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ABSTRACT
We consider fractional hedonic games, where self-organized
groups (or clusters) are created as a result of the strategic
interactions of independent and selfish players and the hap-
piness of each player in a group is the average value she
ascribes to its members. We adopt Nash stable outcomes,
that is states where no player can improve her utility by
unilaterally changing her own group, as the target solution
concept. We study the quality of the best Nash stable out-
come and refer to the ratio of its social welfare to the one
of an optimal clustering as to the price of stability. We re-
mark that a best Nash stable outcome has a natural meaning
of stability since it is the optimal solution among the ones
which can be accepted by selfish users. We provide upper
and lower bounds on the price of stability for games played
on different network topologies. In particular, we give an
almost tight bound (up to a 0.026 additive factor) for bipar-
tite graphs and suitable bounds on more general families of
graphs.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics.

General Terms
Economics, Theory and Algorithms

Keywords
Algorithmic game theory; Clustering formation; Nash sta-
bility; Fractional hedonic games.

1. INTRODUCTION
In many economical, social and political situations, in-

dividuals carry out activities in groups rather than alone
and on their own. In these scenarios, understanding the
“happiness” of each member of the group becomes of crucial
importance. As examples, the utility of an individual in a
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group sharing a resource depends both on the consumption
level of the resource and on the identity of the members in
the group; similarly, the utility for a party belonging to a
political coalition depends both on the party trait and on
the identity of its members.

Hedonic games, introduced in [12], describe the depen-
dence of a player’s utility (or payoff) on the identity of the
members of her group. They are games in which players
have preferences over the set of all possible player partitions
(called clusterings). In particular, the utility of each player
only depends on the composition or structure of the clus-
ter she belongs to. In the literature, a significant stream of
research considered this topic from a strategic cooperative
point of view [8, 9, 13, 15], with the purpose of character-
izing the existence and the properties of coalitional struc-
tures such as, for instance, the core. Nevertheless, studying
strategic solutions under a non-cooperative scenario (such
as, for instance, Nash equilibria) becomes of fundamental
importance when considering huge environments (like the
Internet) lacking a social planner or where the cost of coor-
dination is tremendously high. Examples of non-cooperative
studies on hedonic games, in which self-organized clusterings
are obtained from the decisions taken by independent and
selfish players, can be found in [7, 14, 15].

In this work, we consider the class of (symmetric) frac-
tional hedonic games introduced in [1]. These games are
defined by a graph in which nodes represent players and the
weight of each edge measures the happiness of its two inci-
dent players when belonging to the same cluster. The utility
that player i gets when belonging to cluster C is given by
the total weight of edges which are incident to i and to some
other player belonging to C (the total happiness of i in C)
divided by the cardinality of C, i.e., the number of its nodes.
The social welfare of a clustering is the sum of the players’
utilities.

Fractional hedonic games model natural behavioral dy-
namics in social environments that are not captured by ad-
ditive separable ones, that is, games in which the utility of
a player is simply defined as her total happiness. In partic-
ular, fractional hedonic games defined on undirected and
unweighted bipartite graphs suitably model a basic eco-
nomic scenario in which each player can be considered as a
buyer or a seller. There are only edges connecting buyers
and sellers and every player sees a player of the same type
as a market competitor. In a situation of free movement,
each player prefers to be situated in a group (market) with
a small number of competitors: Each buyer wants to be situ-
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ated in a group with many sellers and few other buyers, thus
maximising their ratio, in order to decrease the price of the
good. On the other hand, a seller wants to be situated in a
group maximizing the number of buyers against the number
of sellers, in order to be able to increase the price of the good
and gain a higher profit. This senario is referred to in [1] as
Bakers and Millers and can be generalized to situations in
which there are more than two types of players by means of
k-partite graphs.

In this setting, a clustering is Nash stable (or it is a Nash
equilibrium) if no player can improve her utility by unilater-
ally changing her own cluster. Our aim is to understand the
performance of Nash stable clusterings. In particular, we
study the quality of a best Nash stable outcome and refer
to the ratio of its social welfare to the one of the socially
optimal clustering as to the price of stability (a study on
the price of stability for multi-agent systems can be found
in [16]). A best Nash stable outcome has a natural mean-
ing of stability, since it is an optimal solution among the
ones which can be accepted by selfish players [3]. Moreover,
in many networking applications and multi-agent systems,
agents are never completely unrestricted; rather, they in-
teract with an underlying protocol that essentially proposes
a collective solution to all participants, each of whom can
either accept it or defect from it. As a result, it is in the
interest of the protocol designer to seek for a best solution
at equilibrium. In fact, this can naturally be viewed as the
optimum subject to the constraint that the solution has to
be stable, with no agent having an incentive to unilaterally
defect from it once it is offered.
Related Work. Hedonic games have been first formalized
by Dréze and Greenberg [12] who analyzed them under a co-
operative perspective. Properties guaranteeing the existence
of core allocations (a core is a clustering structure in which
no group of players has an incentive to form a different clus-
ter) for games with additively separable utility have been
studied by Banerjee, Konishi and Sönmez [9], while Bogo-
molnaia and Jackson [8] consider several forms of clustering
stability like the core, the Nash and the individual stabil-
ity. Ballester [5], Aziz, Brandt and Seedig [2] and Olsen [17]
deal with computational complexity issues related to hedo-
nic games, also considering additively separable utilities.

Bloch and Diamantoudi [7] study non-cooperative games
of coalition formation and identify conditions for stable out-
comes. In a similar way, Apt and Witzel [4] study how
certain proposed rules can transform clusterings into other
ones with specific properties. Feldman, Lewin-Eytan and
Naor [14] investigate some interesting subclasses of hedonic
games from a non-cooperative point of view, by character-
izing Nash equilibria and providing upper and lower bounds
on both the price of stability and the price of anarchy (that
is the ratio between the quality of the worst Nash stable
clustering and the socially optimal clustering).

Finally, hedonic games have also been considered by
Charikar, Guruswami and Wirth [10] and by Demaine et al.
[11] from a classical optimization point of view (i.e, where
solutions are not necessarily stable).

