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ABSTRACT
Multiagent simulation extends the reach of game-theoretic
analysis to scenarios where payoff functions can be computed
from implemented agent strategies. However this approach
is limited by the exponential growth in game size relative
to the number of agents. Player reductions allow us to con-
struct games with a small number of players that approxi-
mate very large symmetric games. We introduce deviation-
preserving reduction, which generalizes and improves on ex-
isting methods by combining sensitivity to unilateral devi-
ation with granular subsampling of the profile space. We
evaluate our method on several classes of random games
and show that deviation-preserving reduction performs bet-
ter than prior methods at approximating full-game equilib-
ria.
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1. INTRODUCTION
Game-theoretic analysis plays an increasingly prominent

role in research on understanding and designing multiagent
systems. Agent-based simulation offers the potential to in-
crease the scope of applicability for game theory, beyond
those game scenarios that can be described straightforwardly
and solved analytically. In the simulation-based approach,
rather than directly express all payoffs for a game, the an-
alyst describes an environment procedurally and then com-
putes payoffs by simulation of agent interactions in that en-
vironment.

Simulation enables analysis of many rich strategic envi-
ronments, but determining payoffs for a large game in this

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

way may be prohibitively expensive. Straightforward es-
timation of a payoff function requires simulation of every
possible combination, or profile, of agent strategies. If the
environment is stochastic, then many simulation runs may
be necessary to obtain a reasonable estimate of even a single
profile. For multiagent interactions that extend over time, or
are otherwise complex, the computational cost of simulation
may severely limit the number of profiles—and therefore the
size of the game—that can be considered in such an analysis.

We focus for most of this paper on symmetric games, in
which all agents have the same set of available strategies and
payoffs depend only on the number of agents playing each
strategy, not on the specific identities of those agents. For-
mally, a symmetric game is a tuple Γ = (N,S, u), where N
is the number of agents, S is the set of strategies available
to all agents, and the utility function u(s,~s) gives the payoff
to any agent playing strategy s in profile ~s. To conduct a
complete analysis of Γ, we require that u specifies payoffs
for all possible profiles. A symmetric game with N agents
and |S| strategies contains

`
N+|S|−1

N

´
profiles.1 For a sense

of how great a burden this imposes, consider that a sym-
metric game with 15 agents and 15 strategies contains over
77 million profiles, so if estimating a profile’s payoff through
simulation required one second, constructing the full game
would take more than two years.

We seek to combat this exponential growth using a tech-
nique broadly known as player reduction. Player reduc-
tions approximate games with many agents by construct-
ing smaller games that aggregate over those agents in some
way. Equilibria of the reduced game can then be viewed as
approximate equilibria of the full game.

As an example, consider trading in continuous double auc-
tions (CDAs)—a problem of agent strategy that has been
extensively investigated through simulation. We review the
coverage of several studies that employed simulation to es-
timate payoff functions for purposes of game-theoretic or
evolutionary analysis. In the first empirical game analysis
of CDA strategy, Walsh et al. [15] analyzed a 20-player
game with three strategies. The 231 distinct profiles were
within their simulation budget, whereas adding just one

1To see this, note that we can describe a profile in terms
how many agents play each strategy. Suppose an ordering
of strategies, and consider a representation that indicates
players by one symbol (.) and partitions by another (|). For
instance, with S = {s1, s2, s3, s4} and N = 6, the profile
...|..||. has three agents playing s1, two s2, and one s4. The
representation contains N + |S| − 1 total symbols, and the
choice of which N of them to make players (or equivalently,
choice of partitions) uniquely defines a profile.



