells
similar to the orange, blue and pink grids in Figure 2. Theste h
spots are considered to be the interesting areas for fuatiadysis.
The robot then computes the values of patfishrough combina-
tions of these hot-spots:

N i
wWP([ho, hy,...,hN]) = Zf(Wn Y da(hj-1,hj))  (10)
= =i

where hy is thenth hot-spothg is the current position of the robot
and other entries are chosen by hill-climbing. The functfois
defined in Equation 9. In Figure 2, the values of thiek-blue-
orangeandorange-pink-blugoaths are @672 and M591 respec-
tively, making the pink grid cell the most likely choice foeibg
analyzed next. This path planning dasst imply that the robot
will move through all the hot-spots—once a robot arrives gtid
cell, the corresponding observation revises the belidfidigion

with sophisticated learned object models, the robot mayl nee
process the entire image. Scene processing is then reduaesirt-
gle POMDP over the image. With either version of SP-POMDE, th
result of scene processing causes a belief update in theQNERP
and subsequent analysis of grid cells until the target isdoor a
time limit is exceeded. The entire hierarchy operates aatimally
and efficiently for dynamic domains.

3.5 Multirobot Collaboration

Consider (next) a team of robots trying to locatey' targets.
Each robot maintains a belief vector for each target, and tise
hierarchical POMDPs to detect each target. This sectioorites
an algorithm for a team of robots to share beliefs and cofkatiedo
locate all targets reliably and efficiently.

We assume that the targets are visually distinguishabletaatd
the observations of different targets are independent di ether.
Each robot now stores a data structure:

{Bi, fi}, vie [1,]TL] (11)

whereB; is the belief vector for a specific targeamong the list of
target objectsTL) and f; is a binary flag that indicates discovery
of a target. The robot also stores an action mépa vector of the
same size as the belief vector. Each entry in this vectoestiire
number of times the robot has visited the correspondingagiid

M= (Mg, M) (12)

wherem; is the count of the number of times grid-celas been
visited. For moving targets, values in the action map deceay o
time if they are not reinforced by more recent visits. Eadhoto
uses the POMDP hierarchy to update the appropriate belitbrse
based on observations. After the belief update, each rdtzoes
the belief information with its teammates by broadcastinpek-
age that includes its current belief vectov$ B;), discovery flags
(Vi f;) and the action map#).

There is uncertainty associated with sensing on each rofmbt a
communication between robots—the information from a teatem
(when received successfully) may reinforce or contradietitfor-
mation acquired by the robot by processing sensory inputshe
same time, the communicated estimates provide usefuhigton
about map locations that the robot has not visited. Each furace
merges own and communicated beliefs by assigning a trusirfiac
beliefs based on whether the robot that generated thisf belitor

and hence the planned path. The path planning ensures that th has recently observed the corresponding map region:

robot’s attention is directed towards the most interesgirg cells.

3.4 Scene Processing
Invoking the VS-POMDP policy computed for a specific target

,own .j,own j,comm . j,comm
i ,own ,comm
mi] + mi]
Vje|LN], Viell|TL|]

causes a 3D scene to be chosen for analysis. The robot moves

and captures images of this scene. As stated earlier, theteva
options for scene processing depending on the scene caiygplex
and learned object models—specific examples are provid8ddn
tion 4. In uncluttered scenes with unique objects, the SRIBP

is a two layered POMDP as described in [22]. Each input image
is analyzed to extract salient regions of interest (ROIEHROI is
modeled as a lower-levelL[ )-POMDP, where actions are infor-
mation processing operators (e.g., to detect color or $hape LL
policy provides the best sequence of operators to apply peafc
ROI to detect the target. The LL policies of all image ROIsused

to automatically create a high-leveii( )-POMDP. Executing an
action in the corresponding HL policy directs robot’s atiemto a
specific ROI. The result of executing the corresponding Llicgo
causes an HL belief update and action choice until presenab-o
sence of the target in the image is determined. In cluttecedes

whereb)! is ji" entry of the belief vector of thé" target, while
)0 and m°°™" are action map entries of the robot and the

