
Comparative Evaluation of MAL Algorithms
in a Diverse Set of Ad Hoc Team Problems

Stefano V. Albrecht
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.v.albrecht@sms.ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.ramamoorthy@ed.ac.uk

ABSTRACT
This paper is concerned with evaluating different multiagent
learning (MAL) algorithms in problems where individual
agents may be heterogenous, in the sense of utilizing dif-
ferent learning strategies, without the opportunity for prior
agreements or information regarding coordination. Such a
situation arises in ad hoc team problems, a model of many
practical multiagent systems applications. Prior work in mul-
tiagent learning has often been focussed on homogeneous
groups of agents, meaning that all agents were identical and
a priori aware of this fact. Also, those algorithms that are
specifically designed for ad hoc team problems are typically
evaluated in teams of agents with fixed behaviours, as op-
posed to agents which are adapting their behaviours. In this
work, we empirically evaluate five MAL algorithms, represent-
ing major approaches to multiagent learning but originally
developed with the homogeneous setting in mind, to under-
stand their behaviour in a set of ad hoc team problems. All
teams consist of agents which are continuously adapting their
behaviours. The algorithms are evaluated with respect to a
comprehensive characterisation of repeated matrix games,
using performance criteria that include considerations such
as attainment of equilibrium, social welfare and fairness. Our
main conclusion is that there is no clear winner. However, the
comparative evaluation also highlights the relative strengths
of different algorithms with respect to the type of performance
criteria, e.g., social welfare vs. attainment of equilibrium.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]

General Terms
Algorithms, Experimentation

Keywords
Multiagent Learning, Agent Coordination, Ad Hoc Teams

1. INTRODUCTION
Game theory provides a mathematically well defined frame-
work for the analysis of multiagent interactive decision mak-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing problems. A game consists of a number of players, a set of
actions for each player, and a payoff function for each player.
A large portion of the theory is developed under the assump-
tion that each player knows the structure of the game, i.e. the
action sets and payoff functions of all players. This is known
as a complete information game. A more complicated set-
ting arises if the players have only partial information about
the structure of the game, e.g. no player knows the payoff
function of any other player. This is called an incomplete
information game. While this type of game has been stud-
ied for over half a century (notably by Harsanyi [9–12]), the
problem of incomplete information in multiagent learning
(MAL) has received relatively lesser attention. In a version of
this setting, called the ad hoc team problem [29], one seeks
to design an autonomous agent which is able to collaborate
efficiently with a previously unknown group of agents, in the
absence of any prior coordination between the agent and its
counterparts chosen in an ad hoc way.

This problem is motivated by numerous practical and im-
portant applications. As we increasingly employ autonomous
agents in a growing number of areas, ranging from teams of
robots in automated factories to internet trading agents, it
is likely that these agents will have to collaborate with each
other in nontrivial ways. As teams are augmented and con-
tinually modified over a long lifetime of operation, we would
like agents to be able to learn how to collaborate efficiently
with other agents, despite not knowing – a priori – who they
are. An example of such interaction is given by Stone and
Kraus in [31]. Another example comes from the domain of
human-robot interaction in which a robot has to collaborate
with a human, especially when the robot is not given any
specific information about the characteristics of the human
participant it must collaborate with.

The literature on the ad hoc team problem includes a num-
ber of proposals for models of interaction and learning. One
approach is to try to learn to categorise other agents accord-
ing to their behaviour or to use a set of role templates to
constrain the interactions, e.g. [2, 7]. While these are use-
ful ideas, it is worth noting that many realistic interactive
decision making problems involve one further feature not
captured in these models – multiple agents that are simulta-
neously trying to learn and adapt their behaviour. In such
a setting, the environment is inherently nonstationary [37]
and the interactive behaviour needs more careful treatment.
Motivated by this general issue, this paper reports on an
empirical study into the behaviour of multiagent learning al-
gorithms in ad hoc teams.

There are two open issues with current MAL algorithms

in the literature. First, we note that most MAL algorithms
(e.g. [1,3,5,6,8,14,17,23,32]) were primarily evaluated in ho-
mogeneous groups of agents, meaning that all agents in the
group were identical, and all agents were a priori aware of this
fact. Second, virtually all MAL algorithms which were specif-
ically designed for ad hoc team problems (e.g. [2,7,30,31,36])
were primarily evaluated in teams of agents with fixed be-
haviours. In this work, we evaluate five MAL algorithms of
the first sort in a series of ad hoc team problems. In addi-
tion, every team consists of agents which are continuously
adapting their behaviours. The algorithms are evaluated in a
comprehensive set of repeated games, ranging from games in
which the players agree on what is most preferred, to games
in which the players disagree on what is most preferred. Our
performance criteria include the convergence rate, the final
expected payoff, social welfare and fairness, and the rates of
several solution types.

Our intention was to identify those approaches covered by
our selection of algorithms which may be better suited for
ad hoc team problems. However, as we will show, our results
indicate that there is no clear favourite among the algorithms.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the experimental setup, including algorithms,
games, and performance criteria. Section 3 presents and anal-
yses the results of our experiments. Section 4 discusses related
work and Section 5 concludes our work.