more strategy would have entailed estimating 1540 more.
Vytelingum et al. [14] likewise considered a 20-player game,
though one that imposed symmetry only within the sub-
groups of 10 buyers and 10 sellers. Their study also com-
pared three strategies, but for tractability and to facilitate
visualization of their evolutionary traces, they limited anal-
ysis to two strategies at a time, which requires 121 profiles
for each strategy pair and scenario combination.2 Phelps et
al. [8] covered up to four strategies, in a 12-agent simulation
employing another form of double auction mechanism (455
profiles). The study of Tesauro and Bredin [11] considered
as many as 44 trading agents with three different strategies,
but their analysis evaluated only profiles where agents were
evenly divided across two strategies. This selection is sim-
ilar to a two-player reduction according to the hierarchical
method, as discussed below. Tesauro and Das [12] covered
five strategies for a 20-agent scenario, this time with a mix
of evenly-divided profiles and profiles where only one agent
deviates from a homogeneous profile. As we see below, this
is suggestive of the deviation-preserving reduction method
we introduce here. In by far the most comprehensive CDA
simulation study to date, Schvartzman and Wellman [10]
systematically evaluated 14 strategies in a 16-agent scenario.
This was rendered feasible only by virtue of their reduction
to a four-player game, comprising 2380 profiles as opposed
to 68 million in the unreduced game. Overall, we see that
many-agent simulation studies either adopt player reduc-
tions, or make do with very narrow strategy exploration.

In this paper, we propose and study deviation-preserving
reduction, which renders reduced-game equilibria more in-
formative with respect to the full game. We start in Sec-
tion 2 by reviewing existing methods for player reduction.
Section 3 introduces deviation-preserving reduction, and ex-
plains how our new method is designed to combine the best
aspects of its predecessors. Section 4 evaluates the reduc-
tions, and Section 5 shows how both our reduction and pre-
vious ones can be extended to games that are symmetric
only with respect to a partition of players into roles.

2. BACKGROUND: PLAYER REDUCTION
Two methods for player reduction have been proposed in

the literature: hierarchical reduction [16], and twins reduc-
tion [4]. Both methods are defined with respect to symmet-
ric games. They define a subset of the profiles in the given
(full) game, and map the payoffs of these profiles to a payoff
function defined over a game with fewer players (the reduced
game). Analyses of the reduced game are then interpreted
as approximately applying to the full game.

2.1 Hierarchical Reduction
Of the two existing methods, hierarchical reduction is the

more extensively used [1, 5, 10]. Hierarchical reduction
works by grouping agents into coalitions that are constrained
to act together. One player in the reduced game selects an
action to be played by all agents in a coalition, and receives
the payoff to any agent playing that strategy. To capture
this formally, we introduce the following notation: a strat-
egy profile ~s =

˙
c1×s1, . . . , c|S|×s|S|

¸
of game Γ consists of

strategies si ∈ S and integer counts ci ≥ 0 for each strategy

such that
P|S|

i=1 ci = N . When ci = 0, we may omit it from

2These same authors in earlier work [13] evaluated a 20-
player three-strategy CDA game.

the expression.
The hierarchical reduction of Γ to n < N players is defined

as HRn(Γ) =
`
n, S, uHR

´
, where

uHR `s, ˙c1×s1, . . . , c|S|×s|S|¸´ =

u

„
s,

fi
N

n
c1×s1, . . . ,

N

n
c|S|×s|S|

fl«
.

This definition follows previous applications of hierarchical
reduction in assuming that N is an integer multiple of n. In
our evaluation we employ a generalized version (described
in Section 4.1) that allows reduction to numbers of players
that do not evenly divide the number of agents in the full
game.

For illustration, consider a full game with N = 25 agents,
and a hierarchical reduction to n = 5 players. The action
of each reduced-game player is played by five agents in the
full game, so the reduced-game profile 〈2×s1, 1×s2, 2×s3〉
corresponds to the full-game profile 〈10×s1, 5×s2, 10×s3〉.

The main idea behind hierarchical reduction is that though
the payoff to a particular strategy generally varies with the
number of agents that play each strategy, it often can be ex-
pected to do so smoothly. Kearns and Mansour [6] formalize
a related condition called bounded influence to define a class
of compactly representable and solvable games. Whereas it
is easy to construct games that violate this assumption, in
many natural symmetric games, the payoffs are smooth in
this way.

However, HRn(Γ) lacks crucial information relevant to
Nash equilibria of Γ. In a Nash equilibrium of Γ, no individ-
ual agent can gain by deviating to another strategy, but the
hierarchical reduction contains no information about unilat-
eral deviations. In an equilibrium of HRn(Γ), no N

n
-agent

coalition can gain by all deviating to the same strategy, but
there are many cases in which these conditions differ sub-
stantially.

