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ABSTRACT
The realization of plans of activities by several agents is usually
subject to a set of temporal constraints. The latter are either con-
straints holding on each agent individually, or constraints allowing
the activities of agents to be synchronized. To represent the set
of temporal constraints imposed on distributed plans, the frame-
work of Multi-agent Simple Temporal Network (MaSTN) can be
used. In this paper, we consider the problem of maintaining the
temporal consistency of distributed plans during execution, when
temporal constraints may be updated. To this end, we propose new
incremental algorithms for managing dynamic MaSTNs. These al-
gorithms help each agent know, as soon as possible, whether the
distributed plan to be executed is still temporally consistent. They
range from algorithms focusing on keeping as much as possible the
privacy between agents to algorithms focusing on improving the
response time to updates through more information sharing. We
analyze the robustness of these algorithms when communications
are intermittent, and we provide experimental results demonstrat-
ing the trade-off to be made between performance and privacy.

1. INTRODUCTION
Autonomous robotics applications such as the automatic explo-

ration of large and hazardous areas can have increased performances
by the use of multiple robots [10], providing redundancy and par-
allelism capabilities to the robots team. It is especially interesting
to take advantage of heterogeneous robots to assign a large number
of capabilities into several entities at a reasonable cost. The coop-
eration between robots will thus lead to allocate the several tasks
of the mission to each robot depending on their capabilities. These
tasks will moreover be linked by temporal constraints, enforcing
precedence relations or synchronization between tasks.

Simple Temporal Networks (STNs) [5] are a widely used tool
for handling temporal constraints. Many planning algorithms used
in robotics generate a plan represented as an STN [8, 7, 6, 13].
Multiple tools and algorithms already exist to efficiently propagate
constraints on STNs or to maintain STNs during execution while
taking into account possible changes in the environment or in the
mission specification, such as delays on tasks execution.

Multi-robot systems generally evolves in complex and constrain-
ed environments. In such environments, the communication be-
tween robots is often chaotic, leading to delayed or even inter-
mittent communications. In order to have the team be robust to
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both dynamic environments and intermittent communications, it
seems mandatory to implement a distributed autonomous system.
In such an architecture, it is then impossible to have a unique STN
for the whole team being maintained in a centralized way. The
Multiagent STN (MaSTN) formalism [1] allows each agent to be
only aware of temporal constraints that are involved in its private
plan. It has been shown that Incremental Partial Path Consistency
(IPPC) can be enforced on MaSTNs, using Distributed Incremen-
tal ∆STP (DI∆STP) [1] and Distributed Incremental Partial Path
Consistency (DIPPC) [1]. However, these algorithms have not been
designed to be robust to intermittent communications.

In this paper we propose four algorithmic variants to maintain
consistency in a MaSTN: CIP (Centralized Incremental Propaga-
tion), a centralized algorithm based on a supervisor agent entirely
managing the MaSTN consistency; DIP-G (Distributed Incremen-
tal Propagation with Global information sharing), a distributed al-
gorithm based on sharing every information to every agent; DIP-L
(Distributed Incremental Propagation with Local information shar-
ing), which focuses on reproducing the mono-agent propagation al-
gorithm across the MaSTN while keeping maximum privacy; and
DIP-M (Distributed Incremental Propagation with Macro informa-
tion sharing), which focuses on increasing performance by lower-
ing privacy requirements. Sec. 2 introduces some STN and MaSTN
definition and notations. Sec. 3 then presents the four proposed
algorithms. An analysis of the algorithms is proposed in Sec. 4.
Sec. 5 finally evaluates and compares the four algorithms according
to the number of messages exchanged and required computations to
propagate a new disturbance, on randomly generated benchmarks.

2. BACKGROUND

2.1 Simple Temporal Network (STN)
An STP (Simple Temporal Problem [5]) is a pair S = (V,E)

composed of:

• a set of time-point variables V = {v1, . . . , vn}, which are
associated with the occurrence of some events in time; a spe-
cific variable v0 called the reference-point is usually added
to V for representing a reference temporal position;

• a set of constraints E, each constraint e ∈ E being defined
by a set of variables {vi, vj} ⊆ V , with i < j, and by two
bounds lij ∈ R ∪ {−∞} and uij ∈ R ∪ {+∞} which
respectively specify a minimum and a maximum temporal
distance between vi and vj (temporal constraint vj − vi ∈
[lij , uij ]); we assume without loss of generality that there
are not several constraints in E which hold on the same two
variables; unary temporal constraints such as vi ∈ [a, b] can
be easily expressed as distance constraints with regards to the
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reference-point (constraints v− v0 ∈ [a, b]); moreover, each
temporal constraint vj − vi ∈ [lij , uij ] can be rewritten as
two inequality constraints vj − vi ≥ lij and vi− vj ≥ −uij

called simple temporal constraints.

From this definition, a solution to an STP (V,E) is defined as an
assignment of all variables in V such that all temporal constraints
in E are satisfied. An STP is said to be consistent if it admits a so-
lution, inconsistent otherwise. Last, an STP has a natural graphical
representation called an STN (Simple Temporal Network), which
contains one vertex per variable in V and one edge vi → vj la-
beled by [lij , uij ] per temporal constraint vj − vi ∈ [lij , uij ] in
E.

STNs are appealing in practice to deal with temporal aspects be-
cause several problems that can be formulated on STNs are solvable
in polytime, such as: (1) determining whether an STN is consistent;
(2) determining for each time-point variable v its earliest and latest
occurrence times lv and uv in a solution; (3) determining the mini-
mum and maximum temporal distances between any two variables
in a solution. Several algorithms exist for solving such problems,
inspired either by shortest path algorithms on graphs or by algo-
rithms developed in the constraint programming community [5, 3,
15, 12].