2. EXPERIMENTAL SETUP

2.1 Algorithms
Our selection of algorithms is motivated by the range of
approaches it covers. We tested two algorithms that model
their opponents and three that do not model their opponents:

• Joint Action Learning (JAL) [5, 32]

• Conditional Joint Action Learning (CJAL) [1]

• Win or Learn Fast with PHC (WOLF-PHC) [3]

• Modified Regret-Matching1 (RegMat) [14]

• Nash Q-Learning (NashQ) [17]

JAL tries to model its opponents by learning their marginal
action probabilities. It uses these probabilities to compute
the expected payoffs of all of its actions. CJAL extends JAL
in that it learns the action probabilities of its opponents con-
ditioned on its own actions. WOLF-PHC uses a hill climbing
method in the space of mixed strategies to find an optimal
strategy. RegMat minimises the regret it feels for not having
played any other actions. Finally, NashQ tries to learn the
payoff distributions of all agents and plays a Nash equilib-
rium strategy in each state, regardless of the actual behaviour
of its opponents.

1We use the Hannan-consistent version of RegMat. This
means that for each action âi, the Hannan regret Rt(âi) =
1
t

∑t
τ=1 ui(âi, a

τ
−i) − 1

t

∑t
τ=1 ui(a

τ) will be ≤ 0 as t → ∞,
where aτ denotes the joint action played at time τ (see [14]).

Algorithm 1 Modified evaluation procedure

Initialise: Empty vector Mi for each agent i ∈ N
loop

Randomly generate a strictly ordinal 2× 2× 2 game Γ
Randomly generate a team B from N with |B| = 2
for all i ∈ N do

Play Γ with agents {i} ∪B, where agent i is player 1
Compute metrics for agent i and store them in Mi

end for
end loop
Return averaged metrics avg(Mi) for each i ∈ N

2.2 Games
The algorithms are evaluated in a range of repeated games.
A repeated game Γ is a tuple (N, (Ai)i∈N , (ui)i∈N), where
N = {1, ..., n} is the set of players (or agents), Ai is the
set of actions available to player i, and ui : A → R is the
payoff function of player i, where A = A1 × ... × An. In
each repetition of the game, each player i ∈ N simultane-
ously chooses an action ai ∈ Ai and receives the payoff
ui(a1, ..., an). Each player i chooses its actions based on a
strategy πi : Ai → [0, 1], which is a probability distribution
over the set Ai. A strategy πi is called a pure strategy if
πi(ai) = 1 for some ai ∈ Ai. A strategy is called a mixed
strategy if it is not a pure strategy. Given a strategy profile
π = (π1, ..., πn), the expected payoff to player i is defined as
Ui(π) =

∑
a1,...,an

π1(a1) ∗ ... ∗ πn(an) ∗ ui(a1, ..., an).

Our experiments are divided into three parts. The first two
parts evaluate the algorithms in the set of all structurally
distinct strictly ordinal 2× 2 no-conflict and conflict games,
respectively (based on [25]). A m1 × ...×mn game is one in
which there are n players, each of which with mi actions. In
an ordinal game, each player ranks each of the k =

∏
imi

possible outcomes from 1 (least preferred) to k (most pre-
ferred). An ordinal game is called strictly ordinal if no two
outcomes have the same rank. An ordinal game is called
a no-conflict game if all players have the same set of most
preferred outcomes, otherwise it is called a conflict game. Fi-
nally, a set of games is said to be structurally distinct of no
game in the set can be reproduced by any transformation of
any other game in the set. Possible transformations include
interchanging the rows, columns, players, and any combina-
tion of these in the payoff matrix of the game.

We divided the games into no-conflict and conflict games
because these define two distinct levels of difficulty. In a
no-conflict game, it is relatively easy to arrive at a solution
that is best for all players since all players have the same
most preferred outcomes. However, in a conflict game, there
is no such outcome. Therefore, the agents will have to arrange
some form of a compromise. This requires reliable coordi-
nation mechanisms, especially in the context of ad hoc teams.

The third part of our experiments uses a modified version
of the evaluation procedure proposed by Stone et al. [29]. The
procedure tests the algorithms in a number of randomly gen-
erated strictly ordinal 2×2×2 games. Each team may contain
multiple agents of the same type. Every game is repeated
for each algorithm under the same conditions. Algorithm 1
shows the pseudo-code of the procedure.

2.3 Performance criteria
This section provides definitions of the performance criteria

used in our experiments. The definitions are based on the no-
tion of plays of repeated games. A play PΓ of a repeated game
Γ is a tuple ((πt)t=1,...,tf , (a

t)t=1,...,tf , (r
t)t=1,...,tf), where

t ∈ {1, ..., tf} denotes the time, tf denotes the final time of
the play, πt = (πt1, ..., π

t
n) denotes the strategy profile at time

t, at = (at1, ..., a
t
n) denotes the joint action at time t, and

rt = (rt1, ..., r
t
n) denotes the joint payoff at time t.

2.3.1 Convergence rate
The convergence rate of an agent is defined as the percent-
age of plays in which the agent converged. Let PΓ be a play
of some repeated game Γ. We say that agent i converged in
PΓ if its strategies πti stay within a tolerance bound of ±5%
in the final 20% of the play. Formally, agent i converged in
play PΓ if for all t ∈ {ts, ..., tf} and j ∈ {1, ...,mi}, where
ts = 0.8 tf , we have |πtsi (j)− πti(j)| ≤ 0.05.

A high convergence rate is not necessarily better than a
low convergence rate. However, we argue that it may be use-
ful if an agent has a high convergence rate as this means
that the other agents will have to adapt to one less opponent
(that is, once the agent has converged).