my my
teammate whose communicated belief is being merged. Adgtiou
this merging process can be sensitive to processing otdeorks

well in practice. Next, the target discovery flags are updtate
F = { P £V € [1, [T L[]} (14

where each target is considered to be found when at leasbboée r
has localized it. Once a target is discovered, a robot thptires a
new target chooses an undiscovered object from the Tigt]):

target| D = argmax{maxB;(j)} (19)
i

where the robot chooses the target object whose locatienribst
certain about, i.e., the target that is likely to requireld@st amount



of work to localize. The robot makes this choice based onecuirr
beliefs that include the beliefs communicated by teammatbss
target selection approach (intentionally) includes sowerlap of
targets among robots to account for unreliable commumisabut
robots in the team distribute tasks and rarely go to the sargett
Furthermore, an additional cost is included to trade-cdtatice of
travel against expected likelihood of locating the targetpfiority
of target, if known), similar to Equation 9.

4. EXPERIMENTAL RESULTS

This section describes the results of experiments perfortoe
evaluate the robot’s ability to: (a) usmnvolutional policiesand
the POMDP hierarchy for reliable, autonomous and efficient v
sual sensing and processing in complex domains; and (bgaprob
bilistically merge own beliefs with communicated beliefs@am-
mates to achieve robust collaboration. Experiments werneéhe
conducted in simulation and on robots to evaluate the faligw
hypotheses: (I) the constrained convolution (CC) poliapare ef-
ficient than the non-convolutional (i.e., baseline) polidyile pro-
viding similar accuracy; (IlI) the POMDP hierarchy resuftdietter
target localization in comparison to heuristic searchtstyias; and
(1) the belief merging strategy enables a team of robotshtare
beliefs and collaborate robustly despite unreliable comination.

4.1 Experimental Setup

Before describing the experimental results, this sectastdbes
the initial setup and the modifications necessary for erpanmial
trials on robots. The initial setup consisted of a semi-stiped
learning phase, where some objects with known labels waregl
in front of the robot. The robot applied different procegsaper-
ators on images of these objects to learn object models and so
model parameters of the VS-POMDP and SP-POMDP (e.g., ob-
servation functions, reward specifications). Exampleseafried
object models are described in Sections 4.3.1 and 4.3.2rokue
also used data from a laser range finder to learn a domain ratip th
was revised continuously during experimental trials.

For any detected object, the robot computes the relativardie
and bearing using geometric transforms. However, inclyain-
entation as a parameter in the observation set will destr®yocal
symmetry in visual sensing. The belief update in Equationa4 w
therefore modified as:

if —~target (16)

B¢y O5:20)FssT(sas)b(s) _ O(s.a0)b(s)
(s)= Pr(oja,b) ~ Pr(ofab)

else

B(¢) = 0(8,4,0) 55sT(5.43)b(s) _ O(s,4 0)b(s)

Pr(o|&,b) Pr(o|&b)

whereB(<) is the updated belief for staseafter actiora. Since the
transition functions are identity matrices, the updateagign can
be simplified as shown. The robot’s estimate of its own pasiéind
the relative distance and bearing of a detected target acktadind
the target’s global location in the domain map. The belighen
updated as if the action corresponding to this global locakiad
been executeda. "This belief update scheme also models the fact
that false positives are rare while false negatives are comaien
sensing (or processing) actions are executed on mobilés.obor-
thermore, a robot moving between grid cells may receive@sgns
inputs relevant to the current task, e.g., it may unexpégcteave
the target in its field of view. The robot therefore periodlicaro-
cesses input images at low-resolution to update the cubedigf.
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4.2 Simulation Experiments

All three hypotheses were evaluated extensively in siranat
using domain maps that represented different sectionseofridp
shown in Figure 8. Each data point in the figures in this sactio
is the average of 1000 simulated trials. To evaluate hypighe
a baseline policy computed for a8 map was used to extract a
policy kernel that was used to compute policies for largepsna
Figure 3 compares the CC policy against the baseline patice f
7 x 7 map—the x-axis shows the number of times the policy was
invoked, as a fraction of the number of states. In each tfied,
initial positions of the target and the robot were set rangcand
the trial was deemed successful if the target was localiae@ctly.
There is no statistically significant difference in the &ripcaliza-
tion accuracies of the CC and baseline policies. Howevéakis
a few hours to compute the baseline policy for the 7 map.