Fractional hedonic games have been recently introduced
by Aziz, Brandt and Harrenstein [1] again from the coopera-
tive perspective. They prove that the core can be empty for
games played on general graphs and that it is not empty for
games played on some classes of undirected and unweighted
graphs (that is, graphs with degree at most 2, multipar-

tite complete graphs, bipartite graphs admitting a perfect
matching and regular bipartite graphs). Olsen [18] investi-
gates computational issues and the existence of Nash stable
outcomes in the variant of fractional hedonic games in which
the utility of player i in cluster C is defined as the total hap-
piness of i in C divided by |C| − 1, that is, the variant in
which the player herself is not accounted to the population
of the clustering. Although the difference between the two
utility functions might seem “almost” negligible, the sets of
Nash stable outcomes they induce in games played on a same
graph are usually quite different.

Bilò et al. [6] consider Nash stable solutions in fractional
hedonic games. They first show that, in presence of negative
edge weights, these outcomes are not guaranteed to exist,
while, if all edge weights are non-negative, the basic outcome
in which all players belong to the same cluster is Nash stable.
They provide an upper bound of O(n) on the price of anar-
chy for games played on weighted graphs and show that it
is asymptotically tight even for games played on unweighted
paths; moreover, they also show a lower bound of Ω(n) on
the price of stability for games played on weighted stars. As
a consequence of these results, they pose the characterization
of the price of stability for games played on undirected and
unweighted graphs as an interesting and challenging open
problem. As a partial answer to this question, they show
that, for undirected and unweighted bipartite graphs, the
price of stability is at least 1.002 and at most 2 and that,
for undirected and unweighted trees, the price of stability
is 1. Both upper bounds are obtained via polynomial time
algorithms constructing Nash stable clusterings of optimal
or almost optimal social value.
Our Contribution. In this paper, we focus on the price of
stability of fractional hedonic games played on undirected
and unweighted graphs. For general graph topologies, we
give a lower bound of 2. Moreover, we provide an upper
bound of 4 which holds under the assumption that the game
possesses a 2-Strong Nash stable clustering, that is, a clus-
tering such that no pair of players can improve their utility
by simultaneously changing her own cluster. However, we
show that there are games for which such a condition is not
always guaranteed. We then focus on games played on spe-
cific graph topologies. In particular, for triangle-free graphs,
we prove an upper bound of 4, while, for bipartite graphs,
we give an upper bound of 6(3− 2

√
2) ≈ 1.0294 and a lower

bound of 1.003. We stress that our upper bounds on the
price of stability directly extend also to the utility function
considered by Olsen in [18].
Paper Organization. The paper is organized as follows.
In Section 2, we formally define fractional hedonic games and
give some preliminary results. The technical contributions
of the paper are then presented in Sections 3, 4 and 5, which
address, respectively, games played on general, triangle-free
and bipartite graphs. Finally, some interesting open prob-
lems are stated in Section 6. Due to space constraints, some
proofs are omitted.

2. DEFINITIONS AND NOTATION
For an integer n > 0, we denote with [n] the set {1, . . . , n}.

For any set S, we refer to the number of elements in S as
the size of S, and we denote it with |S|.

Let G = (V,E) be a connected undirected graph with
n = |V |. Given a subset of nodes S ⊆ V , GS = (S,ES) is
the subgraph of G induced by the set S, i.e., ES = {{u, v)} ∈
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E : u, v ∈ S}. Nu(S) denotes the neighbors of u in S, i.e.,
Nu(S) = {v ∈ S : {u, v} ∈ E} and Eu(S) the edges in ES
being incident to u, i.e., Eu(S) = {{u, v} ∈ E : {u, v} ∈
ES}. A vertex cover of G is any subset of nodes C ⊆ V
such that each edge in E is incident to at least a node in C.
A minimum vertex cover is a vertex cover of minimum size.
An independent set of G is any subset of nodes I ⊆ V such
that, for every pair of nodes u, v ∈ V , there is no edge in E
connecting them. It is obvious that, if C is a vertex cover of
G then V \ C is an independent set of G.

The fractional hedonic game induced by G, denoted as
G(G), is the non-cooperative strategic game in which each
node u ∈ V is associated with a selfish player (or agent) and
each player chooses to join a certain cluster (assuming that
candidate clusters are numbered from 1 to n). Hence, a state
of the game, that we will call in the sequel a clustering, is a
partition of the agents into n clusters C = {C1, C2, . . . , Cn}
such that Cj ⊆ V for each j ∈ [n],

⋃
j∈[n] Cj = V and

Ci ∩ Cj = ∅ for any i, j ∈ [n] with i 6= j. Notice that some
clusters may be empty. We denote by C(u) the cluster in
C chosen by agent u and by γ(C, u) the index of such a
cluster, i.e., C(u) = Cγ(C,u). In a clustering C, the payoff
(or utility) of agent u is defined as

pu(C) =
|Eu(C(u))|
|C(u)| .

Each agent chooses the cluster she belongs to with the
aim of maximizing her payoff. We denote by (C, u, j), the
new clustering obtained from C by moving agent u from
C(u) to Cj ; formally, (C, u, j) = C \ {C(u), Cj} ∪ {C(u) \
{u}, Cj ∪{u}}. We say that an agent deviates if she changes
the cluster she belongs to. Given a clustering C, an im-
proving move (or simply a move) for player u is a devia-
tion to any cluster Cj that strictly increases her payoff, i.e.,
pu((C, u, j)) > pu(C). We say that an agent is stable if she
cannot perform a move; a clustering is Nash stable (or is
a Nash equilibrium) if every agent is stable. More gener-
ally, a clustering C is k-Strong Nash stable (or is a k-Strong
Nash equilibrium) if, for each C′ obtained from C when at
most k players jointly change their strategies, it holds that
pu(C) ≥ pu(C′) for some u belonging to the set of deviating
players, that is, there always exists a player not improving
her utility after the joint collective deviation. By definition,
a 1-Strong Nash stable clustering is a Nash stable clustering
and, for each k > 1, each k-Strong Nash stable clustering is
also a (k−1)-Strong Nash stable clustering. We denote with
NSCk(G(G)) the set of k-Strong Nash stable clusterings of
G(G).