2.3.2 Final expected payoff
The final expected payoff of an agent is an approximation of
the agent’s expected payoff after having learned for tf repe-
titions. The approximation is based on the final 20% of the
play. Let PΓ be a play of some repeated game Γ. The final
expected payoff of agent i in play PΓ is formally defined as

r̄i = 1
tf−ts+1

∑tf
t=ts

rti , where ts = 0.8 tf . This is an impor-

tant metric because it is a major indicator of the algorithm’s
individual performance.

2.3.3 Social welfare and fairness
Let PΓ be a play of some repeated game Γ. We define the
social welfare and fairness of play PΓ, respectively, as the
sum and product of the final expected payoffs r̄i of all agents
i ∈ N . Formally, this corresponds to

∑n
i=1 r̄i for the social

welfare, and
∏n
i=1 r̄i for the social fairness. These metrics are

useful for the assessment of an algorithm’s team performance.

2.3.4 Rate of different solution types
We measure the rates of four different solution types. The
definitions in the following sections rely on the notion of the
averaged final profile. Let PΓ be a play for some repeated
game Γ. The averaged final profile (or AFP) of PΓ is the
average of all strategy profiles in the final 20% of the play.
Formally, we denote the AFP by π̄ = (π̄1, ..., π̄n), where

π̄i = 1
tf−ts+1

∑tf
t=ts

πti and ts = 0.8 tf . We use the final 20%

of the play to approximate mixed strategies for agents that
play pure strategies only (such as JAL and CJAL).

Nash equilibrium rate.
The Nash equilibrium (NE) rate is defined as the percentage
of plays in which the AFP constitutes a Nash equilibrium.
A strategy profile π = (π1, ..., πn) is a Nash equilibrium if
Ui(π1, ..., πi, ..., πn) ≥ Ui(π1, ..., π̂i, ..., πn) for all players i
and all strategies π̂i. Given a play PΓ of a repeated game Γ,
we determine if the play resulted in a Nash equilibrium by
solving the following linear programme for each player i ∈ N :

Maximise: Ui(π̄1, ..., πi, ..., π̄n)
Subject to: ∀j ∈ Ai : πi(j) ≥ 0∑

j∈Ai
πi(j) = 1

We denote the optimised profile for player i by πi. If, for
any i ∈ N , the expected payoff under the optimised profile,
Ui(π

i), exceeds the expected payoff under the AFP, Ui(π̄),
by more than 5%, then we conclude that the play PΓ did not
result in a Nash equilibrium. Formally, we define PΓ to re-

sult in a Nash equilibrium if ∀i ∈ N : Ui(π
i)

Ui(π̄)
≤ 1.05.

Pareto optimality rate.
The Pareto optimality (PO) rate is defined as the percent-
age of plays in which the AFP is Pareto-optimal. A strategy
profile π is Pareto-optimal if there is no other profile π̂ such
that ∀i ∈ N : Ui(π̂) ≥ Ui(π) and ∃i ∈ N : Ui(π̂) > Ui(π).
Similar to [1], we determine if a profile is Pareto-optimal by
measuring its orthogonal distance to the Pareto front.

Consider a repeated game Γ. The space of possible ex-
pected (joint) payoffs of Γ is a convex polytope in Rn that
has one dimension for each player i ∈ N . It is defined as the
convex hull of all joint payoffs (u1(a), ..., un(a)) for all joint
actions a ∈ A1 × ...×An. Each point in this payoff polytope
corresponds to a tuple of expected payoffs (U1(π), ..., Un(π))
for some profile π = (π1, ..., πn). The Pareto front of a payoff
polytope Φ is defined as the set of Pareto-optimal faces of Φ.
A face φ of Φ is Pareto-optimal if the corresponding strategy
profiles of all points on φ are Pareto-optimal. Now, given a
play PΓ of Γ, we say that it results in a Pareto-optimal solu-
tion if the minimal orthogonal distance of its AFP, π̄, when
projected onto the payoff polytope Φ of Γ, to the Pareto front
of Γ is not greater than 0.1. Tests indicate that this value
works well for ordinal games.

Figure 1 shows the payoff polytope of a 2×2 game. The pay-
off table of the game is given in the figure. Player 1 chooses
the row and player 2 chooses the column. The elements of
the table contain the payoffs to player 1 and 2, respectively.

0 1 2 3 4 5
0

1

2

3

4

5

Payoff to player 1

Pa
yo

ff
to

 p
la

ye
r 2

1, 1 4, 1
1, 4 3, 3

Figure 1: Example of a Pareto front.

The asterisks in the plot mark the four payoff pairs. The
edges correspond to the faces of the polytope. Together, they
define the convex hull of all payoff pairs. The solid edges show
the Pareto-optimal faces of the polytope. Together, they de-
fine the Pareto front of the payoff polytope. This means that
every strategy profile whose expected payoff is on2 the Pareto
front constitutes a Pareto-optimal profile.

2Or, as in our case, close to the Pareto front.

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 1 3.9866 7.9720 15.9063 1 0.9920 0.9920 0.9920

CJAL 1 3.9831 7.9663 15.8874 1 0.9897 0.9897 0.9897
WOLF-PHC 0.9996 3.9449 7.8908 15.6426 1 0.9638 0.9638 0.9638

RegMat 0.9990 3.9107 7.8170 15.3906 0.9954 0.9457 0.9457 0.9457
NashQ 0.9987 3.9840 7.9733 15.9144 0.9954 0.9939 0.9939 0.9939

Table 1: Results for no-conflict games.