Consider a network formation game [3] in which agents
create links to one another. Agents gain from being in a
connected network, but incur a cost for each link they cre-
ate. In such a game we can envision a full-game equilibrium
that is not an equilibrium of the reduced game, as well as a
reduced-game equilibrium that is not an equilibrium of the
full game. If network effects are large, but cost of creat-
ing links is high, there could be an equilibrium of the full
game where agents create no links. However, if several play-
ers are allowed to deviate together they may create a suf-
ficiently dense network to overcome the link-creation cost:
this would be a beneficial deviation in the reduced game,
so the full-game equilibrium would not be found. Under
different parameters, there may be a spurious equilibrium
in the reduced game where all players contribute links to
the network, and no player can gain by deviating because if
all agents represented by one reduced-game player changed
strategies simultaneously, the network would collapse. On
the other hand, a unilaterally deviating agent in the full
game might have a much smaller impact and still receive
the network benefits while avoiding the link creation cost.

2.2 Twins Reduction
The natural solution to this problem is to incorporate in-

formation about the value of unilateral agent deviations into
the payoffs of the reduced game. Ficici et al. [4] propose a
method called twins reduction that takes a first step in this



direction. The twins reduction of a symmetric game3 is a 2-
player game, TR(Γ) =

`
2, S, uTR

´
, where each player views

itself as controlling one agent in the full game, and the op-
ponent as controlling all remaining agents:

uTR `s, ˙1×s, 1×s′¸´ = u
`
s,
˙
1×s, (N − 1)×s′

¸´
.

Note that the payoffs for the two strategies in a twins reduc-
tion profile 〈1×s, 1×s′〉, s 6= s′, correspond to two different
profiles in the full game:

• 〈1×s, (N − 1)×s′〉 and

• 〈(N − 1)×s, 1×s′〉,

but that the reduced game is still symmetric.
Ficici et al. [4] advocate constructing twins reduction

games not by explicitly simulating these full-game profiles,
but by sampling random profiles from the full game and de-
termining the payoffs by linear regression on the number of
agents playing each strategy. We refer to this approach as
TR-R, where the second “R” stands for “regression”. We
consider the direct simulation approach a more appropriate
benchmark, but evaluate both methods in our experiments.

The advantage of the twins reduction is that it captures
information about individual agents’ incentives to deviate.
Its major disadvantage is that it is limited to two players,
and can therefore give only an extremely coarse-grained view
of the game. In general, a reduced-game representation will
have difficulty capturing equilibria of the full game that have
support size (number of distinct strategies played with posi-
tive probability) larger than n, the reduced number of play-
ers, as no profiles of the reduced game capture the inter-
action of all strategies in the support set. Since the twins
reduction (n = 2) never contains profiles where more than
two strategies are played, it is particularly restrained by this
limitation.

3. DEVIATION-PRESERVING REDUCTION
We propose a new game reduction method that combines

the sensitivity to unilateral deviation afforded by twins re-
duction with the profile-space granularity of hierarchical re-
duction. We call this method deviation-preserving reduction.
In a deviation-preserving reduction game, each player views
itself as controlling a single agent in the full game, but views
the profile of opponent strategies in the reduced game as an
aggregation of all other agents in the full game. Formally,
DPRn(Γ) =

`
n, S, uDPR

´
, where

uDPR (s, 〈c1×s1, . . . , cs×s, . . .〉) =

u

„
s,

fi
N − 1

n− 1
c1×s1, . . . ,

»
N − 1

n− 1
(cs − 1) + 1

–
×s, . . .

fl«
.

In a hierarchical reduction, the proportion of agents play-
ing each strategy is the same in the full and reduced games.
Under deviation-preserving reduction, analogously, the pro-
portion of opponents playing a strategy in the full and re-
duced games is the same from each player’s perspective. And
as in a twins reduction, each player in a deviation-preserving

3The original definition [4] applies to a somewhat broader
class: role-symmetric games with identical strategies. In
Section 5 we describe how to extend player reductions, in-
cluding twins reduction, to the entire class of role-symmetric
games.

Figure 1: Number of full-game profiles required to construct
reduced games (log scale), for |S| = 5.

reduction game is sensitive to the payoffs of exactly one
agent in the full game. As a consequence of this sensitiv-
ity to single agents, the deviation-preserving reduction game
can identify exact symmetric pure strategy equilibria of the
full game if they exist.