Hypothesis Il was evaluated by comparing the CC policy’s per
formance against a heuristic policy that makes greedymctioices
or selects random actions based on the presence/absenderof p
knowledge. The results shown in Figure 4 correspond toxa 15
convolutional policy generated from a5 kernel. The locations
of the robot and the target were randomly selected for eaah tr
Existence of prior knowledge was simulated by adding biabéo
initial belief—70% of the belief was uniformly distributeaver
all grid cells, while the remaining 30% was Gaussian-disited
around the target. To generate the data points in Figuraals tr
were terminated after a certain distance had been travatbthe
grid cell with the largest belief value was taken to be thgets lo-
cation. The robot’s performance is scored as the weightdmtie
between the actual and detected locations of the targeurd-ify
shows that the CC policy significantly reduces the numbercef a
tion steps required to locate the target with high accuracy.

Experiments were conducted next to evaluate the multirotlet
laboration capability, i.e., hypothesis Ill. Assumingttiadl robots
in a team move at the same speed, the average distance moved by
the robots in a team (in an episode/trial) was used as a measur
of the team'’s performance. In each trial, robots and targete
placed randomly in a grid map, with no more than one robotrer ta
getin each grid-cell. A Gaussian bias (20%) was added tattiali
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Figure 5: (a) Belief merging and hierarchical POMDPs reisutbbust multirobot collaboration; (b) Performance imgs if prior informa-
tion is incorporated; and (c)Performance is robust to dedpgmmunication packages.

Table 1: Proposed algorithms enable a robot team to lodaligets
more accurately than random and heuristic search strategie

Algorithm | Normalized covered distance
0.5 1.0 1.5 2.0
Random | 0.033| 0.171| 0.382| 0.537
Heuristic | 0.079| 0.334 | 0.549 | 0.817
Proposed| 0.153| 0.544 | 0.825| 0.957

beliefin a 3x 3 area around every target—the belief vector was then
normalized. When the belief in a grid cell exceeded, ®he grid
cell was assumed to contain a target. To simulate unrelizire
munication, acommunication success ra(€ESR) parameter was
introduced and setta D, i.e., every other broadcasted package was
not received. Figure 5(a) shows results for different coratons
of robots and targets in a 2515 grid map—the robots collaborate
effectively to find the targets. Similar results were obedgirfor grid
maps of different sizes (4 4 to 25x 25) that represent different
sections of the real-world office domain shown in Figure 8.

Next, the ability of the proposed collaboration algorithmnirt-
corporate prior knowledge of target locations was evatliatég-
ure 5(b) shows examples of the team’s performance for afépeci
number of robots and targets as a function of the bias in tkialin
belief. As expected, the performance improves, i.e., thetare
able to localize targets faster, as more information akweiidca-
tions of targets is made available.

Next, the effect of communication uncertainty on multirobol-
laboration was measured. Figure 5(c) shows results of expats

Robot 1 Target 1 Target 2 Robot 2

Figure 6: Simulated trials with 2 robots and 2 targets. Qiteta
are shown irblue targets indark redand robot starting positions
in red. Other cells show the number of times they were visited
using colors ranging frorblueto red along the visible spectrum.

a target is sighted, the robot should localize the targetrately.
The actions taken by the robots are recorded over 100 siedllat
trials—each trial ends when the targets are located. InrEigu
each grid cell's color changes frobiue to red along the visible
spectrum based on the relative number of visits by a robosutt®
are shown separately for each robot. Figure 6 shows thaaabst
are avoided and grid cells near the targets are visited nftea o
than other grid cells. In the absence of prior knowledgerethe
no clear path from initial robot positions to the targets.eTh-
dius of the yellow region reflects the largest distance cdaive
observation. The two robots start searching for differargéts in
different trials, but there are hardly any trials when thethigo for
the same target. Similar performance is observed for éiffiegrid
maps with different numbers of targets and robots.

as a function of varying CSR, where robot teams were asked to 4.3 Robhot Experiments

locate two targets. Though a low likelihood of successfuhow-
nication hurts the team’s performance, the target locidinacapa-
bility soon stabilizes and is then no longer sensitive toGER.