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 0.8901 3.0140 6.0592 8.9997 0.8982 0.7781 0.7021 0.6164

CJAL 0.9456 3.0326 6.0978 9.0900 0.8470 0.8050 0.7184 0.6250
WOLF-PHC 0.9430 3.0392 6.0620 9.0517 0.9047 0.7636 0.6992 0.6142

RegMat 0.8673 3.0313 6.0368 8.9610 0.8946 0.7662 0.7000 0.6109
NashQ 0.9990 3.0446 6.0667 9.0755 0.8722 0.7767 0.6946 0.6097

Table 2: Results for conflict games.

Welfare/Fairness optimality rate.
The welfare optimality (WO) and fairness optimality (FO)
rates are defined as the percentage of plays in which the AFP
is welfare-optimal and fairness-optimal, respectively. Given
a play PΓ of a repeated game Γ, we say that it results in
a welfare-optimal (fairness-optimal) solution if the welfare
(fairness) of its AFP is not more than 5% lower than the max-
imum welfare (fairness) of Γ. The maximum welfare (fairness)
of a game is the highest possible welfare (fairness) achiev-
able by any strategy profile.

Given a game Γ, we compute its maximum welfare by solv-
ing the following non-linear optimisation problem:

Maximise:
∑
i∈N Ui(π)

Subject to: ∀i ∈ N ∀j ∈ Ai : πi(j) ≥ 0
∀i ∈ N :

∑
j∈Ai

πi(j) = 1

Similarly, we compute its maximum fairness by solving the
following non-linear optimisation problem:

Maximise:
∏
i∈N Ui(π)

Subject to: ∀i ∈ N ∀j ∈ Ai : πi(j) ≥ 0
∀i ∈ N :

∑
j∈Ai

πi(j) = 1

We denote the optimised profile of the first problem by
πw and the one of the second problem by πf . Then, for a
given play PΓ, we say that it resulted in a welfare-optimal

solution if W (πw)
W (π̄)

≤ 1.05, where W (π) =
∑
i∈N Ui(π). Simi-

larly, we say that it resulted in a fairness-optimal solution if
F (πw)
F (π̄)

≤ 1.05, where F (π) =
∏
i∈N Ui(π).

2.4 Parameter settings and selection strategies
With the exception of RegMat, all algorithms are based on
Q-learning [33]. This means that they use a table Q to store
estimated values for each joint action a ∈ A. The values are
updated using a formula of the form Q(a)← (1−α)Q(a)+α r,
where r is the payoff to the algorithm, and α is the learn-
ing rate. We use a constant learning rate of α = 0.1 for
all algorithms throughout all experiments. This violates the
standard conditions for stochastic approximation [18], but
enables the algorithms to learn continuously.

Furthermore, all algorithms except RegMat use a selection
strategy to choose their actions. We use an ε-greedy strategy
for all algorithms. Therein, the algorithm chooses a random
action with probability ε, and the greedy action (i.e. the ac-
tion that is currently believed to have the highest expected

payoff) with probability 1− ε. We use a constant exploration
rate of ε = 0.05 for all algorithms. RegMat chooses its ac-
tions similar to ε-greedy. Here, the parameters δ and γ do
the job (see [14]). We set these to δ = 0.1 and γ = 0.2 for all
experiments.

Finally, for WOLF-PHC, we need to specify two additional
learning rates δw and δl with δl > δw (see [3]). The algorithm
uses the learning rate δw if it believes itself to be “winning”,
and it uses the rate δl if it believes itself to be “losing”. We
use a setting of δw = 1

1000+t
and δl = 2δw, where t denotes

the time (or current repetition) of the game.

We tested these settings in a series of experiments and
found them to be working well. Nonetheless, the settings are
likely to be sub-optimal. This, however, is irrelevant for our
purposes since we are not considering the rate at which the
algorithms learn about the action values or explore the envi-
ronment. This can be neglected insofar as that an optimised
parameter setting, when considered in the long-run, will not
lead to fundamental improvements (such as an enhanced ca-
pability to learn Nash equilibria). Instead, we chose to use
identical or similar parameter settings for all algorithms in
order to simplify the analysis of the results.

3. EXPERIMENTAL RESULTS
This section presents and analyses the results of our exper-
iments. It is important to note that the performance of an
algorithm may depend on the player position it takes on. To
account for this, we repeated each play once for every per-
mutation of the agent order. We call this process a sweep.

In the following, whenever we refer to statistical signifi-
cance, this is based on a paired t-test with a significance level
of 5%. We use the notation “Alg1 / Alg2” if the performances
of the algorithms Alg1 and Alg2 are statistically equivalent
(i.e. the difference is statistically insignificant). All reported
results are averaged over all plays, games, and teams.

3.1 No-conflict games
The first part of our experiments evaluated the algorithms
in the set of all structurally distinct strictly ordinal 2 × 2
no-conflict games (21 games in total). We evaluated all com-
binations of the algorithms in each of the games. In total,
we evaluated each pair of algorithms in 25 sweeps (50 plays),
where each play consisted of 100,000 repetitions.

Table 1 shows the performance metrics for every algorithm.
The maximum payoff any player can achieve in any game is

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 0.854 5.7964 17.2174 193.1478 0.804 0.712 0.466 0.396

CJAL 0.922 5.7856 17.3521 196.1594 0.760 0.742 0.486 0.418
WOLF-PHC 0.918 5.7400 17.1956 193.0255 0.824 0.676 0.442 0.388

RegMat 0.852 5.7290 17.2315 193.9011 0.844 0.708 0.438 0.392
NashQ 0.980 5.7562 17.2452 193.6470 0.790 0.734 0.452 0.388

Table 3: Results for random games.