Proposition 1. A profile 〈n×s〉 is a Nash equilibrium of
DPRn(Γ) if and only if the profile 〈N×s〉 is a Nash equilib-
rium of Γ.

Proof. The profile 〈n×s〉 is a NE when uDPR (〈n×s〉) ≥
uDPR (s, 〈(n− 1)×s, 1×s′〉) for all s′ ∈ S. This is the case
exactly when u (s, 〈N×s〉) ≥ u (s, 〈(N − 1)×s, 1×s′〉) for all
s′ ∈ S.

This property also holds for twins reduction games, be-
cause the deviation preserving reduction is a strict general-
ization of the directed-sampling twins reduction: TR(Γ) =
DPR2(Γ).

To construct each profile’s payoffs in a deviation-preserving
reduction game, several profiles from the full game must be
simulated. Returning to the example of a 25-agent full game
and a 5-player reduced game, the profile 〈2×s1, 1×s2, 2×s3〉
in the deviation-preserving reduction game employs payoff
values from several profiles in the full game:

uDPR (s1, 〈2×s1, 1×s2, 2×s3〉) = u(s1, 〈7×s1, 6×s2, 12×s3〉)

uDPR (s2, 〈2×s1, 1×s2, 2×s3〉) = u(s2, 〈12×s1, 1×s2, 12×s3〉)

uDPR (s3, 〈2×s1, 1×s2, 2×s3〉) = u(s3, 〈12×s1, 6×s2, 7×s3〉)

Note that we again assume divisibility: in this case, n − 1
has to divide N − 1 for the aggregation of opponents to be
precise. As with hierarchical reduction, we can extend the
definition to reduced games with any number of players, as
described in Section 4.1. We quantify the number of profile
simulations required for deviation-preserving reduction in
the following proposition.

Proposition 2. Constructing DPRn(Γ = (N,S, u)) re-

quires simulating |S|
`

n+|S|−2
n−1

´
full-game profiles.



Proof. In each profile of the deviation-preserving reduc-
tion game, n − 1 of the players each control N−1

n−1
full-game

agents. The set of all such profiles can be viewed as an
(n − 1)-player symmetric game, so we know that there are`

n+|S|−2
n−1

´
of them. Each of these profiles must be paired with

each s ∈ S, so |S|
`

n+|S|−2
n−1

´
profiles must be simulated.

Proposition 2 shows that constructing DPRn(Γ) requires
simulating strictly more profiles than HRn(Γ), but by a fac-
tor of at most |S|. As we show in Section 4, the extra pro-
files comprising this constant factor can contribute to signif-
icantly improved accuracy. Even so, we would like to mini-
mize the number of simulations required when possible, and
therefore also consider a variant of the deviation-preserving
reduction, which we call DPR′.

The idea behind DPR′ is that many of the profiles sim-
ulated to construct a deviation-preserving reduction game
are quite similar. For example, in the 5-player deviation-
preserving reduction of the 25-agent game, the payoff to
strategy s1 in the full-game profile ~sa = 〈7×s1, 6×s2, 12×s3〉
is employed in the reduced-game profile 〈2×s1, 1×s2, 2×s3〉.
The payoff for s2 in reduced-game profile 〈1×s1, 2×s2, 2×s3〉
is derived from ~sb = 〈6×s1, 7×s2, 12×s3〉, which differs
from ~sa only in that a single agent has switched from s1 to s2,
both of which are played by many other agents. If we believe
our assumption—inherited from hierarchical reduction—that
payoffs vary smoothly in the number of agents playing each
strategy, we should expect the payoffs to strategy s1 in pro-
files ~sa and ~sb to be very similar (likewise for s2), suggesting
that we could get away with simulating only one of the two.

Formally, DPR′(Γ) = (n, S, uDPR′
), where uDPR′

is de-
fined as follows. Let ~s = 〈cmin×smin, . . . , cs×s, . . .〉, where
smin is the first strategy played by at least one agent. If

cs = 1 or cs = cmin, then uDPR′
(s,~s) = uDPR(s,~s). Other-

wise, uDPR′
(s,~s) is given by

u(s,

fi»
N − 1

n− 1
cmin + 1

–
×smin, . . . ,

N − 1

n− 1
(cs − 1)×s, . . .

fl
).