The social welfare of a clustering C is the summation
of the players’ payoffs, i.e., SW(C) =

∑
u∈V pu(C). We

overload the social welfare function by applying it also to
single clusters to obtain their contribution to the social
welfare, i.e., SW(Ci) =

∑
u∈Ci

pu(C) so that SW(C) =∑
i∈[n] SW(Ci). Notice that the following property, provid-

ing a simple formula to compute the social welfare of a clus-
tering, holds:

Property 1. Given any cluster C, SW(C) = 2|EC |
|C| .

In particular the above property states that the contribu-
tion of each cluster to the social value is given by twice the
number of intra-cluster edges divided by the cardinality of
the cluster. Moreover, if GCi is a (non-empty) tree, we have

SW(Ci) = 2(|Ci|−1)
|Ci|

.

Given a game G(G), an optimal clustering C∗ is one that
maximizes the social welfare of G(G). A clustering C is
feasible if GCi is connected, for every i ∈ [n]. Notice that
an optimal configuration is always feasible. For any inte-
ger k ≥ 1, the k-strong price of anarchy of a fractional
hedonic game G(G) is defined as the worst-case ratio be-
tween the social optimum and the social welfare of a k-
Strong Nash stable clustering (whenever the latter exists):

PoAk(G(G)) = maxC∈NSCk(G(G))
SW(C∗)
SW(C)

if NSCk(G(G)) 6= ∅,
PoAk(G(G)) = ∞ otherwise. Analogously, the k-strong
price of stability of G(G) is defined as the best-case ratio
between the social optimum and the social welfare of a k-
Strong Nash stable clustering (whenever the latter exists):

PoSk(G(G)) = minC∈NSCk(G(G))
SW(C∗)
SW(C)

if NSCk(G(G)) 6= ∅,
PoSk(G(G)) = ∞ otherwise. We simply use the terms
price of anarchy and price of stability, and remove the
subscript k from the notation, when k = 1. Note that,
since for each game G(G) and index k ≥ 1 it holds that
NSCk(G(G)) ⊆ NSC1(G(G)), we can claim the following ob-
servation.

Observation 1. For any graph G and index k ≥ 1,
PoS(G(G)) ≤ PoAk(G(G)).

We conclude the section by showing a useful lemma relat-
ing the social welfare of an optimal solution of G(G) to the
cardinality of a min vertex cover of G. To this aim, given
G = (V,E), let V C be a minimum vertex cover of G and
V C = V \ V C.

Lemma 1. For any game G(G), SW(C∗)
|V C| < 2.

Proof. Let C∗i be an non-empty cluster of an optimal
clustering C∗. We partition the nodes of C∗i in two sets

XV C
i = C∗i ∩ V C and XV C

i = C∗i ∩ V C. We distinguish
between two cases:

i) XV C
i = ∅; it follows that C∗i ⊆ V C. Therefore, since

V C is an independent set, it follows that SW(C∗i ) = 0.
ii) XV C

i 6= ∅; in this case the total number of edges in C∗i
is at most |XV C

i | · |XV C
i |+ 1

2
|XV C

i |2.
By Property 1 it follows that the contribution to the op-

timal social welfare of cluster C∗i is such that

SW(C∗i ) ≤ 2
|XV C

i | · |XV C
i |+ 1

2
|XV C

i |2

|XV C
i |+ |XV C

i |

= 2|XV C
i |
|XV C

i |+ 1
2
|XV C

i |
|XV C

i |+ |XV C
i |

.

Dividing by |XV C
i | we obtain

SW(C∗i )

|XV C
i | ≤ 2

|XV C
i |+ 1

2
|XV C

i |

|XV C
i |+|XV C

i |
< 2.

By summing over all the non-empty clusters C∗i of an
optimal clustering C∗ the theorem follows. 2

3. GENERAL GRAPHS
In this section, we consider games played on unrestricted

graph topologies. We start by giving a lower bound of 2 on
the price of stability.

Theorem 1. For any ε > 0, there exists a graph Gε such
that PoS(G(Gε)) > 2− ε.

Proof. For any positive integer h, define the graph
Gh = (Vh, Eh) as follows: Vh = Xh ∪ Yh, with Xh =
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{x1, . . . , xh+2}, Yh = {y1, . . . , yh}, and Eh = {{xi, xj} :
i, j ∈ [h+ 2], i 6= j} ∪ {{xi, yi} : i ∈ [h]}. Intuitively, Gh has
2h+2 nodes, where the h+2 nodes in Xh form a clique and
each of the h nodes in Yh is a leaf node. For each i ∈ [h], xi
is the partner node of leaf node yi. Finally, nodes xh+1 and
xh+2 are the special nodes.

Our aim is to show that, for each value of h,

NSC(G(Gh)) = {Ĉ}, where Ĉ denotes a clustering in which
all players belong to the same cluster. We prove this claim
by showing a sequence of properties that have to be satisfied
by any Nash stable clustering of G(Gh). The first of these
properties is quite intuitive and states that, in any Nash sta-
ble clustering of G(Gh), each leaf node has to be in the same
cluster of its partner node.

Property 2. For any C ∈ NSC(G(Gh)) and i ∈ [h],
C(xi) = C(yi).

We continue by showing that, in any Nash stable cluster-
ing of G(Gh), the two special nodes have to be in the same
cluster.

Property 3. For any C ∈ NSC(G(Gh)), C(xh+1) =
C(xh+2).

Property 3 can be proved as follows. Assume, for the sake
of contradiction, that there exists a Nash stable clustering
C such that C(xh+1) 6= C(xh+2). By Properties 1 and 2,

it follows that pxh+1(C) =
|C(xh+1)|−1

2|C(xh+1)|
< 1

2
. Let C′ be

the clustering obtained from C when node xh+1 deviates to
cluster C(xh+2). Again, by Properties 1 and 2, it follows

that pxh+1(C′) =
|C(xh+2)|+1

2(|C(xh+2)|+1)
= 1

2
, thus contradicting the

hypothesis that C is Nash stable.