4, and the maximum social welfare and fairness, respectively,
are 8 and 16. All algorithms performed quite well. We note
that NashQ, both in homogeneous and heterogeneous teams,
performed extremely well. A closer look at the strategy tra-
jectories reveals that NashQ persuades the other agent to
play a NE strategy by playing a NE strategy itself, regardless
of whether it could achieve a higher payoff by using another
strategy. However, NashQ requires more information than
any of the other algorithms.

Next, we note that those algorithms that model their op-
ponents (i.e. JAL and CJAL) perform generally better than
those that do not (i.e. WOLF-PHC and RegMat, leaving
NashQ aside). Both JAL and CJAL have better results than
WOLF-PHC and RegMat throughout all constellations of
agents. Note also that JAL and CJAL have almost identical
performances (all significance tests were negative). The re-
sults indicate that opponent modelling techniques may be
better suited for ad hoc team scenarios because they learn
the strategies of the other agents irrespective of the algo-
rithms on which they are based. This is in line with Barrett
et al. [2] and Wu et al. [36], whose algorithms are also based
on opponent modelling techniques.

3.2 Conflict games
The second part of our experiments evaluated the algorithms
in the set of all structurally distinct strictly ordinal 2 × 2
conflict games (57 games in total). As before, we evaluated
each combination of the algorithms in each of the games, us-
ing 25 sweeps and 100,000 repetitions per play. The results
are shown in Table 2. The maximum payoff any player can
achieve in any of these games is 4. However, the maximum
welfare and fairness vary among the games and can be as
high as 7 and 12, respectively.

First, we note that NashQ achieved the highest conver-
gence rate, followed by CJAL / WOLF-PHC, then JAL, and
then RegMat. The high convergence rate of NashQ is ex-
plained by the fact that it plays a NE strategy in each state,
regardless of whether another strategy would provide higher
payoffs. Therefore, as soon as NashQ has learned the payoff
structure of the game, it will always play the same strategy.
The low convergence rate of RegMat can be explained by the
fact that it constantly tries to maintain (or restore) the Han-
nan consistency, forcing it to frequently change its strategy.

The final expected payoffs and the average welfare and
fairness of all algorithms are very similar. Indeed, all of these
are statistically equivalent. This is an interesting result since
it does not correspond to the solution rates of the algorithms.
Here, one can see that WOLF-PHC / JAL / RegMat have
the highest NE rates, followed by NashQ and CJAL. On the
other hand, CJAL has the highest PO rate, followed by all
other algorithms with statistically equivalent PO rates. The
same applies to the WO and FO rates, where CJAL again
achieved the highest rate, while the other algorithms achieved
equivalent rates. Furthermore, note that NashQ has the sec-

ond lowest NE rate although it plays a NE strategy in every
state. Other than in the previous section, playing a NE strat-
egy in every state does not necessarily seem to persuade the
other agent to play a NE strategy as well.

The results seem to indicate that CJAL may be better
suited for ad hoc team problems than the other algorithms.
It achieved the highest PO, WO, and FO rates, and these
are significantly higher than those of the other algorithms.
Moreover, it has the highest average welfare and fairness (yet
these are statistically equivalent to the other algorithms).
Note also that, apart from NashQ, it achieved the highest
convergence rate. A high convergence rate is useful since it
allows the other agents to adapt to a stationary opponent
(that is, once it has converged). This is especially useful in
ad hoc team scenarios because the agents may not always
be able to resort to coordination strategies. However, note
that CJAL has the lowest NE rate of all algorithms. Thus,
whether CJAL is better suited for ad hoc team problems will
ultimately depend on the solution concept that is considered
most appropriate for this domain.

3.3 Random games
In the third part of our experiments we investigated how well
the algorithms scale to ad hoc teams with more than two
agents. We used a modified version of the evaluation proce-
dure proposed by Stone et al. (see Section 2.2). Specifically,
we tested each of the algorithms in 500 randomly generated
strictly ordinal 2× 2× 2 games.

Table 3 shows the performance metrics for every algorithm.
The maximum payoff any player can achieve in any game is 8,
while the maximum welfare and fairness may vary among the
games. If the game happens to be a no-conflict game, then
these values amount to 24 and 512, respectively. However, if
the game is a conflict game, then the maximum welfare and
fairness may assume any value as high as 23 and 448, respec-
tively. Of all games generated in our experiments, 2% were
no-conflict games and 98% were conflict games.

First, we note that NashQ has the highest convergence
rate. This is because once the algorithm has learned the game
structure, it will always play the same NE strategy. The sec-
ond and third highest convergence rates were achieved by
CJAL / WOLF-PHC and JAL / RegMat, respectively. It is
interesting to see that CJAL / WOLF-PHC and JAL / Reg-
Mat have similar convergence rates, since, in both groups
respectively, the first algorithm plays pure strategies while
the second algorithm plays mixed strategies. One would ex-
pect the former to have a significantly lower convergence
rate than the latter because those algorithms that play pure
strategies need to change their strategies periodically in or-
der to approximate mixed strategies.

The final expected payoffs (FEPs) of all algorithms are
statistically equivalent. Note that NashQ achieved the third
highest FEP. This is interesting because NashQ plays a NE

strategy regardless of whether or not another strategy pro-
vides higher payoffs. Moreover, it is remarkable that JAL,
CJAL, WOLF-PHC, and RegMat have equivalent FEPs de-
spite the fact that the former two play pure strategies while
the latter two play mixed strategies. This could indicate that
the impact on the average payoffs due to the constellation of
agents in a team may not be as strong as one might other-
wise expect.