The result is that when DPR would prescribe simulation
of several profiles that differ only by deviation of a single
agent (and no strategy is played by only one agent), DPR′

requires that only one be simulated. From among these
profiles, DPR′ selects the one in which the lowest-numbered
strategy by which they differ is played most. In the example
above, payoffs

• uDPR′
(s1, 〈2×s1, 1×s2, 2×s3〉) and

• uDPR′
(s2, 〈1×s1, 2×s2, 2×s3〉)

both come from full-game profile 〈7×s1, 6×s2, 12×s3〉. The
savings in terms of profiles sampled are illustrated in Fig-
ure 1. In that graph, the curve for DPR′ follows the formula
|Γ| = |S|

`
n+|S|−2

n−1

´
− (n−2)

`
n+|S|−3

n−1

´
. DPR′ always requires

more full-game profiles than HR, and fewer than DPR, ex-
cept when n = 2, where both are equivalent to TR.

4. EMPIRICAL EVALUATION
The goal of a player reduction is to replace a full game that

is too large to effectively analyze with a more manageable
reduced game. To compare reduction methods, we therefore
need to evaluate how well analysis performed on a reduced

game translates back to the full game. This presents a prob-
lem for evaluation, in that full games of interest are too big
to effectively analyze. For example, in the simulated credit
network games discussed below, we construct 12-agent, 6-
strategy full games; we would like to analyze reductions of
60-agent games, but even with just six strategies, the full
game would consist of 8,259,888 profiles. We therefore com-
promise by reducing several types of medium-sized games to
very small ones. If one reduction consistently performs bet-
ter in such cases, we take it as an indication that the same
will hold for reductions of very large games.

4.1 Regret of Reduced Game Equilibria
Numerous methods for analyzing games exist, but the

most important is finding Nash equilibria. Because player
reductions work with symmetric games, we evaluate them
primarily by how well symmetric mixed strategy Nash equi-
libria computed in the reduced game approximate symmet-
ric mixed strategy equilibria of the full game. Our primary
measure for the quality of reduced-game equilibria is regret.
The regret ε(~σ) of a symmetric mixed strategy profile ~σ, in
which all players play mixed strategy σ is the maximum gain
any player could achieve by deviating to a pure strategy:

ε(~σ) = max
s∈S

u(s, ~σ−i),

where u(s, ~σ−i) is the expected payoff to a player playing s
when all others play σ. A Nash equilibrium has zero regret,
but a symmetric mixed profile ~σ that is an equilibrium of
the reduced game will generally have have positive regret
with respect to the full game. Such a ~σ can be viewed as
an approximate, or ε(~σ)-Nash equilibrium of the full game,
where the lower the regret, the better the approximation.

However, we cannot simply compare the regret of equilib-
ria from k-player reduced games under each method. The
first problem is that the number of players in a twins reduc-
tion game is not scalable. Moreover, since the goal of player
reduction is to simulate fewer profiles, the relevant compar-
ison is not the number of players in the reduced game, but
the number of profiles required to construct it, and DPRk al-
ways requires sampling strictly more profiles than HRk. For
example, in the 12-agent 6-strategy game instances below,
|DPR3| = 126 = |HR4|. Because the directed-simulation

twins reduction always requires |S|
2(|S|−1)

2
profiles, we com-

pare to TR by addressing the question of whether lower
regret can be achieved by a method that samples more pro-
files. Twins reduction with regression can use any set of
profiles; in our experiments we varied the size of the set over
a range similar to that required to construct the various re-
duced games.

Hierarchical reduction as defined by Wellman et al. [16]
requires that the number of reduced-game players n divide
the number of full-game agents N . By analogy, in our def-
inition of deviation preserving reduction above, we assume
that n − 1 divides N − 1. In our experiments, we perform
reductions of both varieties where these conditions do not
hold. We extend the definition of HRn to allow indivisibility
as follows.

uHR(s,
˙
c1×s1, . . . , c|S|×s|S|

¸
) =

u(s,

fi
bN
n
c1 + 1c×s1, . . . , b

N

n
cj+1c×sj+1, . . .

fl
),

where j = N −
P

ib
N
n
cic. That is, the number of opponents



(a) all reduction types (b) rescaled to exclude regression-based twins reductions

Figure 2: Average full-game regret of reduced-game equilibria in local effect games. N = 12, |S| = 6, 2 ≤ n ≤ 8.

playing strategy si is the integral part of N
n
ci, with extra

player slots allocated one each to strategies with lower in-
dices. For example, when we construct HR5 of a game with
12 players, the reduced-game profile 〈1×s1, 3×s2, 1×s3〉 cor-
responds to the full-game profile 〈3×s1, 7×s2, 2×s3〉. We
extend the definition of DPRn to handle indivisibility in a
similar manner.

