
Leading the Way: An Efficient Multi-robot Guidance
System

Piyush Khandelwal
Dept. of Computer Science
University of Texas at Austin

Austin, TX 78712, USA
piyushk@cs.utexas.edu

Samuel Barrett
∗

Kiva Systems
North Reading,
MA 01864, USA

basamuel@kivasystems.com

Peter Stone
Dept. of Computer Science
University of Texas at Austin

Austin, TX 78712, USA
pstone@cs.utexas.edu

ABSTRACT
Recent advances in service robotics have made it possible to deploy
a large number of mobile robots in indoor environments to perform
tasks such as delivery, maintenance and eldercare. If a centrally
connected multi-robot system is available, can it be effectively used
to aid humans in other on-demand tasks? In this paper, we demon-
strate how individual service robots in a multi-robot system can
be temporarily reassigned from their original task to help guide a
human from one location to another in the environment. We formu-
late this multi-robot treatment of the human guidance problem as
a Markov Decision Process (MDP). Solving the MDP produces a
policy to efficiently guide the human, but the state space size makes
it infeasible to optimally solve it. Instead, we use the Upper Con-
fidence bound for Trees (UCT) planner to obtain an approximate
solution. We show that this solution outperforms an approach that
uses a single robot to guide the human from start to finish.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics/Commercial Robots and Applications

Keywords
Multi-Robot Planning; Human Guidance

1. INTRODUCTION
With recent advances in service robotics, it is becoming increas-

ingly plausible to deploy a large number of mobile robots in indoor
settings such as warehouses and hotels [6, 11]. The ubiquitous pres-
ence of mobile robots will present interesting challenges for their
effective use to aid humans. In this paper, we study the problem of
how robots working on ongoing service tasks can be temporarily
reassigned to efficiently guide a human to his destination.

We introduce and specify this multi-robot human guidance prob-
lem as follows. A human interrupts a robot and uses it as an inter-
face to ask a centralized system for navigation assistance. Given a
map of the environment, the location and destination of the human,
and the location, destination, and planned path for all the robots in
the environment, the system plans how this set of robots can most

∗Samuel performed this work while a student at the Univ. of Texas.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

efficiently assist the human. The system can move robots around
in the environment, and use a robot located in the human’s vicinity
to give directions to the human or lead him to his destination. The
objectives of such a system are to help the human reach his goal
quickly while minimally disrupting the robots’ ongoing tasks. Due
to the sequential and stochastic nature of the human’s and robots’
movement inside the environment, we formally model this human
guidance problem as a Markov Decision Process (MDP).

Prior approaches to human-guidance have typically used a sin-
gle dedicated robot to guide people from start to finish [13, 18],
an idea which we term the single robot approach to indoor naviga-
tion assistance. A single robot may move slower than the people it
guides, especially in large or crowded spaces. In these situations,
a multi-robot solution may provide a superior solution to human
guidance, by allowing the person to move at his own natural speed.
Rather than requiring a robot to stay with the person, robots can
be proactively sent to key locations in the environment where the
person is likely to need help next to get to the goal, and the human
is handed off from one robot to the next. In this paper, we will test
the hypothesis that a multi-robot solution should always be able to
provide an equivalent or quicker solution for navigating the human
to his goal when compared to the single robot approach.

In addition, robots in this system are not dedicated to the task of
guiding people inside the building, but can be multi-purpose. Our
algorithm incorporates each robot’s utility of performing its service
task to that of getting the human to the goal, and attempts to use
robots in a manner such that there is only a minimal overall system
utility loss. We will also test the hypothesis that a multi-robot solu-
tion to the human guidance problem can reduce the overall loss in
utility when compared to the single robot approach.

The three main contributions of this work are as follows. First,
we define the multi-robot human guidance problem as an MDP
in Section 3. Second, we propose using the Upper Confidence
bound in Trees (UCT) planning algorithm to approximately solve
this MDP in Section 4. Finally, we demonstrate the efficacy of this
approach through experiments that compare it to the single robot
approach in Section 5. Before discussing these contributions, we
briefly touch upon related work in the following section.

2. RELATED WORK
From a high-level perspective, two independent research compo-

nents exist in the human guidance problem: (i) human-robot inter-
action to understand how robots can effectively communicate di-
rections to people (and how people respond to those directions),
and (ii) planning and execution to decide along which path to guide
the person and, in our case, using which robot. In this paper, we
will primarily focus on the planning and execution component of
the human guidance problem using multiple robots.