The average welfare and fairness confirm our observations
of Section 3.2. CJAL achieved a higher welfare and fairness
than any other algorithm. The welfare and fairness of the
other algorithms are statistically equivalent. This corresponds
to the WO and FO rates of the algorithms, where CJAL
achieved significantly higher rates than all other algorithms.
In fact, in almost half of all plays, CJAL managed to arrive at
a welfare-optimal solution, of which a majority was fairness-
optimal as well. As noted earlier, this may be a valuable
property for ad hoc team problems. An ad hoc agent that is
able to collaborate with an unknown group of agents such
that the overall performance of the entire group is optimised
(in terms of welfare and fairness) may be better than an agent
that attempts to optimise its own payoff only. However, we
note again that this essentially depends on the priorities of
both the ad hoc agent and the entire group.

Finally, consider the different solution rates. The highest
NE rate was achieved by RegMat, followed by WOLF-PHC,
JAL / NashQ, and then CJAL. Note that the NE rate of
CJAL is relatively low when compared to the other agents.
However, this is opposed by the PO rates. Here, CJAL /
NashQ achieved the highest rate, followed by JAL / RegMat
and WOLF-PHC. It is interesting that CJAL and NashQ
achieved equivalent PO rates, despite the fact that CJAL
was specifically designed to learn PO solutions [3], whereas
NashQ was specifically designed to learn NE solutions [17].
Note also that the PO rate of WOLF-PHC is quite low, es-
pecially in comparison to its relatively high NE rate.

3.4 Overall results
Figure 2 shows the results averaged over all three parts. Note
that we cannot take the average of the payoffs since we con-
sider ordinal games. However, for the final expected payoffs,
we first normalised the values by dividing through the respec-
tive maximum, after which we took the average of all results.
Thus, the final expected payoffs in Figure 2 are to be read
as percentages where 0% means that the algorithm always
achieved its least preferred outcome, and 100% means that
it always achieved its most preferred outcome.

The results show that there is, in fact, no algorithm which
achieved an overall better performance in the experiments,
that is, no algorithm is generally better. The following sum-
mary underlines this:

• JAL has the second lowest convergence rate with about
91.47%. This comes from the fact that it changes its
strategy periodically in order to approximate a mixed
strategy. Furthermore, it has the third highest payoff
rate with 82.49%. This rate is statistically equivalent to
the highest rates. The NE rate of JAL is the third high-
est with about 90%. Finally, it has the third highest
PO rate (82.74%), the second highest WO rate (72%),
and the second highest FO rate (66.81%).

Conv. Fexp. NE PO WO FO
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr
ob

ab
ilit

y

Overall results

JAL
CJAL
WOLF−PHC
RegMat
NashQ

Figure 2: Overall results.

• CJAL has the second highest convergence rate with
about 95.59%. This is since it attempts to learn Pareto-
optimal solutions, which, in our case, are often pure
profiles. Moreover, of all algorithms used in our experi-
ments, it has the highest PO rate (84.56%), WO rate
(73.14%), and FO rate (67.76%), which consequently
leads to the highest payoff rate with about 82.57%.
However, this is opposed by the fact that it achieved
the lowest NE rate with 86.9%.

• WOLF-PHC has the third highest convergence rate
with about 95.35%. This is statistically equivalent to
CJAL. Furthermore, it has the second lowest payoff rate
with 82.12%. On the other hand, with about 90.96%
it has the second highest NE rate. This rate is statisti-
cally equivalent to the highest NE rate. Finally, it has
the second lowest PO rate (80.12%), WO rate (70.17%),
and FO rate (65.53%).

• RegMat achieved the lowest convergence rate with
90.61%. As pointed out earlier, it frequently changes
its strategy in order to maintain the Hannan consis-
tency. Moreover, with about 81.72%, it also has the
lowest payoff rate. This is a consequence of its frequent
changes. Interestingly, these efforts lead to the highest
NE rate of all algorithms with about 91.14%. However,
they also lead to the lowest PO rate (80.66%), WO rate
(69.46%), and FO rate (64.95%).

• NashQ, with about 99.26%, managed to converge in
most of the games. As was explained earlier, this is since
it will always play the same strategy after it learned
the payoff structure of the game. It is worth noting
that it has the second highest payoff rate with about
82.56%, which is almost identical to the highest rate.
This is interesting since NashQ chooses its strategies ir-
respective of the strategies of the other agents. On the
other hand, it is surprising that it has the second lowest
NE rate (88.59%), despite the fact that it plays a NE
strategy in each state. It is equally surprising that it
achieved the second highest PO rate (83.49%) and the
third highest WO rate (71.35%) and FO rate (66.39%),
despite the fact that it was not optimised for these so-
lution types.

We conclude that the assessment of an algorithm ulti-
mately depends on the solution concept that is considered
most appropriate for the problem at hand. In other words,
its performance depends on the priorities of the entire team.
For example, in the predator domain investigated by Barrett
et al. [2], it would be most desirable to arrive at a welfare-
optimal solution if we define the welfare of the predator group
to be the inverse of the average steps needed to capture the
prey. Moreover, if we think of the agents as real robots (e.g.
as in [31]), then we might want to arrive at a fairness-optimal
solution in order to ensure that all robots have identical or
similar energy consumptions. On the other hand, in a multia-
gent marketing application in which the other agents cannot
be trusted (as they may want to deceive us in order to in-
crease their payoffs), we would want to arrive at a Nash
equilibrium (or minimax profile in 2-player zero-sum games)
such that we can guarantee a minimum average payoff.