We can now proceed to show that Ĉ is the unique Nash
stable clustering of G(Gh). Assume, for the sake of con-
tradiction, that there exists another Nash stable clustering

C 6= Ĉ for G(Gh). By Properties 2 and 3, there must exist an
index i ∈ [h], such that C(xi) 6= C(xh+1). By Properties 1
and 2 and by the fact that C(xi) does not contain any special

node, it follows that pxi(C) = |C(xi)|
2|C(xi)|

= 1
2
. Let C′ be the

clustering obtained from C when node xi deviates to cluster
C(xh+1). Again, by Properties 1 and 2 and by the fact that
C(xh+1) contains both special nodes (because of Property

3), it follows that pxi(C
′) =

|C(xh+1)|+2

2(|C(xh+1)|+1)
> 1

2
, thus con-

tradicting the hypothesis that C is Nash stable. Hence, Ĉ
is the unique Nash stable clustering of G(Gh)

Clearly, SW(Ĉ) = (h+1)(h+2)+2h
2(h+1)

< h+4
2

. Moreover,

SW∗(G(Gh)) ≥ h + 1, since Gh admits a perfect matching.
Hence, we obtain PoS(G(Gh)) ≥ 2−Θ(1/h) for any positive
integer h. By taking the limit for h going to infinity, the
claim follows. 2

Determining upper bounds on the price of stability in this
setting is a quite challenging task. Anyway, we can show a
constant upper bound on the price of stability for all those
games admitting 2-Strong Nash stable clusterings.

Theorem 2. For any fractional hedonic game G(G) such
that NSC2(G(G)) 6= ∅, PoS(G(G)) ≤ 4.

Proof. We show that, under the hypothesis of the the-
orem, PoA2(G(G)) ≤ 4 which, by Observation 1, yields the

claim. To this aim, fix a 2-Strong Nash stable clustering C
and let V − = {u ∈ V : pu(C) < 1

2
} be the set of agents get-

ting a payoff strictly smaller than 1
2

in C and V + = V \V −.

We show that V − is an independent set of G. Assume, by
way of contradiction, that there exists an edge {u, v} ∈ E
such that u, v ∈ V −. In this case, u and v can jointly de-
viate to a new cluster and obtain both a payoff of 1

2
, thus

contradicting the fact that C ∈ NSC2(G(G)). Hence, we get
that V + is a vertex cover of G. By using Lemma 1, we ob-

tain SW(C∗) < 2|V +| which, together with SW(C) ≥ |V
+|
2

,
yields the claim. 2

However, 2-Strong Nash stable clusterings are not always
guaranteed to exist, as stated by the following theorem
whose proof is omitted due to lack of space.

Theorem 3. There exists a graph G such that
NSC2(G(G)) = ∅.

Because of these restrictive results, in the following two
subsections, we concentrate on games played on some spe-
cific graph topologies.

4. TRIANGLE-FREE GRAPHS
In this section, we focus on games played on triangle-free

graphs and provide an upper bound of 4 on the price of
stability.

For an integer k ≥ 2, a star graph (from now on, simply,
a star) of order k is a tree with k nodes and k − 1 leaves.
Given a star S, we denote with `(S) the set of its leaves and
with c(S) its center, that is, its unique non-leaf node; so
that the order of S is equal to |`(S)| + 1. A star clustering
C = (C1, . . . , Cn) for G(G) is a clustering such that Ci is a
star for each i ∈ [n]. An optimal star clustering for G(G) is
a star clustering for G(G) of maximum social welfare.

We give an upper bound on the price of stability by show-
ing that an optimal star clustering for G(G) is Nash stable
whenever G is triangle-free and then evaluating its perfor-
mance with respect to the social optimum C∗. Next lemma
establishes a fundamental property possessed by an optimal
star clustering.

Lemma 2. Let C be a star clustering for G(G). For
any node u ∈ V and k ∈ [n] such that |C(u)| > |Ck| +
1 and (C, u, k) is a star clustering for G, it holds that
SW(C, u, k) > SW(C).

Proof. Let C, u and k be defined as in the claim. We
have

SW(C, u, k)− SW(C)

=
2(|C(u)| − 2)

|C(u)| − 1
+

2|Ck|
|Ck|+ 1

− 2(|C(u)| − 1)

|C(u)| − 2(|Ck| − 1)

|Ck|

= 2

(
|Ck|
|Ck|+ 1

− |Ck| − 1

|Ck|
− |C(u)| − 1

|C(u)| +
|C(u)| − 2

|C(u)| − 1

)
=

2

|Ck|(|Ck|+ 1)
− 2

|C(u)|(|C(u)| − 1)

and the last quantity is strictly positive whenever

|Ck|(|Ck|+ 1) < |C(u)|(|C(u)| − 1). (1)

Since, inequality (1) is implied by the assumption |C(u)| >
|Ck|+ 1, the claim follows. 2
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We can now proceed to show that an optimal star cluster-
ing for G(G) is Nash stable.

Lemma 3. Let G be a triangle-free graph, then any opti-
mal star clustering for G(G) is Nash stable.

Proof. Fix a triangle-free graph G and let C be an op-
timal star clustering for G(G). Assume, for the sake of con-
tradiction, that there exists a node u ∈ V who can perform
an improving deviation by migrating from C(u) to Ci, that
is, such that pu(C) < pu(C, u, i).

Assume first that u = c(C(u)), so that pu(C) = |C(u)|−1
|C(u)| .

Two cases may occur:
1) {u, c(Ci)} ∈ E. Since G is triangle-free, Eu(Ci ∪ {u}) =
{u, c(Ci)} which implies

pu(C, u, i) =
1

|Ci|+ 1
<
|C(u)| − 1

|C(u)| = pu(C),

where the inequality follows from |Ci|, |C(u)| ≥ 2. This con-
tradicts the assumption that u can perform an improving
deviation by migrating to Ci.
2) {u, c(Ci)} /∈ E. Let 1 ≤ j ≤ |Ci| − 1 be the num-
ber of nodes in Ci which are adjacent to u in G, so that
pu(C, u, i) = j

|Ci|+1
. Note that it cannot be j = 0, because

otherwise, since {u, c(Ci)} /∈ E, it would follow pu(C, u, i) =
0, thus immediately contradicting pu(C) < pu(C, u, i). If
|C(u)| ≥ |Ci|, then