1625

With regards to the human-robot interaction component, past re-
search has investigated how humans interpret natural language nav-
igation instructions [3] and how natural language instructions can
be interpreted by robots in order to navigate to a goal [17]. In this
research, we are interested in the complementary problem of how
a robot can give directions to humans in indoor settings. One line
of previous research has focused on providing navigation instruc-
tions using stationary booths and personal handheld devices [1, 2].
Another application other than navigation assistance used ambient
displays to influence human routes through a building in order to
encourage building inhabitants to make healthier choices such as
taking the stairs rather than the elevator [14]. In order to focus
on the planning and execution components of the guidance task,
we assume that research such as that cited above enables robots
to have an effective means of communicating directions to people.
Specifically, in our experiments we have the robots display arrows
indicating the direction the person should walk, but our approach
could use other interfaces such as voice commands.

With regards to the planning and execution component, in pre-
liminary work we explored the initial problem of selecting loca-
tions in the environment where robots should be placed, under the
simplifying assumption that they can move instantaneously to the
assigned location [8]. While this assumption simplifies the prob-
lem by making the robots’ current locations irrelevant, it also ren-
ders the solution inapplicable to the real world. This paper there-
fore introduces a much more complete treatment of the multi-robot
guidance problem with a novel MDP formulation which includes a
representation of each robot’s motion and travel time.

Using a robot to guide a human has been explored over the last
two decades, for applications such as leading tours [18] and pro-
viding navigation assistance to the elderly or visually impaired [10,
12]. However, to the best of our knowledge, the robot has always
been dedicated to this purpose. In contrast, we assume there is a
system of multiple robots that are otherwise executing background
tasks. We now follow with a formal description of the problem.

3. PROBLEM DESCRIPTION
A multi-robot human guidance task begins when a human ap-

proaches a robot and requests assistance reaching a destination. In
this research, we do not address how to best communicate this re-
quest; it could be for instance via natural language, through a smart-
phone interface, or typing on a laptop on the robot. We assume that
this robot and several others are otherwise engaged in background
service tasks, which they will interrupt to help the person. We also
assume that there is a centralized system with some representation
of the environment, the locations of all robots in the environment,
and information about each robots’ current service task. The sys-
tem’s goal is to guide the person to the destination efficiently, while
limiting the robots’ time away from their background tasks.

We formally describe such a multi-robot guidance task as a MDP
M = 〈S,A,P,R〉 where S represents the environment’s state space,
As is the set of actions the system can take at state s ∈ S, P is the
transition function that gives the transition probability of reaching
a particular next state from a given state-action pair (P : S×A×
S→ R such that ∑s′ P(s,a,s′) = 1), and R is the reward received
given a transition (R : S×A× S→ R). A task inside this MDP is
episodic with a designated start state in which the person requests
assistance, and termination state in which the person has arrived at
his destination. A task solution is represented as a policy π(s) : S→
As that provides the action the system should take at any state.

In the remainder of this section, we introduce the environmen-
tal representation and notation used to define this MDP, and then
specify each of its four components in detail.

3.1 Representation & Notation
In principle, the environment can be thought of as a continuous,

bounded, multi-planar space, with the humans and robots having
positions and orientations that can be represented as (x,y,θ) poses.
However, for the purpose of decision-making, we reason about the
environment as a topological graph, which provides a compact, dis-
crete representation while still retaining information about all key
locations and the connectivity between those locations. We auto-
matically convert a discretized grid representation of the environ-
ment into a topological graph as illustrated in Fig. 1a, and docu-
mented in prior work [8].

A topological graph g = 〈Ng,Eg〉 consists of nodes Ng located
at each intersection or junction and straight-line edges Eg between
neighboring junctions. Given g, the location of a robot or person in
the environment can be projected to the closest graph edge euv from
node u to node v to produce a tuple luvp = 〈u,v, p〉 where p ∈ [0,1]
represents how far along edge euv the projection lies. If p = 0, then
the object projects exactly at node u, and if p = 1 then the object
projects exactly at node v.

Given this environmental representation, we introduce the fol-
lowing notation and then define the four components of the MDP.

• v̄h and v̄r are the estimated average speed of the the human
and robot along graph edges, respectively.