Algorithms for reasoning about STNs were also extended to a
dynamic context [2, 11], where temporal constraints may be up-
dated with two kinds of possible modifications:

• constraint tightening, when a simple temporal constraint w−
v ≥ d is updated to w − v ≥ d′ with d′ > d; in this case,
incremental reasoning is usually performed by maintaining a
queue of temporal constraints to be revised in order to recom-
pute the consistency of the STN or the earliest/latest dates
associated with time-point variables; the addition of a con-
straint to the STN can be seen as the tightening of a virtual
edge labeled by [−∞,+∞];

• constraint relaxation, when a simple temporal constraint w−
v ≥ d is updated to w − v ≥ d′ with d′ < d; in the relax-
ation case, incremental reasoning is performed by reusing
information recorded during previous computations, such as
propagation chains which record explanations for the cur-
rent time bounds of time-point variables: if a simple tempo-
ral constraint is relaxed and if it explained the lower/upper
bound of a variable v, then this bound is reinitialized, as well
as all lower/upper bounds of time-point variables which be-
long to the tree of propagation chains rooted in v [2]; the
deletion of a constraint can be seen as the relaxation of an
edge to [−∞,+∞].

For the rest of the paper, we do not detail these tightening and
relaxation algorithms. We only assume that we have two functions
called IncrRelax(Rlx) and IncrPropag(Rvs) respectively. The
former takes as an input a set Rlx of edge relaxations represented
by triples (v, w, b) (relaxation of bound b ∈ {LB,UB} of edge
v → w); it reinitializes time-bounds of vertices based on propaga-
tion chains, and it returns temporal constraints to be revised after
the relaxation operation. The latter takes as an input a set Rvs of
temporal constraints to be revised, each of which is described by a
tuple (v, w, b) (revision of edge v → w for bound type b required);
it returns a set of pairs (v, b) describing time-point bounds updated
by the propagation of temporal constraints. We assume that calls to
IncrPropag and IncrRelax update all features associated with
the STN such as its consistency, the lower and upper bounds asso-
ciated with time-point variables, and propagation chains.

2.2 Multi-agent STN (MaSTN)
STN were extended to a multi-agent context, where time-point

variables are not controlled by a single agent but instead are parti-
tioned among a set of agents A. This extension is called MaSTN
for Multiagent Simple Temporal Network [1]. Formally, an MaSTN
is defined by:

• a set of N local STNs, one per agent A ∈ A; the local STN
associated with agent A, denoted by SA

L , is defined by V A
L

the set of local vertices owned by a, and EA
L the set of local

edges connecting two local vertices v, w ∈ V A
L ;

• a set of edges EX which connect the local STNs; each edge
in EX represents an external constraint and connects two lo-
cal vertices of different agents.

Apart from its local edges in EA
L , each agent A is aware of the

subset of external constraints EA
X which hold on one of its local

vertices (EA
X = {{v, w} ∈ EX |v ∈ V A

L }). Apart from its lo-
cal vertices in V A

L , each agent is aware of the set V A
X composed

of vertices not owned by A but involved in EA
X (V A

X = {v ∈
V |∃w ∈ V A

L , {v, w} ∈ EX}). Therefore, the set of variables
known by agent A is V A = V A

L ∪ V A
X , and the set of edges

known by A is EA = EA
L ∪ EA

X . Additionally, we define for
each agent A the set V A

F of frontier vertices of A as the subset
of local vertices of A connected to at least one external vertex
(V A

F = {v ∈ V A
L |∃{v, w} ∈ EX}). In the following, we de-

note by owner(v) the unique agent which owns variable v, that is
the agent A that has v in the set of its local vertices V A

L .
Fig. 1 gives an example of an MaSTN involving three agents A,

B, C. Agent A (resp. B and C) owns variables vA1 to vA6 (resp. vB1
to vB8 and vC1 to vC8 ). In its plan, agent A must perform acquisition
acq1, get energy from agent B, and then perform a maintenance
operation. Agent B must perform acquisition acq2, charge agent
A, and receive data from agent C. A reception instrument must be
switched on (variable vB5 ) and off (variable vB8 ) before and after
the reception of data from C. Agent C must perform two acqui-
sitions (acq3 and acq4) before transmitting the associated data to
agent B. Some of the temporal constraints defined specify bounds
on the durations of activities and on transition times between ac-
tivities. Other temporal constraints are requirements, such as the
constraint linking variables vC2 and vC5 which may correspond to
a requirement to transmit acquisition acq3 sufficiently fast, or the
constraint which links reference-point v0 with variable vC8 to limit
the duration of the plan of C.

On this example, the sets of external vertices for agents are V A
X =

{vB3 , vB4 }, V B
X = {vA3 , vA4 , vC5 , vC8 }, and V C

X = {vB6 , vB7 }. The
sets of frontier vertices are V A

F = {vA3 , vA4 }, V B
F = {vB3 , vB4 , vB6 , vB7 },

and V C
F = {vC5 , vC8 }. External constraints in EX are depicted

with dotted lines. They represent synchronization points between
agents.

v0

A

C

B

acq1 recharge
[2, 4] [2, 5] [0,∞]vA4vA2 vA3

[5,∞] vA5 vA6
[1, 1]

maintenance

vB3

acq2 charge receiveswOn swOff
[3, 5] vB6 vB7 vB8vB5

[2, 10]

[4, 10]

vB1 vB2
[1, 2] [6, 20] vB4

[8,∞] [0,∞] [0,∞] [0,∞]