pu(C, u, i) =
j

|Ci|+ 1
≤ |Ci| − 1

|Ci|+ 1

≤ |C(u)| − 1

|C(u)|+ 1
<
|C(u)| − 1

|C(u)|
= pu(C),

while, if |C(u)| = |Ci| − 1, then

pu(C, u, i) =
j

|Ci|+ 1
≤ |Ci| − 1

|Ci|+ 1

=
|C(u)|
|C(u)|+ 2

≤ |C(u)| − 1

|C(u)|
= pu(C),

where the last inequality follows from |C(u)| ≥ 2. In both
cases, we obtain a contradiction to the assumption that u
can perform an improving deviation by migrating to Ci. For
the leftover case of |C(u)| < |Cj | − 1, let z be a node of
Ci which is adjacent to u (such a node always exists since
j ≥ 1). We claim that (C, z, γ(C, u)) is a star clustering for
G(G). In fact, since Ci is a star and z 6= c(Ci), then Ci \{z}
is also a star. Moreover, since C(u) is a star, then C(u)∪{z}
cannot be a star only if there exists an edge (z, t), besides
edge (u, z), for some t ∈ C(u). But, if such an edge existed,
then, the existence of edge (u, t) (remember u = c(C(u)))
would contradict the hypothesis that G is triangle-free. By
applying Lemma 2 with x = z and k = γ(C, u), we obtain a
contradiction to the fact that C is an optimal star clustering
for G(G).

Assume now that u ∈ `(C(u)), so that pu(C) = 1
|C(u)| .

Again, the same two cases may occur:
1) {u, c(Ci)} ∈ E. In the case in which |C(u)| ≤ |Ci| +
1, since G is triangle-free, it follows that Eu(Ci ∪ {u}) =
{u, c(Ci)} which implies

pu(C, u, i) =
1

|Ci|+ 1
≤ 1

|C(u)| = pu(C).

This contradicts the assumption that u can perform an im-
proving deviation by migrating to Ci. In the leftover case in
which |C(u)| > |Ci|+1, we claim that (C, u, i) is a star clus-
tering for G(G). In fact, since C(u) is a star, then C(u)\{u}
is also a star. Moreover, since Ci is a star, then Ci ∪ {u}
cannot be a star only if there exists an edge (u, z), besides
edge {u, c(Ci)}, for some z ∈ Ci. But, if such an edge ex-
isted, then, the existence of edge {c(Ci), z} would contradict
the hypothesis that G is triangle-free. By applying Lemma
2 with x = u and k = i, we obtain a contradiction to the
fact that C is an optimal clustering for G(G).
2) {u, c(Ci)} /∈ E. Let 1 ≤ j ≤ |Ci| − 1 be the number of
nodes of Ci which are adjacent to u in G. Again, it can-
not be j = 0, because otherwise, since {u, c(Ci)} /∈ E, it
would follow pu(C, u, i) = 0, thus immediately contradict-
ing pu(C) < pu(C, u, i). Denote with z any node of Ci which
is adjacent to u.
In the case in which |C(u)| = 2 and |Ci| ≤ 3, we get

pu(C, u, i) =
j

|Ci|+ 1
≤ |Ci| − 1

|Ci|+ 1
≤ 1

2
= pu(C),

which contradicts the assumption that u can perform an im-
proving deviation by migrating to Ci.
In the case in which |C(u)| = 2 and |Ci| ≥ 4, then it fol-
lows that (C, z, γ(C, u)) is a star clustering for G(G). By
applying Lemma 2 with x = z and k = γ(C, u), we obtain a
contradiction to the fact that C is an optimal star clustering
for G(G).
In the case in which |C(u)| = 3 and |Ci| = 2, then
pu(C, u, i) = 1

3
= pu(C) contradicts the assumption that

u can perform an improving deviation by migrating to Ci.
In the case in which |C(u)| ≥ 4 and |Ci| = 2, then it fol-
lows that (C, u, i) is a star clustering for G(G). By applying
Lemma 2 with x = u and k = i, we obtain a contradiction
to the fact that C is an optimal star clustering for G(G).
Hence, it only remains to consider the case in which |C(u)| ≥
3 and |Ci| ≥ 3. Let us define the star clustering for G(G)

C′ = C \ {C(u), Ci} ∪ {C(u) \ {u}} ∪ {Ci \ {z}} ∪ {u, z}

obtained from C by placing both u and z in an empty clus-
ter. We have

SW(C′)− SW(C)

=
2(|C(u)| − 2)

|C(u)| − 1
+

2(|Ci| − 2)

|Ci| − 1
+ 1

−2(|C(u)| − 1)

|C(u)| − 2(|Ci| − 1)

|Ci|

= 1− 2

|C(u)|(|C(u)| − 1)
− 2

|Ci|(|Ci| − 1)

≥ 1− 1

3
− 1

3
> 0

where the second last inequality follows from |C(u)| ≥ 3 and
|Ci| ≥ 3. Again, we obtain a contradiction to the fact that C
is an optimal clustering for G(G) and the proof is complete.
2

We are now ready to prove our upper bound on the price
of stability.

Theorem 4. For any triangle-free graph G,
PoS(G(G)) ≤ 4.
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Proof. Fix a triangle-free graph G and let C be an op-
timal star clustering for G(G). Denote with k the number
of non-empty stars in C and with k2 ≤ k the number of
stars in C of order 2. Clearly, we have SW(C) ≥ k. We
claim that the cardinality of a minimum vertex cover V C
for G is at most k + k2. To this aim, let V ∗ be the set of
k + k2 = (k − k2) + 2k2 nodes of G which are either centers
of stars or leaves of stars of order 2 in C. We show that V ∗

is a vertex cover for G.
Assume, by way of contradiction, that there exists an edge
{u, v} ∈ E such that u /∈ V ∗ and v /∈ V ∗. By definition of
V ∗, it must be u ∈ `(C(u)), v ∈ `(C(v)) and the order
of both C(u) and C(v) is at least 3. Let C′ be the star
clustering for G(G) obtained from C by removing u from
C(u), v from C(v) and creating the new star {u, v}. We get
SW(C′) > SW(C) (note that the situation is the same of
the last case in the proof of Lemma 3), thus contradicting
the optimality of C.

By combining |V C| ≤ |V ∗|, Lemma 1 and k2 ≤ k, we
obtain

SW(C∗) < 2|V C| ≤ 2(k + k2) ≤ 4k,

which, together with SW(C) ≥ k, yields the claim. 2

5. BIPARTITE GRAPHS
In this section, we focus on games played on bipartite

graphs and provide an upper bound of 6(3− 2
√

2) ≈ 1.0294
and a lower bound of 1.003 on the price of stability.