• euclidDist(u,v) is the euclidean distance between graph nodes
u and v in the environment’s topological representation.

• pathDist(u,v) is the shortest path distance between nodes u
and v computed using Dijkstra’s algorithm.

• adjacentNodes(u) is the set of all nodes adjacent to node u.

• nodeAngle(u,v) is the compass direction of the edge from u
to v. Formally, nodeAngle(u,v) = arctan((v.y− u.y)/(v.x−
u.x)), where 〈u.x,u.y〉 and 〈v.x,v.y〉 are the euclidean coordi-
nates of nodes u and v, respectively.

3.2 State Representation
The MDP state is defined so as to represent the factors that af-

fect decision-making, namely the human’s location and destination,
the robots’ current locations, and the service task each robot is per-
forming. In addition, the MDP state also represents the information
about whether a specific robot has been diverted to help the human
at a given location, and if any robot has assisted the human by lead-
ing or directing him to his destination.

Specifically, should R robots be present in the environment, we
define a factored representation with the following 8R+4 factors:

〈loc, locprev,roboti.〈lu, lv, lp,τd ,τu,τt ,τT ,h〉,assist.type,assist.loc〉,

where roboti represents information about a particular robot, and
i ∈ {1, . . . ,R}. Factors can be continuous (labeled C) or discrete
(labeled D) and are explained in more detail as follows:

• loc ∈ Ng (D) is the closest graph node to the human’s loca-
tion. Ng is the set of graph nodes in the environment.

• locprev ∈ Ng (D) is the previous value contained in loc. At
the start of a task, it is initialized to the same value as loc.

• For every robot in the environment, the following informa-
tion is maintained in the state:

– lu, lv and lp represents the robot’s precise location in the
topological representation, as explained in Section. 3.1.
lu (D), lv (D), and lp (C) can take the following values:

lu ∈ Ng, lv ∈ Ng, and lp ∈ [0,1].

1626

– τd ∈ Ng (D) is the location of the service task τ that the
robot needs to perform.

– τu ≥ 0 (C) is the utility of performing service task τ .

– τT (C) is the total time the robot needs to spend at τd
while performing service task τ .

– τt (C) is the time the robot has already spent at τd per-
forming task τ . It can take any value less than τT , and
is 0 before the robot arrives at τd .

– h (D) represents if the robot has been diverted to help
the human, and can take the following values:

h ∈ {NONE}∪Ng,

where NONE represents that the robot has not been as-
signed to help the human, and h ∈ Ng represents that
the robot should move to h to assist the human.

• assist.type (D) represents whether any assistance was pro-
vided to the human at his current location loc by a colocated
robot. It can take values in:

assist.type ∈ {NONE,LEAD,DIRECT}

• assist.loc (D) is a location adjacent to the human’s current
location loc that the system has advised the human to move
towards using a colocated robot, and can take values in:{

NONE assist.type = NONE
v : v ∈ adjacentNodes(loc) assist.type 6= NONE

The human’s location loc is his destination in a terminal state.

3.3 Action Representation
Actions are taken whenever the human completes a transition to

a graph node, effectively converting the MDP into a Semi-Markov
Decision Process [7]. Whenever a human completes a transition to
a graph node, the system can execute five types of discrete actions.

• AssignRobot(r,v) (r ∈ R,v ∈ Ng) – Deviate robot r from its
current service task and start navigation to v to assist the hu-
man in the future. Here R is the set of all robots and Ng is the
set of all nodes in the environment.

• ReleaseRobot(r) (r ∈ R) – Release robot r from assisting the
human, and allow it to return to its service task.

• DirectHuman(r,v) – Display a directional arrow on the dis-
play interface of a robot r colocated with the human to direct
the human towards node v. This action can only be taken if
robot r is at the exact same location loc as the human:

isRobotExactlyAt(r, loc) ⇐⇒
((r.lu = loc and r.lp = 0) or (r.lv = loc and r.lp = 1)),

Furthermore, the system can only direct the human to a node
adjacent to his current location, i.e. v ∈ adjacentNodes(loc).

• LeadHuman(r,v) – Use robot r colocated with the human to
start leading him to an adjacent location v.

• Wait – Do nothing and wait for the human to move (or be
led) to a location adjacent to his current location.