[0, 10]
[0, 0][0, 0]

vA1

[5, 8]
acq3 acq4 sendAcq3

[3,∞] [1, 3]

[0, 16] [0, 16]

vC4vC1
[1, 2] vC2 vC3

[3, 4] [4, 4]

sendAcq4

vC6 vC7
[0,∞] vC8

[4, 7]vC5

[0, 30]

[0, 0] [0, 0]

Figure 1: Example of a Multi-agent STN involving 3 agents

1172



3. INCREMENTAL ALGORITHMS FOR DY-
NAMIC MULTI-AGENT STN

We now consider dynamic MaSTN, in which temporal constraints
may be updated following information received at execution time.
For instance, the duration of activities may be longer or shorter than
expected, time windows available for realizing tasks may change,
or agents may replan and change their internal temporal constraints.
In such situations, our goal is to incrementally recompute, at the
level of each agent A, the current consistency of the MaSTN as well
as lower and upper bounds on the variables owned by A. We study
four algorithmic variants for managing dynamic MaSTNs. These
variants differ in the set of temporal constraints considered by each
agent and in the kind of information shared between agents.

3.1 Basic assumptions
In the following, we assume that all external constraints in EX

are static: no change on the existence of these constraints and no
change on their labels. The reason for this is that we consider that
the modification of a temporal constraint shared by several agents
must be handled by a more complex resynchronization process be-
tween agents, or by a process which assigns to a single agent the
responsibility for updating the constraint.

Also, we make no assumption on the protocol used for commu-
nications (broadcast, unicast, multicast...), on how data are actu-
ally routed on the communication network formed by the agents,
on how reception acknowledgments are handled, on how messages
are re-emitted in case of intermittent communications, and on how
queues of messages not sent yet are managed. The only assump-
tions made are that there may be some latency in message trans-
mission, and that when messages are transmitted from agent A to
agent B, messages sent first by A are received first by B.

3.2 A first glance at the algorithmic variants
Fig. 2 gives a first glance of the kind of temporal knowledge

manipulated by each agent for the four incremental algorithms pro-
posed, given the MaSTN provided in Fig. 1. The four algorithms
are called CIP, DIP-G, DIP-M and DIP-L:

• CIP (Fig. 2(a)) stands for “Centralized Incremental Prop-
agation”; in CIP, a supervisor agent maintains all tempo-
ral constraints and is responsible for reasoning about these
constraints; it receives notifications of changes from other
agents and sends back updates regarding the consistency of
the MaSTN and the time bounds associated with variables;
other agents are only aware of their own local STN;

• DIP-G (Fig. 2(b)) stands for “Distributed Incremental Prop-
agation with Global information sharing”; in DIP-G, each
agent maintains the set of all temporal constraints involved
in the MaSTN, even the constraints it is not supposed to be
aware of; as soon as a change occurs in a local edge of an
agent, the latter sends the information to all other agents;

• DIP-L (Fig. 2(c)) stands for “Distributed Incremental Propa-
gation with Local information sharing”; in DIP-L, each agent
reasons only about the set of constraints it is supposed to be
aware of, and the only data shared between agents are time
bounds on external vertices;

• DIP-M (Fig. 2(d)) stands for “Distributed Incremental Prop-
agation with Macro information sharing”; in DIP-M, each
agent A reasons about two kinds of constraints: (1) its own
local temporal constraints, and (2) a macroscopic view of
temporal constraints of other agents; this macroscopic view

provides distance constraints between external vertices; each
agent is responsible for sending updates on its own macro-
scopic view, and hence never reveals its internal edges.

(b) DIP-G

(c) DIP-L (b) DIP-M

(a) CIP

v0

v0

agent B

v0

agent C

agent A

agent A

agent B

v0

v0

agent C

v0

agent A

v0

agent B

v0

agent C

v0

v0

agent A

agent B

agent C

v0

v0

vB8

vC5

vA4vA1

vB1 vB2

vC1 vC2 vC3

vB3

vA2 vA3

vB4

vC4

vB5

vA5 vA6

vB6

vC6 vC7 vC8

vB7

vB8

vC5

vA4vA1

vB1 vB2

vC1 vC2 vC3

vB3

vA2 vA3

vB4

vC4

vB5

vA5 vA6

vB6

vC6 vC7 vC8

vB7

vB8

vC5

vA4vA1

vB1 vB2

vC1 vC2 vC3

vB3

vA2 vA3

vB4

vC4

vB5

vA5 vA6

vB6

vC6 vC7 vC8

vB7

vA4vA1

vB3

vA2 vA3

vB4

vA5 vA6

vB8

vC5

vA4

vB1 vB2 vB3

vA3

vB4 vB5 vB6

vC8

vB7

vC5vC1 vC2 vC3 vC4

vB6

vC6 vC7 vC8

vB7

vA4vA1 vA2 vA3

vB4

vA5 vA6

vB6

vC8

vB7

vB8

vC5

vA4

vB1 vB2 vB3

vA3

vB4 vB5 vB6

vC8

vB7

vC5

vA4

vC1 vC2 vC3

vB3

vA3

vB4

vC4

vB6

vC6 vC7 vC8

vB7

vB3

vC5

vB8

vC5

vA4vA1

vB1 vB2

vC1 vC2 vC3

vB3

vA2 vA3

vB4

vC4

vB5

vA5 vA6
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vC6 vC7 vC8

vB7

vB8vB1 vB2 vB3 vB4 vB5 vB6 vB7

vC5vC1 vC2 vC3 vC4 vC6 vC7 vC8

Figure 2: The four incremental algorithms proposed

3.3 Basic Functions and Data Structures
Before providing the details of the algorithms, we introduce some

functions and data structures. To send messages, each agent uses
a function called send(dstList , content) which takes as inputs a
list dstList of agents to which the message is addressed (value all
when the message is broadcasted to all agents), and the content
of the message (more details below). This function returns an in-
teger id which corresponds to a unique identifier defining a strict
ordering among messages sent by the agent (the id of a message is
strictly greater than the id of all messages sent previously). If src
denotes the agent sending the message, then each agent in dstList
receives message m = (src, id, content).