We evaluate the reductions using two classes of random
games: congestion games [9], in which agents select a fixed-
size subset of available facilities and payoffs are decreasing
in the number of agents choosing a facility; and local effect
games [7], which have a graph over actions and each action’s
payoff is a function of the number of agents choosing it and
adjacent actions. We randomly varied the payoff function
parameters of these games to create 250 game instances for
each test described below. We also evaluate on one simu-
lated game class, based on a scenario of credit network for-
mation [2]. In the model of credit networks employed in
this scenario, directed links represent credit issued to other
agents: agents wish to transact with one-another, but issu-
ing credit bears risk in that debtors may default. In the
credit network formation game, payoffs are determined by
simulating a sequence of transactions and defaults on the
network induced by agent strategies. We sampled each pro-
file of a 12-agent, 6-strategy credit network game 100 times,
and randomly recombined these samples to create 250 game
instances.

The first finding of note is that twins reduction performs
very poorly with linear regression. The top line in Figure 2a
shows the regret of equilibria found in TR-R games with
random sampling of profiles, which is an order of magnitude
worse than the HR, TR, DPR, and DPR′. Two observa-
tions led us to try the method labeled TR–DPR: first, that
sampling profiles according to uniform agent play leads to
a very low likelihood of observing payoffs for profiles where
most agents play the same strategy, and these are exactly
the profiles whose payoffs the regression estimates. Second,
simulating all the profiles for DPR or DPR′ makes available
a substantial amount of payoff data that goes unused in con-
structing the reduced game. We therefore thought to try us-
ing all of the profiles simulated for the deviation-preserving
reduction as input to the linear regression of TR-R. As is
clear from Figure 2a, this improves very little on random
sampling.

In retrospect, it is not particularly surprising that approx-
imating payoffs by linear regression performs so poorly: all
of our example games and most games requiring simulation
have nonlinear payoffs. A better regression model could po-
tentially alleviate this problem, but choosing one requires
knowledge of the game’s payoff function that may not be
available when payoffs are determined by simulation. We
also ran TR-R and TR–DPR on each of the other game
classes, but the results are similarly poor, and are excluded
from subsequent figures.

Figure 3: Full-game regret of reduced-game equilibria in con-
gestion games. N = 100, |S| = 2, 2 ≤ n ≤ 10.

Figures 2b, 3, and 4 show that deviation-preserving reduc-
tion outperforms hierarchical reduction and twins reduction
in a wide variety of settings. In 12-agent, 6-strategy lo-
cal effect games, DPR is clearly better than HR, but the
comparison to DPR′ is less conclusive. We were surprised
to find that hierarchical reduction would perform worse with
increased reduced-game size, which corresponds to increased
abstraction granularity. We note, however, that the 5, 7, and
8-player reduced games where HR performs poorly are ex-
actly the cases where n does not divide N = 12. This also
leads us to observe that because 11 is prime, the deviation-
preserving reduction never has the advantage n − 1 divid-
ing N − 1, and yet consistently performs well. The results
from 12-agent, 6-strategy congestion games (not shown) are
broadly similar.



Figure 4: Average full-game regret of reduced-game equilib-
ria in credit network games. N = 12, |S| = 6, 2 ≤ n ≤ 8.

In an attempt to get at the effect of very substantial
player reductions, we created 100-agent, 2-strategy conges-
tion games. The results in Figure 3 show clear separation be-
tween hierarchical reduction and both variants of deviation-
preserving reduction, suggesting that as the number of play-
ers grows, the relative difference between DPR and DPR′

may be smaller. Results for the 12-agent, 6-strategy credit
network game appear in Figure 4. Here again, DPR and
DPR′ perform similarly, and better than HR.