Table 1 shows results of an experiment where two robots-ocal
ized two targets in a 15 15 map. The initial positions of robots and
targets were randomly assigned in each trial. The POMDRebas
approach is compared to a policy that randomly selectsrectiod
assigns targets to robots, and a heuristic policy whicttsetargets
and actions based on the grid cell with the largest beliefsifia-
late more realistic scenarios, prior belief was assignedutiple
areas in the map (including the target location). The pregap-
proach results in significantly better performance, with tbbots
traveling a much smaller distance to localize targets wigfh fac-
curacy. Over extensive simulation experiments (and rofialst
see below) in different maps 33 to 25x 25), using the hierarchi-
cal POMDP and collaboration strategy enables a team of sdbot
collaborate and localize target objects reliably and efity.

Figure 6 is a pictorial representation of the proposed amiro
for multirobot collaboration, with two robots repeatedbgélizing
two targets in a 2& 20 map with obstacles. The robots had no prior
knowledge of target locations. Intuitively, each robot whdfirst
look around its starting position and then explore otheasr®nce

(a) Erratic robot

(b) Nao robots
Figure 7: Robot platforms used in experiments.

Experiments were conducted on a wheeled robot and a team of
humanoid robots to test the proposed algorithms for rediadifi-
cient and autonomous sensing and collaboration.

4.3.1 Experiments on Wheeled Robot

The algorithms for POMDP-based visual sensing and process-
ing were evaluated on thErratic robot platform shown in Fig-
ure 7(a). This robot is equipped with stereo and monocular-ca
eras, in addition to a laser range finder that can provideeramg
formation over an angular range @f13%° for a distance of 3@



Figure 8: Occupancy-grid map of the third floor of the Comp&eience department at Texas Tech University.

All processing is performed using an on-board dual-co6&2i z
processor. The robot was used to conduct experiments in-an in
door office domain—the corresponding occupancy-grid map wa
generated using a SLAM algorithm, as shown in Figure 8. This
map corresponds to an entire floor of the CS department asTexa
Tech University—it has three research labs, 13 faculty edfiand

a conference room. The experiments reported below werelynost
conducted over the shaded portion of this map, which indudie
research labs and nine rooms—this region was discretizedétis

to form the grid map.

Given the complexity of the domain, objects were charaoteki
using color distributions and the Binary Robust Indepenhd&ln
ementary Features (BRIEF) [5], i.e., local image gradier$
though BRIEF features are not inherently rotation and sosbei-
ant, images of an object (captured during the learning phease
automatically rotated and scaled to generate a set of imhges
encapsulate a range of rotations and scale changes—feaxwe
tracted from these images are used to populate the objeatimod
Figure 9 shows a screenshot of local feature detection anchma
ing on a test object. Target objects consisbokes cups books
and otherrobotsin complex (i.e., cluttered) backgrounds.

Object Detection Template

Figure 9: BRIEF descriptor.

To enable modular software architecture, the popular Robot
Operating System (ROS) [17] was installed on the robot aed th
algorithms described above were implemented on top of R@S. F
ure 10 presents an overview of the implementation—it is & sub
set of the graph generated by the ROS commanggr aph>.
The planning algorithms are placed within tlag_plannernode
that is the control center of the system. It repeatedly asoeyes-
sages from the/s_visionnode, which processes input images to
provide the ID of any detected object, in addition to relatdis-
tance, bearing and detection probability, in the pack> pack-
age. Belief updates occur under two situations: (1) roboves

response is usually caused by a dynamic change in the emaran
e.g., a door being closed, which makes an office unavailaliiest
robot. The node of the platform driverratic_base_drivemoves

the robot platform based on the velocity commamail_vel . The
hokuyo_nodgrovides the laser (range) readings to the motion con-
trol node and the localization no@encl Theamclnode computes
the robot'spos (position and orientation) and theap_servere-
vises the domaimap continuously.

map_server
goal navigation_goals

\‘nap
/ﬁee:iback

move_base
cmd_vel
odom

erratic_base_driver

tf

scan
pos
scan

hokuyo_node »
goal As
v_pack
O -

Figure 10: Node connections in ROS.