The content of the message can be of four types:

• UPDATE(v, w, b, d): when the agent sending the message
indicates that bound b ∈ {LB,UB} of edge v → w has
been updated to value d;

• RELAX(v, b) (used in DIP-L only): when the agent sending
the message orders to relax bound b of vertex v;
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• RELAXED(v, b) (used in DIP-L only): when the agent send-
ing the message indicates that bound b of vertex v has been
relaxed as requested;

• CONSISTENCY(c, id) (used in CIP and DIP-L): consistency
information, where c is a Boolean taking value true when the
agent sending the message estimates that the MaSTN is con-
sistent, and value false otherwise; identifier id indicates that
for computing this consistency information, the agent send-
ing the message has taken into account all messages received
up to identifier id (included).

Each agent also maintains several data structures:

• MsgRec: a FIFO list containing messages received and not
processed yet;

• Disturbs: a FIFO list containing local disturbances not pro-
cessed yet;

• Rvs: a set of triples (v, w, b) describing temporal constraint
revisions to be done on the STN manipulated by the agent;

• Rlx: a set of triples (v, w, b) describing bounds which must
be relaxed (to −∞ if b = LB and to +∞ if b = UB);

• several elements associated with the STN manipulated by the
agent: current consistency, current bounds of variables, cur-
rent bounds labeling edges, propagation chains...

In addition to the send function, each agent uses several ba-
sic procedures. Procedures setBound and addUpdate, shown in
Alg. 1, are used respectively to update bounds of temporal con-
straints and to post updates on the STN manipulated by the agent.
Procedure addUpdate may update the set Rlx of edges relaxed
(line 6) or the set Rvs of edges to be revised (line 7), and it actu-
ally sets the required bound for the required edge.

Algorithm 1: Procedures setBound and addUpdate

1 Procedure setBound (v,w,b,d)
2 case b = LB: l{v,w} ← d

3 case b = UB: u{v,w} ← d

4 Procedure addUpdate (v,w,b,d)
5 d′ ← getBound(v, w, b)
6 if d < d′ then Rlx← Rlx ∪ {(v, w, b)}
7 else if d > d′ then Rvs← Rvs ∪ {(v, w, b)}
8 setBound(v, w, b, d)

Each agent also uses three procedures whose definition depends
on the algorithmic variant chosen:

• ProcessMessages, used by the agent when received mes-
sages must be processed;

• ProcessDisturbances, used by the agent when a change
occurs in it owns temporal constraints (constraints in EA

L );

• ProcessUpdates, used when the agent performs incremen-
tal reasoning following some updates.

3.4 Centralized Incremental Propagation (CIP)
As said previously, CIP adopts a centralized approach where a

supervisor agent is aware of the whole MaSTN. This supervisor
may be elected among agents, and elected again if the supervisor

fails. It can use well-known mono-agent methods to detect incon-
sistencies. Details concerning CIP are provided in Alg. 2 for the
supervisor agent and in Alg. 3 for the slave agents.

Basically, the supervisor processes messages sent by slave agents
by simply adding the set of updates received to the set of updates
to be processed (lines 2-5 in Alg. 2). It also maintains, for each
slave agent A, a field lastIdRec(A) representing the identifier of
the last message from A which has been processed. To process
the set of updates induced by local changes or by messages, the
supervisor considers the STN S = (V,E) containing all vertices
and all temporal constraints of the MaSTN (V = ∪A∈AV

L
A and

E = (∪A∈AE
A
L )∪EX ). It uses the IncrRelax and IncrPropag

functions introduced in Section 2 (lines 13 and 14), and then trans-
mits the updates to the appropriate slave agents (lines 16-18). It
also sends to the slave agents information regarding the consistency
of the MaSTN (lines 20-24). To avoid useless messages, it main-
tains the content of the last consistency messages sent.

As for slave agents (Alg. 3), each slave agent A receives mes-
sages from the supervisor and updates bounds of its own variables
in V A

L accordingly (line 5). Consistency messages are taken into
account only if they were processed by taking into account the
last message sent (line 7). Also, each time a local update occurs
(change in an edge in EA

L ), it is directly sent to the supervisor and
the consistency status is temporary set to unknown (lines 10 to 13).

Algorithm 2: CIP - Supervisor’s procedures
1 Procedure ProcessMessages ()
2 while MsgRec 6= ∅
3 PickNext (src, id,UPDATE(v, w, b, d)) from MsgRec
4 addUpdate(v, w, b, d)
5 lastIdRec(src)← id

6 ProcessUpdates()

7 Procedure ProcessDisturbances ()
8 while Disturbs 6= ∅
9 PickNext UPDATE(v, w, b, d) from Disturbs

10 addUpdate(v, w, b, d)
11 ProcessUpdates()