We assume, throughout this section, that we are given
a fractional hedonic game G(G), with G being a bipartite
graph. We will denote with C∗ ∈ C∗ a generic, but fixed,
cluster in C∗ and with V ∗ = {v∗1 , . . . , v∗p} a minimum vertex
cover for C∗.

Definition 1. A fractional assignment of leaves (to stars
centered at V ∗) is a function f : C∗ \ V ∗ × [p]→ R≥0 such
that

1.
∑
i∈[p] f(u, i) = 1 for each u ∈ C∗ \ V ∗,

2.
∑
u∈C∗\V ∗ f(u, i) > 0 for each i ∈ [p].

We denote with F(V ∗) the set of all fractional assignments
of leaves. The following lemma has been proved in [6].

Lemma 4 ([6]). For any minimum vertex cover V ∗ of
C∗, F(V ∗) 6= ∅.

Definition 2. The fractional star clustering (of C∗ cen-
tered at V ∗) induced by f is a collection of p stars Sf =

(Sf1 , . . . , S
f
p ) such that, for each i ∈ [p], it holds that c(Sfi ) =

v∗i and `(Sfi ) = {u ∈ C∗ \ V ∗ : f(u, i) > 0}, where f(u, i)
measures the fractional portion of u which is meant to belong
to Sfi . Denote xi =

∑
u∈`(Sf

i )
f(u, i).

We observe that, for each i ∈ [p], Sfi is indeed a star
since, by the definition of vertex cover, the set of nodes C∗ \
V ∗ is an independent set of C∗ and, by property 2 in the
definition of fractional assignments of leaves, the order of Sfi
is at least two. Hence, because of Lemma 4, it follows that
the set of fractional star clusterings induced by the set of
fractional assignments of leaves F(V ∗) is non-empty. The
social welfare of a fractional star clustering Sf is defined as
SW(Sf ) =

∑
i∈[p] SW(Sfi ), where SW(Sfi ) = 2xi

xi+1
.

Fix a fractional star clustering of maximum social welfare
Sf
∗
. Let H = {xi : i ∈ [p]} and h = |H|. We partition

the stars of Sf
∗

into h sets A1, . . . , Ah in such a way that

Sf
∗

i ∈ Aj if and only if xi is the jth highest value in H. For

each i ∈ [h], define Li =
⋃
S
f∗
j ∈Ai

`(Sf
∗

j ) as the set of leaves

of all the stars belonging toAi andKi =
⋃
S
f∗
j ∈Ai

{v∗j } as the

set of centers of all the stars belonging to Ai and denote with
li = |Li| and with ki = |Ki|. Observe that, by definition,
the sets Kis are pairwise disjoint, while it is possible that
two different sets Li and Lj share some nodes. Anyway, we
will show in the sequel that this is not possible.

First of all, we show that the partition (A1, . . . , Ah) sat-
isfies the following property.

Lemma 5. Fix an edge {u, v} ∈ E(C∗) with u ∈ Li for
some i ∈ [h− 1]. Then, v /∈

⋃
j∈[h]\[i]Kj.

Proof. Assume, by way of contradiction, that there ex-
ists an edge {u, v} ∈ E(C∗) such that u ∈ Li and v ∈ Kj

with j > i. Let Sf
∗
q be a star such that Sf

∗
q ∈ Ai and

u ∈ `(Sf
∗
q ) and let Sf

∗
r be the star such that Sf

∗
r ∈ Aj

and u = c(Sf
∗
r ). Hence, the function f ′ obtained from f∗

by moving an arbitrarily small probability mass ε > 0 from
f∗(u, q) to f∗(u, r) belongs to F(V ∗). We obtain

SW(Cf
∗
)− SW(Cf

′
)

=
2xi
xi + 1

+
2xj
xj + 1

− 2(xi − ε)
xi + 1− ε −

2(xj + ε)

xj + 1 + ε

= 2ε

(
1

(xi + 1)(xi + 1− ε) −
1

(xj + 1)(xj + 1 + ε)

)
< 0,

where the last inequality comes from xi > xj and the arbi-

trariness of ε. We have derived SW(Cf
∗
) < SW(Cf

′
) thus

contradicting the optimality of Cf
∗
. 2

As a consequence of Lemma 5, we obtain that the sets Lis
are pairwise disjoint.

Lemma 6. For each i, j ∈ [h] with i 6= j, Li ∩ Lj = ∅.
Proof. Assume, by way of contradiction, that there exist

two indices i, j ∈ [h], with i < j, and a node u such that

u ∈ Li ∩ Lj . Let Sf
∗
r be the star such that Sf

∗
r ∈ Aj and

denote as v = c(Sf
∗
r ). Clearly, by definition, it holds that

{u, v} ∈ E(C∗). But, since u ∈ Li, v ∈ Kj and i < j, we
derive a contradiction to Lemma 5. 2

Now we can exploit Lemma 6 to achieve the following
additional property satisfied by the partition (A1, . . . , Ah).

Lemma 7. For each i ∈ [h], xi = li
ki
.

Proof. Fix an index i ∈ [h]. By construction, for each

Sf
∗

j ∈ Ai, it holds that
∑
u∈`(Sf∗

j )
f∗(u, j) = xi. Hence, by

summing over all stars belonging to Ai, we obtain∑
S
f∗
j ∈Ai

∑
u∈`(Sf∗

j )

f∗(u, j) = kixi. (2)

Moreover, because of Lemma 6 and property 1 of fractional
assignments of leaves, it also holds that∑

S
f∗
j ∈Ai

∑
u∈`(Sf∗

j )

f∗(u, j) = li. (3)
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By combining equations (2) and (3), we obtain the claim. 2

We now show how to suitably round Sf
∗

so as to obtain
a star clustering for C∗ of high social value.