Across all game classes and sizes examined (including those
not shown) deviation-preserving reduction of any given size
outperforms the hierarchical reduction with at least as many
profiles that is closest in size. This means that for any
size hierarchical reduction, there exists a better deviation-
preserving reduction that requires simulating fewer profiles.
Virtually all of these differences are significant at p < 0.05;
the only exceptions are 4-player DPR versus 6-player HR
in the 12-player congestion game (Figure 3) and 12-player
credit network game (Figure 4). In addition, DPR3 outper-
forms TR across all game classes; the difference is significant
at p < 0.05 in all cases except the credit network game. The
difference between DPR4 and TR is significant in all cases.

4.2 Comparison to Full-Game Equilibria
We also compared reduced-game equilibria under HR and

DPR to equilibria from 12-player, 6-strategy full games us-
ing two metrics: similarity of support sets, and L2 distance
between distributions. Table 1 shows the number of strate-
gies by which the support sets of full and reduced-game
equilibria differ. Here, we consider a strategy to be in the
support of a symmetric ε-Nash equilibrium if it is played
with probability 0.01 or greater. In nearly all cases support
sets of DPRn match match those of full-game equilibria sig-
nificantly (p < 0.05) better than both HRn and HRn+1.
In addition, for congestion games and local effect games,
DPR>2 significantly outperforms TR, whereas in credit net-
work games, there is no significant difference between TR
and DPR.

Table 2 presents a similar message, but in terms of the
L2 distances between the mixed strategy distributions in
full and reduced-game equilibria. Again, DPR is signif-
icantly better than HR and TR for congestion and local
effect games, while performing similarly on credit network
games. As in Section 4.1, in these experiments, we compute

credit network congestion local effect

n HR DPR HR DPR HR DPR

2 3.72 1.49† 1.68 0.39† 2.72 0.45†
3 3.72 1.64† 0.99* 0.17†* 1.04* 0.20†*
4 3.72 1.60† 1.05 0.10†* 0.98 0.12†*
5 1.98* 1.54† 1.10 0.08† 1.01 0.09†
6 1.19†* 1.39 0.98 0.05† 0.85* 0.08†

Table 1: Reduced versus full-game NE support set differ-
ence. * indicates significant difference between n and n− 1;
† indicates significant difference between HRn and DPRn.

credit network congestion local effect

n HR DPR HR DPR HR DPR

2 0.713 0.703 0.435 0.069† 0.503 0.128†
3 0.764* 0.690† 0.141* 0.039†* 0.154* 0.064†*
4 0.860 0.640† 0.117* 0.022†* 0.117* 0.037†*
5 0.643* 0.641 0.141 0.019†* 0.144 0.027†*
6 0.467†* 0.564* 0.099* 0.018† 0.088* 0.026†

Table 2: Reduced versus full-game NE distribution L2 dis-
tance. * indicates significant difference between n and n−1;
† indicates significant difference between HRn and DPRn.

one symmetric mixed-strategy Nash equilibrium per game
by running replicator dynamics initialized to the uniform
mixture.

4.3 Dominated Strategies
Another useful operation in the analysis of simulation-

based games is to check for dominated strategies. A dom-
inated strategy is one that no agent should ever play be-
cause there is an alternative strategy that is at least as good
in response to any profile of opponent strategies. We ran
experiments on 12-agent, 6-strategy congestion and credit
network games (250 each), comparing the set of strategies
that remain after iterated elimination of strictly dominated
strategies in the full game against those that remain in 2,
4, and 6-player reduced games. We observed that DPR and
DPR′ produced very similar results, and that both improved
over hierarchical and twins reduction. Figures 5 and 6 show
histograms of the number of strategies eliminated in reduced
games but not eliminated in full games.

In congestion games (Figure 5), twins reduction and both
forms of deviation-preserving outperform hierarchical reduc-
tion, eliminating fewer strategies in the reduced game that
survive in the full game, even when hierarchical reduction
samples vastly more profiles. These congestion games often
exhibit dominated strategies in the full game, but we al-
most never observed strategies surviving in reduced games
that are dominated in the full game.

In credit network games (Figure 6), no strategies are dom-
inated in the full game, but in the twins reduction game,
many strategies are eliminated. Moving to DPR4 or DPR′4
solves this problem almost entirely. These experiments also
confirm that for all reduction types, increasing the number
of players in the reduced game reduces the number of strate-
gies erroneously found to be dominated.