12 Procedure ProcessUpdates ()
13 Rvs← Rvs ∪ IncrRelax(Rlx)
14 BoundUpdates ← IncrPropag(Rvs)
15 Rlx← ∅; Rvs← ∅
16 foreach (v, b) ∈ BoundUpdates
17 A← owner(v)
18 lastIdSent(A)←

send(A,UPDATE(v0, v, b,getBound(v, b)))
19 c← getConsistency()
20 foreach A ∈ A
21 s← CONSISTENCY(c, lastIdRec(A))
22 if lastConsSent(A) 6= s then
23 send(A, s)
24 lastConsSent(A)← s

3.5 Distributed Incremental Propagation with
Global information sharing (DIP-G)

DIP-G is an approach which avoids having a centralized design.
In DIP-G, every agent is aware of the whole MaSTN. More pre-
cisely, every agent maintains an STN containing all vertices and all
edges of the MaSTN. This way, every agent checks independently
whether the MaSTN is consistent or not. In this version, agents
only have to send the detected disturbances to all other agents. The
description of DIP-G provided in Alg. 4 is quite straightforward:
each time messages are received, the updates they contain are pro-
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Algorithm 3: CIP - Slaves’s procedures
1 Procedure ProcessMessages ()
2 while MsgRec 6= ∅
3 PickNext m = (src, id, content) from MsgRec
4 if content = UPDATE(v0, v, b, d) then
5 setBound(v, b, d)
6 else if (content = CONSISTENCY(c, idRec))
7 if lastIdSent = idRec then setConsistency(c)

8 Procedure ProcessDisturbances ()
9 if Disturbs 6= ∅ then

10 setConsistency(unknown)
11 while Disturbs 6= ∅
12 Pick u from MsgRec
13 lastIdSent ← send(supervisor , u)

14 Procedure ProcessUpdates (): empty

cessed, and each time there is a change in a local edge, this change
is forwarded to all other agents (no privacy). Each agent processes
updates as in CIP (see lines 13 to 15). In DIP-G, agents do not ex-
change any consistency message, they exchange raw information
instead, that is raw changes on local edges.

Algorithm 4: DIP-G procedures
1 Procedure ProcessMessages ()
2 while MsgRec 6= ∅
3 PickNext m = UPDATE(v, w, b, d) from MsgRec
4 addUpdate(v, w, b, d)

5 ProcessUpdates()

6 Procedure ProcessDisturbances ()
7 while Disturbs 6= ∅
8 PickNext u = UPDATE(v, w, b, d) from Disturbs
9 addUpdate(v, w, b, d)

10 send(all, u)
11 ProcessUpdates()

12 Procedure ProcessUpdates ()
13 Rvs← Rvs ∪ IncrRelax(Rlx)
14 BoundUpdates ← IncrPropag(Rvs)
15 Rlx← ∅; Rvs← ∅

3.6 Distributed Incremental Propagation with
Local information sharing (DIP-L)

Privacy may be a critical feature in applications in which agents
want to share the minimum amount of information. We introduce
DIP-L to handle such applications. In DIP-L (Alg. 5), each agent
A is only aware of its local STN SA = (V A

L ∪ V A
X , EA

L ∪ EA
X).

When an agent detects a disturbance on some of its local edges
in EA

L , it propagates them at the level of its local STN and sends
only information related to modified frontier vertices to concerned
agents. The latter will perform propagation on their own part of
the problem, they may potentially send new updates to the original
agent, which itself can then send other messages to other agents
concerning other frontier vertices. This way, temporal constraints
are propagated inside the MaSTN in a distributed and local way.
Agents also share the view that they have concerning the consis-
tency status of their own part of the problem.

The main difficulty for defining DIP-L is related to the fact that
performing constraint tightening and constraint relaxation in paral-
lel for STNs can lead to wrong results. On MaSTN, the situation is
even worse because it can be shown that performing tightening and

relaxation in parallel may lead to infinite cycles of messages. As
updates can occur concurrently inside the network of agents, it is
therefore required to add mechanisms that prevent agents for prop-
agating updates corresponding to tightenings before all required re-
laxations are finished. To do this, we maintain, at the level of each
agent A, data structures called relaxation waiting lists. More pre-
cisely, for each vertex w and each bound type b, we maintain a set
RlxWait(w, b) to represent the set of frontier nodes v of A con-
tained in the tree of propagation chains rooted in w for bound b, and
whose relaxation end must be waited for before tightening bound b
of w. In this case, w is called the source of the relaxation of v for
bound b, denoted by w = rlxSrc(v, b). Such aspects are not taken
into account in algorithm DIPPC [1], which only handles constraint
tightening.

In DIP-L, four types of messages can be exchanged between
agents: UPDATE(v0, v, b, d) (line 4) when an agent receives an up-
date on the bound of an external vertex, RELAX(v, b) (line 6) when
an agent receives an order to relax bound b of an external vertex b,
RELAXED(v, b) (line 8) when an agent receives a confirmation that
all vertices lying in the tree of propagation chains rooted in v were
relaxed for bound b, and CONSISTENCY(c, lid) (line 14) when an
agent receives the consistency status c of the local STN of another
agent, and when the last message taken into account by this other
agent has identifier lid. In particular, when a relaxation waiting list
becomes empty (line 11), a relaxation confirmation message is sent
to the appropriate agent (line 13).

Procedure ProcessDisturbances (lines 19 to 23) simply adds
all local disturbances to the set of updates to be processed.

Procedure ProcessUpdates involves two parts: one part ded-
icated to constraint relaxation (lines 25 to 37), and one part ded-
icated to constraint tightening (lines 38 to 49). The relaxation
part sends relaxation requests when frontier vertices are relaxed
(lines 31- 32), while the tightening part sends updates to neigh-
boring agents when time bounds of frontier nodes change (lines 41
to 43), as well as consistency information to all agents (lines 45
to 49).