Lemma 8. For each i ∈ [h], there exists star clustering
S = (S1, . . . , Ski) centered at Ki of the set of nodes Ki ∪ Li
such that

∑
j∈[ki] SW(Sj) = 2

(
zibxic
bxic+1

+ (ki−zi)dxie
dxie+1

)
with

zibxic+ (ki − zi)dxie = li for some 0 ≤ zi ≤ ki.
Proof. Fix a set of fractional stars Ai. Let us create

a graph G̃ = (Ṽ , Ẽ) as follows: Ṽ = Ki ∪ Li ∪ {s, t} and

Ẽ = E(Ki ∪ Li) ∪ {{s, u} : u ∈ Ki} ∪ {{u, t} : u ∈ Li}.
Consider now the max flow problem defined on G̃ by setting
to 1 the capacity of each edge in E(Ki∪Li)∪{{u, t} : u ∈ Li}
and to dxie the capacity of all the remaining edges. Note

that any integral flow f for G̃ induces a star clustering S(f)
centered at Ki of the set of nodes Ki ∪ Li. We denote with
S(f)− the set of stars of S(f) having order strictly smaller
than bxic+ 1 and with o(S(f)−) the sum of the orders of all
the stars in S(f)−. By the max-flow min-cut theorem and

by the definitions of Sf
∗

and Ai, it follows that there exists
an integral flow of value at least kixi, which, by Lemma 7,
coincides with li. In particular, we claim that there exists
an integral flow of value at least li inducing a star clustering
S such that each S ∈ S has order equal to either bxic + 1

or dxie + 1. Assume that this is not the case and let f̃ be
the integral flow of value at least li that first minimizes the
value |S(f)−| and then, in case of ties, maximizes the value

o(S(f̃)−). By assumption, we have S(f̃)− 6= ∅. Clearly,
by the capacity constraints, there cannot be a star of order

strictly greater than dxie + 1 in S(f̃). Thus, since f̃ has

value of at least kixi and S(f̃) contains ki stars, there must

be an edge connecting the center of a star S ∈ S(f̃)− to

the leaf u of a star S′ ∈ S(f̃) of order dxie + 1. By moving
all the flow routed on edge {c(S′), u} to edge {c(S), u}, we

obtain an integral flow f ′ of the same value of f̃ and such

that S(f ′)− ⊂ S(f̃)− if the order of S is equal to bxic or

S(f ′)− = S(f̃)− and o(S(f ′)−) > o(S(f̃)−) otherwise. Since

in both cases we get a contradiction on the definition of f̃ ,

it must be S(f̃)− = ∅. Now let zi, with 0 ≤ zi ≤ ki, be
the number of stars in S having order equal to bxic + 1. It
follows that zibxic+(ki−zi)dxie = li and

∑
j∈[ki] SW(Sj) =

2
(
zibxic
bxic+1

+ (ki−zi)dxie
dxie+1

)
. 2

By the arbitrariness of C∗, we can conclude that
there exists a star clustering S∗ such that SW(S∗) =∑
i∈[h] 2

(
zibxic
bxic+1

+ (ki−zi)dxie
dxie+1

)
with zibxic+(ki−zi)dxie =

li for some 0 ≤ zi ≤ ki. Anyway, S∗ may not be a Nash
stable clustering. We now show how to obtain a Nash stable
clustering from S∗ without worsening its social welfare.

Lemma 9. There exists a Nash stable clustering C such
that SW(C) ≥ SW(S∗).

Proof. Assume that S∗ is not Nash stable, otherwise
we are done. We obtain C by manipulating S∗ as fol-
lows. Whenever there exist two stars S, S′ ∈ S∗ such that
|`(S)| > |`(S′)| + 1 and {c(S′), u} ∈ E for some u ∈ `(S),
remove u from S and add it to S′. It is easy to see that the
total social welfare increases. Similarly, whenever there ex-
ist two stars S, S′ ∈ S∗ such that |`(S)| ≥ 2, |`(S′)| ≥ 2 and

{u, v} ∈ E for some u ∈ `(S) and v ∈ `(S′), remove u from
S, v from S′ and create a new star formed by edge {u, v}.
Again, the total social welfare increases. Finally, when-
ever there exist two stars S, S′ ∈ S∗ such that |`(S)| = 1,
|`(S′)| ≥ 3 and {u, v} ∈ E for some u ∈ `(S) and v ∈ `(S′),
remove v from S′ and add it to S. Again, the total social wel-
fare increases. Denote with C the star clustering obtained
at the end of this process. Clearly, SW(C) ≥ SW(S∗). We
now show that C is Nash stable.

Let u ∈ C(u) ∈ C be an agent who possesses an improving
deviation in C by migrating to a star S and let i = |`(C(u))|
and j = |`(S)|. Assume u = c(C(u)). From one hand,
it holds that pu(C) = i

i+1
. From the other hand, since

G is triangle-free, it holds that pu(C, u, S) ≤ j
j+2
≤ i+1

i+3
,

where the last inequality follows from the construction of
C. It follows that such an improving deviation is not possi-
ble. So, assume u ∈ `(C(u)). From one hand, it holds that
pu(C) = 1

i+1
. If {u, v} ∈ E for some v ∈ `(S), then, by the

construction of C, it must be i = 1∧ j = 1, or i = 1∧ j = 2,
or i = 2 ∧ j = 1. It is easy to see that, in all of these three
cases, such an improving deviation is not possible and this
concludes the proof. 2

After having lower bounded the social welfare of a best
possible Nash stable clustering, we now exploit the proper-
ties of the partition (A1, . . . , Ah) to obtain an upper bound
on the social welfare of C∗. First, we show an upper bound
on the number of edges in C∗, for any C∗ ∈ C∗.

For each i ∈ [h], define k≤i =
∑
j∈[i] kj .

Lemma 10. |E(C∗)| ≤
∑
i∈[h] lik≤i.

Proof. First note that, because of the fact that C∗ \ V ∗
forms an independent set of C∗, there cannot be an edge in
E(C∗) connecting two nodes belonging to

⋃
i∈[h] Li. More-

over, by Lemma 5, we also know that, for any i ∈ [h − 1],
there cannot be an edge in E(C∗) connecting a node in Li
to a node in

⋃
j∈[h]\[i]Kj . Hence, each edge {u, v} ∈ E(C∗)

can be of one of the following two types:

1. u, v ∈
⋃
i∈[h]Ki,

2. u ∈ Ki and v ∈ Lj for some i, j ∈ [h] with j ≥ i.
Let us denote with E1 (resp. E2) the set of edges of type
1 (resp. 2). Clearly, by the above observations, we have
|E(C∗)| = |E1|+ |E2|.