5. ROLE-SYMMETRIC GAMES
We can smoothly relax the constraint that games be fully



(a) HR2 (21 profiles) (b) HR4 (126 profiles) (c) TR ≡ DPR2 ≡ DPR′2 (36 profiles)

Figure 5: Histograms showing the number of strategies surviving iterated elimination of dominated strategies in full but not
reduced congestion games. N = 12, |S| = 6, 250 random games. TR ≡ DPR2 outperforms HR, sampling far fewer profiles.

(a) TR ≡ DPR2 ≡ DPR′2 (36 profiles) (b) DPR′4 (336 profiles)

Figure 6: Histograms showing the number of strategies surviving iterated elimination of dominated strategies in full but not
reduced credit network games. N = 12, |S| = 6, 250 sample games. DPR′4 avoids the aggressive elimination occurring in TR.

symmetric by assigning agents to roles, and enforcing sym-
metry only within these roles. Across roles, agents’ strat-
egy sets and payoffs can differ, but within a role, they are
symmetric. Formally, a role-symmetric game is a tuple Γ =
({Ni}, {Si}, u), where the number of agents with role i is Ni,
and agents with role i have strategy set Si. Role-symmetric
games provide a natural model for many settings where
agents can be partitioned into meaningful categories, such
as buyers and sellers in a market, or attackers and defenders
in a security game. Role symmetry imposes no loss of gen-
erality on normal-form games, spanning the spectrum from
complete asymmetry (each player has its own role) to full
symmetry (a single role for everyone).

All of the player reduction methods discussed here can be
straightforwardly extended to role-symmetric games. Con-
sider for example the 20-agent continuous double auction
study of Vytelingum et al. [14] with N1 = 10 buyers and
N2 = 10 sellers. Instead of choosing n, the number of players
in the reduced game, we must choose each {ni}, the number
of players with each role in the reduced game.

To perform a hierarchical reduction, a natural choice would
be n1 = n2 = 2. This would involve simulating all profiles
where 0, 5, or 10 agents play each buyer strategy, and a
multiple of five agents likewise play each seller strategy.

With twins reduction, there are two players per role. Each

player views itself as controlling a single agent, and the other
player with the same role as controlling nine agents. It views
the two other-role players as each representing half the ten
agents with that role, so in the reduced-game profile

〈1×s1.1, 1×s1.2, 1×s2.1, 1×s2.2〉 ,

the payoff to buyer 1, who plays s1.1, comes from full-game
profile

〈1×s1.1, 9×s1.2, 5×s2.1, 5×s2.2〉 .
The deviation-preserving reduction extends the twins re-

duction to more than two reduced-game players per role,
maintaining the view that a reduced-game player controls a
single agent, while the other players with the same role ag-
gregate over the rest of the agents with that role, and players
with another role aggregate over all agents with their role.
With either hierarchical reduction or deviation-preserving
reduction, it would be possible to choose ni 6= nj if different
granularity of reduction were desired for different roles.

This extension to role-symmetric games encompasses the
broader class over which Ficici et al. [4] define the twins
reduction. The clustering method by which they aggregate
agents induces a role-symmetric game that restricts all roles
to have the same strategy set (but allows different payoffs).
They mention but do not develop the idea that the twins
reduction might extend to role-symmetric games. To our



knowledge, hierarchical reduction has not been applied to
role-symmetric games.

6. CONCLUSIONS
Our new player reduction method, deviation-preserving

reduction, combines the most appealing aspects of hierar-
chical reduction and twins reduction. It also performs bet-
ter than both prior methods experimentally: equilibria from
DPR games have lower full-game regret and more closely re-
semble full-game equilibria, even when sampling fewer full-
game profiles. In addition, performing iterated elimination
of dominated strategies on deviation-preserving reduction
games stays more faithful to the full game compared to other
player reductions. Our alternative DPR′ formulation per-
forms reasonably well in the same tests. The simulation
savings from DPR′ are greatest when the reduced game has
many players but few strategies, so DPR′ may prove use-
ful in such cases. Though it may not be obvious how to
choose between DPR and DPR′, the evidence is quite com-
pelling that deviation-preserving reduction is the best avail-
able player reduction method for analyzing large simulation-
based games.
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