Although this conclusion may seem unsurprising at first
glance, the implications should be of interest to researchers
developing multiagent learning algorithms. The typical focus
in this area has been on the concept of Nash equilibria (or,
equivalently, minimax profiles in 2-player zero-sum games).
For a selection, see [3–6,15–17,21–24,32]. Some authors focus
on the concept of Pareto optimality as an alternative [1,20,27],
others focus on correlated equilibria [8, 13,14], and some do
not make any specific commitments regarding the nature of
the solution [2,30,31,36]. However, as can be seen from our re-
sults, it is important to consider a wider spectrum of solution
concepts in order to fully assess the performance of an algo-
rithm. Indeed, this bears an interesting resemblance to the
No Free Lunch theorems of Wolpert and Macready [34,35].
Therein, roughly speaking, it is argued that the performance
of any two algorithms is identical when averaged over all pos-
sible problems. That is, whenever an algorithm is superior to
another algorithm on a certain set of problems, this is paid
for by inferiority on a different set of problems. Our results
show a tradeoff relation of this kind. For instance, CJAL has
the highest PO rate and the lowest NE rate whereas Reg-
Mat has the lowest PO rate and the highest NE rate. Other
algorithms range somewhere in the middle, without best or
worst performances. This seems to indicate that superiority
in one solution type is compensated for by a converse rela-
tion somewhere else.

4. RELATED WORK
Harsanyi pioneered the study of incomplete information
games. In his 1967 paper [10], he describes the Bayesian
game, a game in which players have beliefs about missing
information. He develops the concept of the Bayesian Nash
equilibrium [11] in which each player plays a best response
against the other players, based on the personal beliefs of the
player. Jordan [19] showed that, for any repeated game, if
the players play a Bayesian Nash equilibrium in each repeti-
tion, and if the personal beliefs of the players satisfy certain
conditions, then this will converge to a true Nash equilibrium.

The problem of incomplete information in multiagent learn-
ing, in the form of the ad hoc team problem, was addressed
by Stone et al. [29]. They propose a procedure to evaluate
two ad hoc agents for a given set of potential team members
and tasks. We used a modified version of this procedure for
our own experiments (see Section 2.2).

In earlier work, Stone and Kraus [31] define optimal strate-

gies for an ad hoc agent collaborating with a fixed-behaviour
teammate in an environment modelled as a k-armed ban-
dit. Stone et al. [30] present an algorithm that would lead a
fixed greedy agent towards an optimal joint action in a sim-
ple repeated game in which both agents have identical payoff
functions.

More recently, Genter et al. [7] introduced a framework
for a role-based approach to the ad hoc team problem. Using
a set of predefined roles (i.e. behaviours), the ad hoc agent
tries to assume a role such that the marginal utility of the
team is maximised. The agent was shown to be effective in
several instances of the Pac-Man domain. However, we note
that the framework is based on a number of key assumptions.
It assumes that all teammates follow one of a finite set of
a priori predefined roles, that the ad hoc agent knows what
roles its teammates follow, and that the ad hoc agent knows
the internal payoff distributions of its teammates.

These assumptions are relaxed in a recent empirical study
by Barrett et al. [2]. They used an ad hoc agent that tries
to identify its teammates by observing their behaviour and
comparing it with a database of known behaviours. In addi-
tion, it learns a new model for the observed behaviour using
a tree classifier. The agent combines both the database and
the learned model in a Bayesian fashion to anticipate the be-
haviour of its teammates. Experiments showed that the ad
hoc agent performed quite well, and in general better than
those agents that just mimic their teammates.

Wu et al. [36] proposed an interesting algorithm called On-
line Planning for Ad Hoc Agent Teams (OPAT). For each
encountered state, the algorithm estimates the values of all
joint actions using Monte-Carlo Tree Search. These values
are used to generate a stage game (i.e. a repeated game with
one repetition), based on which the algorithm decides which
action to take. The decision process considers the past m
plays of the current stage game to approximate the strate-
gies of the other agents. OPAT was shown to be effective in
a series of multiagent domains.

5. CONCLUSION
In this work, we compared the performance of five multia-
gent learning algorithms in a set of ad hoc team problems.
The algorithms were evaluated in a comprehensive range of
repeated games, and the teams consisted of agents which
were themselves learning. Our intention was to characterise
the performance of salient types of multiagent learning al-
gorithms in ad hoc team problems. Our experiments show
that there is no clear favourite among the algorithms. In par-
ticular, we conclude that the performance of an algorithm
ultimately depends on the solution concept that is consid-
ered most appropriate for the problem at hand.

The experiments in this paper were based on 2-player and
3-player matrix games, in order to make comparative state-
ments in a well defined and comprehensive set of game types.
It would be of interest to extend this analysis to the case of
multi-player games (i.e. n-player games with n > 3), and to
games with multiple states (i.e. stochastic games [28]). We
expect that such extensions would bring many known diffi-
culties regarding interactive decision making [37] to the fore
and perhaps differentiate the multiagent learning algorithms
further. We anticipate that going down this path may also
clarify when one may need to draw on more elaborate mod-
els than stochastic games, e.g., as in [26].

6. REFERENCES
[1] D. Banerjee and S. Sen. Reaching pareto-optimality in

prisoner’s dilemma using conditional joint action learning.
Autonomous Agents and Multi-Agent Systems, 15(1):91–108,
2007.