Consider now an edge {u, v} ∈ E1. Let Sf
∗
q be the star

such that c(Sf
∗
q ) = u and Sf

∗
r be the star such that c(Sf

∗
r ) =

v and assume Sf
∗
q ∈ Ai and Sf

∗
r ∈ Aj with i ≤ j. Since G

is triangle-free, the existence of edge {u, v} ∈ E(C∗) implies

the non-existence of the |`(Sf
∗
r )| ≥ 1 edges of type 2 which

can be obtained by connecting u to each node in `(Sf
∗
r ). By

repeating this reasoning for all the edges in E1, we obtain
that |E1|+ |E2| is upper bounded by the maximum number
of edges which can potentially belong to E2 when assuming
E1 = ∅. Hence, by the definition of E2, we obtain |E(C∗)| ≤
|E1|+ |E2| ≤

∑
i∈[h] lik≤i. 2

In order to achieve our desired upper bound, we need the
following technical lemma.

Lemma 11. Given that li
ki
≥ li+1

ki+1
for any i ∈ [h− 1],∑

i∈[h] lik≤i∑
i∈[h](ki + li)

≤
∑
i∈[h]

kili
ki + li

.
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Proof. We prove the claim by induction on h.
For h = 1, the base of the induction is trivially verified.
As to the induction step, by assuming true the claim for

h = n, we prove that it also holds for h = n+ 1.

∑
i∈[n+1]

lik≤i∑
i∈[n+1]

(ki + li)
=

∑
i∈[n]

lik≤i∑
i∈[n+1]

(ki + li)
+

ln+1k≤n+1∑
i∈[n+1]

(ki + li)

≤

∑
i∈[n]

lik≤i∑
i∈[n]

(ki + li)
+

ln+1k≤n+1∑
i∈[n+1]

(ki + li)

≤
∑
i∈[n]

kili
ki + li

+
kn+1ln+1

kn+1 + ln+1
(4)

=
∑

i∈[n+1]

kili
ki + li

.

Notice that, by the induction hypothesis,
∑

i∈[n] lik≤i∑
i∈[n](ki+li)

≤∑
i∈[n]

kili
ki+li

; therefore, in order to prove inequality (4), it

remains to show that
ln+1k≤n+1∑
i∈[n+1](ki+li)

≤ kn+1ln+1

kn+1+ln+1
, that is

equivalent to

k≤n+1∑
i∈[n+1](ki + li)

≤ kn+1

kn+1 + ln+1
.

Since li
ki
≥ li+1

ki+1
for any i ∈ [n], it holds that ki

li+ki
≤

ki+1

ki+1+li+1
for any i ∈ [n]. Thus, it holds that

kn+1

kn+1+ln+1
≥

ki+1

ki+1+li+1
for any i ∈ [n]. Let α =

kn+1

kn+1+ln+1
; it holds that

k≤n+1∑
i∈[n+1](ki + li)

=

∑
i∈[n+1] ki∑

i∈[n+1](ki + li)

≤
∑
i∈[n+1] α(ki + li)∑
i∈[n+1](ki + li)

= α =
kn+1

kn+1 + ln+1
.

2

Corollary 1. For each C∗ ∈ C∗, SW(C∗) ≤ 2li
xi+1

.

Proof. Fix a cluster C∗ ∈ C∗. By Lemmas 10 and 11, it
follows that SW(C∗) ≤

∑
i∈[h]

kili
ki+li

. The claim follows by

dividing both the numerator and the denominator of each
term in the summation by ki and by applying Lemma 7. 2

We can now conclude this section by showing the following
upper bound on the price of stability of games played on
bipartite graphs.

Theorem 5. For any bipartite graph G, PoS(G(G)) ≤
6(3− 2

√
2) ≈ 1.0294.

Proof. Fix a bipartite graph G. By Lemma 9 and Corol-
lary 1, it follows that

PoS(G(G)) ≤

∑
i∈[h]

li
xi + 1∑

i∈[h]

(
zibxic
bxic+ 1

+
(ki − zi)dxie
dxie+ 1

) ,

where zibxic+(ki−zi)dxie = li for some integer 0 ≤ zi ≤ ki.
Hence, we obtain

PoS(G(G)) ≤

∑
i∈[h]

(
zibxic
xi + 1

+
(ki − zi)dxie

xi + 1

)
∑
i∈[h]

(
zibxic
bxic+ 1

+
(ki − zi)dxie
dxie+ 1

) , (5)

where zibxic+(ki−zi)dxie = li for some integer 0 ≤ zi ≤ ki.
Note that the contribution of each term of the summation
is maximized when xi is not an integer. So assume that, for
each i ∈ [h], bxic = αi and dxie = αi + 1 for some integer
αi ≥ 1. From zibxic + (ki − zi)dxie = li = kixi, we obtain
zi = ki(αi + 1− xi). By using this equality in (5), we get

PoS(G(G)) ≤

∑
i∈[h]

αi(αi + 1− xi) + (αi + 1)(xi − αi)
xi + 1∑

i∈[h]

(
αi(αi + 1− xi)

αi + 1
+

(αi + 1)(xi − αi)
αi + 2

) ,
(6)

where, for each i ∈ [h], αi is a positive integer and xi is a
rational number such that αi < xi < αi + 1. By using a
standard averaging argument in (6), we obtain

PoS(G(G)) ≤ max
i∈[h]

αi(αi + 1− xi) + (αi + 1)(xi − αi)
xi + 1

αi(αi + 1− xi)
αi + 1

+
(αi + 1)(xi − αi)

αi + 2

= max
i∈[h]

xi(αi + 1)(αi + 2)

(xi + 1)(xi + α2
i + αi)

.

The last quantity is maximized for xi =
√
αi(αi + 1) and

αi = 1 which yields the claim. 2

In the following theorem, whose proof is omitted due to
lack of space, we give a new lower bound on the price of
stability for games played on bipartite graphs improving the
previous one presented in [6].

Theorem 6. There exists a bipartite graph G such that
PoS(G(G)) > 1.003.

6. CONCLUSIONS
We have investigated the quality of Nash stable outcomes

in fractional hedonic games defined on undirected and un-
weighted graphs. It would be worth closing the subtle gap
between the lower and the upper bound on the price of sta-
bility in bipartite graphs, thus getting its exact value. Pro-
viding suitable bounds for more general classes of graphs
and better understanding the structure of equilibria for un-
restricted topologies are interesting research directions.
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