3.7 Distributed Incremental Propagation with
Macro-information sharing (DIP-M)

The main issue with the previous method is that as each agent
is only aware of its own local STN, a lot of messages may be ex-
changed between agents before obtaining the right time-bounds for
the variables. Typically, an agent sending an update message to a
neighbor cannot predict if this message will further impact its own
local STN. This increases both the execution time and the message
load. To address these issues, we propose DIP-M, an algorithmic
variant in which more information is shared between agents while
keeping some kind of privacy.

In DIP-M, each agent A builds a global view of its local STN
and shares this global view with all other agents. This global view
is called the local macro-STN of A. Formally, it is an STN SA

M =
(V A

M , EA
M ) where:

• V A
M is the set composed of all frontier variables of A plus the

reference-point v0 (V A
M = V A

F ∪ {v0});

• EA
M is a set of edges such that any solution of SA

M can be
extended to a solution of local STN SA

L , and conversely any
solution of SA

L can be projected to a solution of SA
M .

The local macro-STN associated with A provides a global view, re-
stricted to frontier nodes, of the set of solutions of the local STN of
A. This global view allows the other agents to predict how external
time-point variables owned by A react to changes.
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Algorithm 5: DIP-L procedures
1 Procedure ProcessMessages ()
2 while MsgRec 6= ∅
3 PickNext m = (src, id, content) from MsgRec
4 if content = UPDATE(v0, v, b, d) then
5 addUpdate(v0, v, b, d)
6 else if content = RELAX(v, b) then
7 Rlx← Rlx ∪ {(v0, v, b)}
8 else if content = RELAXED(v, b) then
9 w ← rlxSrc(v, b)

10 RlxWait(w, b)← RlxWait(w, b) \ {(v, src)}
11 if (RlxWait(w, b) = ∅) ∧ (w ∈ V this

X ) then
12 A← owner(w)
13 lastIdSent(A) = send(A,RELAXED(w, b))

14 else if content = CONSISTENCY(c, idRec) then
15 if lastIdSent(src) = idRec then
16 consistency(src)← c

17 lastIdRec(src)← id

18 ProcessUpdates()

19 Procedure ProcessDisturbances ()
20 while Disturbs 6= ∅
21 PickNext UPDATE(v, w, b, d) from Disturbs
22 addUpdate(v, w, b, d)
23 ProcessUpdates()

24 Procedure ProcessUpdates ()
25 foreach (v, b) ∈ Rlx
26 RlxFront ← V this

F ∩ getPropagTree(v, b)
27 if RlxFront 6= ∅ then
28 foreach w ∈ RlxFront
29 rlxSrc(w, b)← v

30 RlxWait(v, b)← {(w,A) |w ∈ RlxFront ∩ V A
X }

31 foreach (w,A) ∈ RlxWait(v, b)
32 lastIdSent(A)← send(A,RELAX(w, b))

33 else if v ∈ V this
X then

34 A← owner(v)
35 lastIdSent(A)← send(A,RELAXED(v, b))
36 Rvs← Rvs ∪ IncrRelax(Rlx)
37 Rlx← ∅
38 if ∀(v, b) ∈ V this × {LB,UB}, RlxWait(v, b) = ∅ then
39 BoundUpdates ← IncrPropag(Rvs)
40 Rvs← ∅
41 foreach (v, b) ∈ BoundUpdates | v ∈ V this

F
42 foreach A ∈ A | v ∈ V A

X
43 send(A,UPDATE(v0, v, b,getBound(v, b)))
44 c← getConsistency()
45 foreach A ∈ A
46 s← CONSISTENCY(c, lastIdRec(A))
47 if lastConsSent(A) 6= s then
48 lastIdSent ← send(A, s)
49 lastConsSent(A)← s

The macro-STN SM = (VM , EM ) associated with an MaSTN
involving a set of agents A is then defined as the union of all local
macro-STNs of all agents, plus the set of external edges between
agents (VM = ∪A∈AV

A
M and EM = EX∪(∪A∈AE

A
M )). Fig. 3(a)

gives the structure of the macro-STN associated with the MaSTN
described in Fig. 1.

In order to build the local macro-STN SA
M associated with each

agent A, we use a kind of all-pairs shortest paths algorithm which
eliminates non-frontier vertices one by one from the local STN SA

L .
Eliminating a non-frontier vertex v consists in computing all inter-
vals of possible distances between vertices in the neighborhood of
v, that is between vertices which are linked to v by a temporal
constraint. More precisely, for any two vertices u,w in the neigh-

v0

vC5

vA4

vB3

vA3

vB4 vB6

vC8

vB7

vB8

vA1

vB1 vB2

vC1 vC2 vC3

vA2

vC4

vB5

vA5 vA6

vC6 vC7

(a)

(b)

Figure 3: (a) Structure of the macro-STN obtained from the exam-
ple of Figure 1; (b) set of clusters of the macro-STN: non-frontier
time-point variables owned by agents C all belong to a single clus-
ter, whereas for agents A and B they are partitioned into two dis-
tinct clusters

borhood of v, eliminating v means updating the lower and upper
bounds of edge e = {u,w} by:

le = max(le, l{u,v} + l{v,w}) (1)
ue = min(ue, u{u,v} + u{v,w}) (2)

Based on this elimination scheme, we proceed as follows to build
the local macro-STN SA

M and to incrementally maintain it during
changes in temporal constraints:

• initially, the set of non-frontier variables V A
L \ V A

F owned
by A is partitioned into a set of clusters CA such that every
path in SA

L between two variables v, w belonging to distinct
clusters goes through a frontier node in V A