[2] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of
ad hoc teamwork in the pursuit domain. In Proceedings of
the 10th International Conference on Autonomous Agents
and Multiagent Systems, May 2011.

[3] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence, 136(2):215–250,
2002.

[4] G. Brown. Iterative solution of games by fictitious play. In
T. Koopmans, editor, Activity Analysis of Production and
Allocation. Wiley, 1951.

[5] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings
of the National Conference on Artificial Intelligence, pages
746–752, 1998.

[6] V. Conitzer and T. Sandholm. Awesome: A general
multiagent learning algorithm that converges in self-play and
learns a best response against stationary opponents. In
Proceedings of the 20th International Conference on
Machine Learning, volume 20, pages 83–90, 2003.

[7] K. Genter, N. Agmon, and P. Stone. Role-based ad hoc
teamwork. In Proceedings of the Plan, Activity, and Intent
Recognition Workshop at the 25th Conference on Artificial
Intelligence, August 2011.

[8] A. Greenwald and K. Hall. Correlated q-learning. In
Proceedings of the 20th International Conference on
Machine Learning, pages 242–249, 2003.

[9] J. Harsanyi. Bargaining in ignorance of the opponents’ utility
function. Journal of Conflict Resolution, 6(1):29–38, 1962.

[10] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part i. the basic model. Management
Science, 14(3):159–182, 1967.

[11] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part ii. bayesian equilibrium points.
Management Science, 14(5):320–334, 1968.

[12] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part iii. the basic probability
distribution of the game. Management Science,
14(7):486–502, 1968.

[13] S. Hart and A. Mas-Colell. A simple adaptive procedure
leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

[14] S. Hart and A. Mas-Colell. A reinforcement procedure
leading to correlated equilibrium. Economic Essays: A
Festschrift for Werner Hildenbrand, pages 181–200, 2001.

[15] J. Hu and M. Wellman. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of
the Fifteenth International Conference on Machine
Learning, volume 242, page 250, 1998.

[16] J. Hu and M. Wellman. Experimental results on q-learning
for general-sum stochastic games. In Proceedings of the 17th
International Conference on Machine Learning, page 414.
Morgan Kaufmann Publishers Inc., 2000.

[17] J. Hu and M. Wellman. Nash q-learning for general-sum
stochastic games. The Journal of Machine Learning
Research, 4:1039–1069, 2003.

[18] T. Jaakkola, M. Jordan, and S. Singh. On the convergence of
stochastic iterative dynamic programming algorithms.
Neural Computation, 6(6):1185–1201, 1994.

[19] J. Jordan. Bayesian learning in normal form games. Games
and Economic Behavior, 3(1):60–81, 1991.

[20] S. Kimbrough and M. Lu. Simple reinforcement learning
agents: Pareto beats nash in an algorithmic game theory
study. Information Systems and E-Business Management,
3(1):1–19, 2005.

[21] C. Lemke and J. Howson. Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied
Mathematics, 12(2):413–423, 1964.

[22] M. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the 11th
International Conference on Machine Learning, volume 157,
page 163, 1994.

[23] M. Littman. Friend-or-foe q-learning in general-sum games.
In Proceedings of the 18th International Conference on
Machine Learning, ICML ’01, pages 322–328. Morgan
Kaufmann Publishers Inc., 2001.

[24] M. Littman and C. Szepesvári. A generalized
reinforcement-learning model: Convergence and applications.
In In Proceedings of the 13th International Conference on
Machine Learning, pages 310–318. Morgan Kaufmann, 1996.

[25] A. Rapoport and M. Guyer. A taxonomy of 2 × 2 games.
General Systems: Yearbook of the Society for General
Systems Research, 11:203–214, 1966.

[26] T. Schelling. The Strategy of Conflict. Harvard University
Press, 1980.

[27] S. Sen, S. Airiau, and R. Mukherjee. Towards a
pareto-optimal solution in general-sum games. In
Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 153–160.
ACM, 2003.

[28] L. Shapley. Stochastic games. Proceedings of the National
Academy of Sciences of the United States of America,
39(10):1095, 1953.

[29] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc
autonomous agent teams: Collaboration without
pre-coordination. In Proceedings of the 24th Conference on
Artificial Intelligence, July 2010.

[30] P. Stone, G. Kaminka, and J. Rosenschein. Leading a
best-response teammate in an ad hoc team. In
Agent-Mediated Electronic Commerce: Designing Trading
Strategies and Mechanisms for Electronic Markets, pages
132–146, November 2010.

[31] P. Stone and S. Kraus. To teach or not to teach? decision
making under uncertainty in ad hoc teams. In Proceedings of
the 9th International Conference on Autonomous Agents
and Multiagent Systems, May 2010.

[32] W. Uther and M. Veloso. Adversarial reinforcement learning.
Technical report, Computer Science Department, Carnegie
Mellon University, 1997.

[33] C. Watkins and P. Dayan. Q-learning. Machine learning,
8(3):279–292, 1992.

[34] D. Wolpert and W. Macready. No free lunch theorems for
search. Technical Report SFI-TR-95-02-010, Santa Fe
Institute, 1995.

[35] D. Wolpert and W. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997.

[36] F. Wu, S. Zilberstein, and X. Chen. Online planning for ad
hoc autonomous agent teams. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
2011.

[37] H. Young. Strategic learning and its limits. Oxford
University Press, 2004.