Over a sequence of 40 trials, the robot successfully idedttfie
desired target objects. The robot only fails when a validh pat
the target does not exist. The performance was significhetier
than the heuristic search strategy used in Table 1. Videdbeof
robot's performance can be viewed onlinewv. cs. t t u. edu/
~snohan/ Movi es/ Pl anni ng/ vi spl an_aanas12. np4

4.3.2 Experiments on Humanoid Robots

The humanoid Nao robots [13] were used for multirobot col-
laboration experiments because multiple wheeled robots wet
available. Since stable navigation is a challenge on huidanex-
periments were conducted in the robot soccer domain, whesna
of robots play a competitive game of soccer oma>46m indoor
soccer field. This moderately constrained domain still wags all
the collaboration challenges we seek to address. Each hatsot
a domain map and localizes based on domain landmarks such as
goals and field corners (whose positions in the map are kndem)
tected in input images. All computation is performed on+dahe
robots using a 50d@Hz processor.

Target objects include boxes and balls of different colord a
shapes, as shown in Figure 7(b). Since objects are compbked o

at a desired grid cell and processes some images of the scene—mogeneous colors, gradient features cannot be used todbpatt

updates consider presence or absence of the target obje@) o
robot detects the target by processing images during r@stga
to a desired grid cell. The planner node sends the coordiraite
any desired grid cell to the motion control nodwve_baseand

then waits for a response from the node, which can be one of:

arrived,cancel edornot-arrived. Thenot-arri ved

models. The robot has to process 30 frames/sec and congmatiati
resources are limited. Algorithms that detect object catat shape
were hence used. Scene processing was modeled as a twedayer
POMDP, with a POMDP that selects operators to apply on each
salient region of interest in an image, and a POMDP that otmtr
the selection of image ROIs for processing. The transferoof ¢



trol between SP-POMDP and VS-POMDP occurred as described [6] G. Dissanayake, P. Newman, and S. Clark. A Solution to the

in Section 3.4. Obstacles were artificially introduced taéothe
robot to walk around to see the desired targets.

Experiments consisted of 25 trials, where a team of robatgda
detect and localize one or more targets. The robots suctiydst
calized all targets in all trials, and the performance wgsificantly
better than the heuristic (i.e. greedy) policy for target aation se-
lection, similar to the results reported in Table 1. Theatodiration

strategy was also robust to sudden changes in the team compos
tion. For instance, when a robot was suddenly introducechin a

existing team of robots, the new robot automatically (anididy)
chose to search for a relevant target using the communibatezts
of teammates. Similarly, when a robot was removed from thmte
the remaining robots automatically distributed the tasgehong

themselves. These experiments show that the robots araable

use visual cues to reliably, efficiently and autonomoushyseehe
environment and collaborate with teammates.

5. CONCLUSION

This paper described an approach for reliable, efficientand
tonomous visual sensing and multirobot collaboration. edichi-
cal POMDP with convolutional policies, adaptive obsemafiunc-
tions, policy re-weighting and automatic belief propagatnables
each robot to adapt sensing and information processingtdahk
at hand in dynamically changing environments. Each robatesh
its beliefs with teammates and the multirobot collaboratabgo-
rithm enables the robot to merge its beliefs with the comicated
beliefs of teammates. As a result, a team of mobile robotbles a
to collaborate robustly in simulation and in the real-worl@he
experiments reported in this paper assumed that robotsdiane
lar actuation capabilities. One direction of further irgation is
to model and incorporate the sensing and actuation capeditf
heterogeneous robot platforms in the collaboration aligori Ex-
periments will also be conducted using a larger number o$icly
robots and targets. Furthermore, the proposed hierarchbevi
adapted to inputs from other sensors on mobile robot platgor
The ultimate goal is to enable reliable, efficient and autooas
multirobot (and human-robot) interaction in complex andayic
real-world application domains.
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