F (i.e. v and w
are separated by frontier vertices); formally, CA is the set
of connected components obtained when removing frontier
vertices from SA

L (see Fig. 3(b)); we then compute, for each
cluster c ∈ CA and for each frontier vertices v, w connected
to c by temporal constraints, the minimum and maximum
temporal distances l{v,w},c and u{v,w},c between v and w
owing to constraints involved in cluster c; these distances are
provided by the elimination of all vertices belonging to clus-
ter c; the bounds labeling the macro-edge between v and w
are then obtained by combining all bounds l{v,w},c/u{v,w},c
provided all clusters c linked to v and w, plus the potential
direct edge between v and w;

• in case of changes concerning some local edges, it suffices
to apply the elimination procedure again, but restricted to
clusters impacted by local changes; these clusters are those
which contain variables involved in updated temporal con-
straints; on this point, it is worth noting that a change in a
single local edge has an influence on at most one cluster; the
updated labels of macro-edges can then be obtained as previ-
ously; such a procedure can be shown to be valid, and more
incremental versions could be proposed to avoid eliminating
again every variable in every impacted cluster.

Thanks to the macro-STN, each agent can reason over the whole
MaSTN in case of changes on its own local STN, without the need
to wait messages from others agents. More precisely, in DIP-M,
each agent A performs temporal reasoning based on the STN result-
ing from both its local STN SA

L and from the part of the macro-STN
corresponding to other agents (see Fig. 2(d)). The procedures used
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in DIP-M are shown in Alg. 6. The main difference with DIP-G is
that instead of transmitting raw updates on internal edges, DIP-M
transmits updates on macro-edges (line 5). On this point, DIP-M
uses a function called IncrComputeMacroEdges to incrementally
update its local macro-STN following updates on its local edges
(line 3). This function returns the set of updates on macro-edges
in EA

M . In terms of privacy, each agent only reveals distance con-
straints between its frontier nodes.

Algorithm 6: DIP-M procedures
1 Procedure ProcessMessages (): identical to DIP-G

2 Procedure ProcessDisturbances ()
3 MacroUp ← IncrComputeMacroEdges(Disturbs)
4 foreach u ∈ MacroUp
5 send(all, u)
6 while Disturbs 6= ∅
7 PickNext u = UPDATE(v, w, b, d) from Disturbs
8 addUpdate(v, w, b, d)

9 ProcessUpdates()

10 Procedure ProcessUpdates (): identical to DIP-G

4. THEORETICAL ANALYSIS

4.1 Complexities
We consider two main metrics to evaluate all four algorithms: a)

the message efficiency which is the number of sent messages di-
vided by the number of disturbances (relaxation or tightening) and
b) the total computation efficiency which is the sum of constraint
checks performed by all agents divided by the number of constraint
checks that would be performed by applying the IncrPropag func-
tion on the whole MaSTN (which is similar to making the propa-
gation in a classical STN).

CIP is the best regarding the total computation time on the net-
work; computations are indeed centralized in the supervisor agent,
the slave agents being not performing any computation. Each dis-
turbance coming from a slave agent will lead to sending one mes-
sage, from the agent to the supervisor. In return, the supervisor will
send at worst one message per vertex to each vertex owner, leading
to a communication efficiency of O(|V |) messages.

DIP-G is the best regarding the worst-case message complexity:
the agent owning the disturbance will send a fixed number of mes-
sage to other agents. However the total computation efficiency of
DIP-G is always N times more than CIP: DIP-G sends updates no
matter how relevant these updates are; in the extreme case where
all agents are totally independent DIP-G would still send each and
every update.

DIP-L is the best regarding the privacy of each agent informa-
tion. The worst-case message efficiency and worst-case computa-
tion efficiency are O(|EX |N ). However in realistic cases where
messages are roughly received in the same order they were sent we
can expect a message efficiency linear in the number of external
constraints and a computation efficiency close to CIP.

DIP-M realizes a trade-off between the number of messages, the
total computation cost and the privacy of each agent. The worst-
case message efficiency is O(w2), where w is the size of the biggest
cluster that can be found in the MaSTN. The worst-case computa-
tion efficiency is linear in the number of agents as for DIP-G. Con-
trarily to DIP-G, DIP-M does not send an edge that would not affect
distances between frontier vertices.

These results are summarized in Table 1.

Table 1: Worst-case complexities for the four algorithms

metric CIP DIP-G DIP-L DIP-M
messages |V | O(1) O(|EX |N ) w2

computation 1 N O(|EX |N ) N

4.2 Robustness against intermittent commu-
nications

During execution, communications between agents can be inter-
mittent, meaning that at a time t, two agents A and B cannot send
any message to each other. The algorithms perform differently in
this case.

DIP-G and DIP-M can immediately propagate a disturbance and
establish if the MaSTN is still consistent without having to wait
other agents messages. CIP can also do as well as soon as the
disturbances send by the slave agents are received. This property
allow these three algorithms to be as robust as possible against loses
of communications.

In CIP, if communication is lost between a slave agent and its
supervisor, this slave agent can no longer receive any update and the
supervisor cannot take into account any change that would happen
to the slave agent. However, the rest of the network can still work
as usual. In a similar fashion, if communication is lost between
some agents in DIP-G and DIP-M, agents which are still connected
can still work by themselves.

However agents in DIP-L lack information on the MaSTN to
make complete propagation. If communication is lost between two
agents who shared a synchronization constraint, propagation is pre-
maturely stopped along this constraint. The most concerning issue
is that in this case, agents cannot even propagate their own distur-
bances properly and consequently can be unable to answer if the
STN is consistent or not.

5. EXPERIMENTS

5.1 Experimental setup
We made an evaluation of the the four proposed algorithms on a

set of random benchmarks. These benchmarks were generated in
two steps: (1) generation of the MaSTN, and (2) generation of a
scenario on this MaSTN.

MaSTN generation takes as parameters the number of agents
(N ), the number of vertices per agent (V), the number of local
(L) and external (E) edges per agent. The generation is structured
in the sense the each local STN SA

L is made of a main chain, i.e.,
SA
L = (V A

L , EA
L ) with V A

L = {vAi }1≤i≤V and ∀i, (vAi , vAi+1) ∈
EA

L (leading to V − 1 edges). The other L − (V − 1) local edges
are randomly generated between local vertices. Finally, E external
edges are generated between agents. With each edge generation,
we generate a value for the upper and lower bounds, while ensur-
ing that the global MaSTN is still consistent.

Then, for each MaSTN instance, a set of scenarios is generated.
Each scenario is made of N × V steps (one step per agent time-
point variable). Each step is described by an agent, a local edge
of this agent, and the new value of the edge constraint. Most of
the time, this new value is taken within the edge bounds (leading
to a tightening of the constraint), but we sometimes draw a value
outside the bounds (leading to a relaxation). In our experiment, we
decided to draw one relaxation for nine tightenings.

For each set of parameters, we generated ten MaSTN instances
and then ten scenarios. We have then executed each algorithm (CIP,
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Figure 4: Results for the message metric (top) and computation metric (bottom)

DIP-G, DIP-L, DIP-M) on each scenario by running one process
per agent. Each agent generates its own disturbances (based on the
scenario description) and propagates the new constraints according
to each algorithm. We used arc-consistency algorithms [4, 3] to
propagate constraints. We then measured the number of messages
exchanged between agents as well as the number of constraints
checked by each agent for each propagation. Results are analyzed
in the next section.

5.2 Results
Fig. 4 presents the results of experiments and compares the four

algorithms. Message efficiency is the number of sent messages per
disturbance. The internal interconnectivity is L−(V−1)

V , i.e., the
number of local edges in addition to the main chain, per vertex (0
means that local STNs are only made of a chain; 2 means that each
vertex is connected to 3 other vertices). The external interconnec-
tivity is EV , i.e. the ratio of frontier vertices (0 means no frontier
vertex, the local STNs being independent; 0.5 means that half of
the vertices are frontier vertices).

Fig. 4a and 4d show the message efficiency and the constraint
checks when the number of agents varies from 2 to 32. All four
algorithms scale well regarding messages, and differences between
algorithms are not really significant. The slight increase seen in
CIP and DIP-L comes from longer propagation chains that appear
in larger MaSTN. Regarding the number of constraint checks, CIP
clearly outperforms other algorithms as it performs computations
in a centralized way. DIP-L also scales well as no computation is
made twice (each agent being responsible of its own constraints).
DIP-G and DIP-M are however linearly increasing due to the re-
dundant calculations made on several agents.

Fig 4b and 4e show that the local structure of STNs (local STNs
having more or less edges) has almost no influence on the num-
ber of messages or constraint checks. The only interesting thing
to note is that DIP-M performs particularly well on less internally
connected MaSTNs, due to smaller clusters.

DIP-G sends exactly the same number of messages no matter
what the external connectivity is, as shown in Fig. 4c, and outper-
forms significantly other algorithms for high external interconnec-
tivity. The increase of messages sent by CIP is a consequence of
increased dependency between agents, meaning the higher the ex-

ternal coupling the higher number of time-point variables will be
affected by an edge update. The most interesting point is how DIP-
L and DIP-M behave: DIP-L message performance is directly af-
fected by the number of external constraints. DIP-M in comparison
scales only partially with external coupling and rapidly stabilizes.
At extreme external coupling (not show in this paper), DIP-M curve
decreases to match DIP-G performances, due to the fact that with
really high coupling the macro-STN tends to the MaSTN. However,
Fig. 4f shows that DIP-M computation efficiency become worse on
more externally coupled MaSTNs, due to a higher amount of clus-
ters, then requiring more computational work to calculate macro-
edges. All three other algorithms have a nearly similar rising rate
caused by longer propagation in denser networks.

In conclusion DIP-L is particularly adapted to sparse MaSTNs
where agents do not need a lot of information from their neigh-
bors, while DIP-M offers the best overall performances on dense
MaSTNs thanks to its macro-information sharing.

6. CONCLUSION AND PERSPECTIVES
In this paper, we proposed four different algorithms to maintain

consistency on MaSTN: 1) CIP, a centralized algorithm that has
good performance but is sensitive to intermittent communications;
2) DIP-G, a naive but efficient distributed algorithm which offers a
constant message complexity and robustness against loses of com-
munication; 3) DIP-L, which reproduces the behavior of mono-
agent propagation algorithm over the MaSTN while keeping as
much privacy as possible between agents; 4) DIP-M, which aims
for a trade-off between DIP-G and DIP-L by reasoning over what
agents need to be able to propagate efficiently their constraints. We
analyzed these algorithms both on a theoretical point of view and
on a set of random benchmarks. We concluded that DIP-L and DIP-
M are the best algorithms, the former being more adapted to sparse
MaSTNs while the later is more adapted to dense MaSTNs.

In the future, we intend to extend the macro-STN framework to
others STN variants such as STNUs [9] and TSTNs [14]. These
extensions will provide us more accurate execution models of the
plan, as we will be able to integrate uncontrollable time-point vari-
ables and time-varying constraints. We are also preparing a real
robotic robot experiment with a team of ground and air robots for
an exploration mission.
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