Wait is the only action that causes the passage of time, and is
also the only action with a non-deterministic outcome (explained
in Section 3.4). All other actions are decisions made by the sys-
tem, are deterministic, and do not cause the passage of time. For

instance, the system needs to follow LeadHuman (i.e. a decision to
lead the human) with Wait so that time can pass and the system can
actually lead the human to the intended destination. Figure 1 illus-
trates the execution of a simple policy from start to terminal state in
a small environment with two robots. The full state representation
of the system for each state in Figure 1 is given in Table 1. Further-
more, Table 2 lists the preconditions that need to be met to execute
each action, as well as the outcome of all deterministic actions.

3.4 Transition Function
There are three non-deterministic events that happen whenever

the Wait action is taken:

1. The human decides to move from his current location to an
adjacent location in the environment. For instance, if the hu-
man is being led by a robot, he will likely follow the robot. If
a colocated robot gave directions to the human, then the hu-
man will try his best to follow them. Finally, if no assistance
was provided to the human, then he will make a decision
based on past assistance from the system and search for his
goal. The non-determinism behind a human’s decision mak-
ing process is captured by a Human Decision Model, and this
model needs to account for decisions that real people make
in the presence of robots providing navigation assistance.

2. A robot may complete his current service task after spending
τT time at task location τd . Once it completes this task, a new
task is assigned to it. A Task Generation Model captures the
distribution of new tasks that can be assigned to the robot.

3. The robots and human will move around in the environment,
and this motion is described by the Object Motion Model.
This model accounts for environmental factors such as:

• What path does a robot choose to go to its destination?
• How do robots and humans avoid obstacles?
• At what speed do robots and humans navigate different

regions in the environment?
• How much time passes while the human completes the

transition to an adjacent node?

In a model-based reinforcement learning setting [16], these mod-
els can be learned by the system using real world experience. Once
models are available to the system, it can can solve the MDP using
optimal or approximate MDP solvers.

3.5 Reward
The reward function comprises the following two desiderata for

the multi-robot human guidance problem. The solution should min-
imize (i) the time taken by the human to reach the goal as well as
(ii) the utility loss suffered by the system caused by the time re-
quired to temporarily reallocate robots to guide the human. In this
section, we construct a reward function that addresses these goals.

Let the amount of time that passes when the human transitions
from s to s′ be ∆t. The utility loss for a robot r deviated from its
service task τ with utility τu is dependent on the amount of time the
robot is delayed in reaching task location τd :

U r
ss′ = τu(timeToDest(rs′ ,r.τd)+∆t− timeToDest(rs,r.τd)),

where timeToDest(rs,d) is the shortest time robot r needs to reach
d from system state s in which robot r is located at 〈lu, lv, lp〉:

timeToDest(rs,d) =

min(r.lp× (euclidDist(r.lu,r.lv))+pathDist(r.lu,d),

(1− r.lp)× (euclidDist(r.lu,r.lv))+pathDist(r.lv,d)).

1627

(a) Topological representation (b) s1: start state (c) s2: after DirectHuman(0,9) (d) s3: after ReleaseRobot(0)

(e) s4: after AssignRobot(1,9) (f) s5: after Wait (g) s6: after LeadHuman(1,12) (h) s7: terminal state after Wait

Figure 1: The human’s location is marked by a black P, and robots as marked as R0 and R1. Robots are colored green when
performing a service task and blue when assisting the human (the dashed blue line indicates the shortest path to return to the
original service task). In this figure, given the system state depicted in (b), the system uses the robot at node 8 to direct the human to
node 9, and assigns the robot at node 9 to eventually lead the human to his goal at node 12.

robot0 robot1 assist
State loc locprev lu lv lp τd τt τT τu h lu lv lp τd τt τT τu h type loc

s1 8 8 8 8 0 6 0 5 1 8 9 0 0 10 0 5 1 NONE NONE NONE
s2 8 8 8 8 0 6 0 5 1 8 9 0 0 10 0 5 1 NONE DIRECT 9
s3 8 8 8 8 0 6 0 5 1 NONE 9 0 0 10 0 5 1 NONE DIRECT 9
s4 8 8 8 8 0 6 0 5 1 NONE 9 0 0 10 0 5 1 9 DIRECT 9
s5 9 8 8 6 0.36 6 0 5 1 NONE 9 0 0 10 0 5 1 9 NONE NONE
s6 9 8 8 6 0.36 6 0 5 1 NONE 9 0 0 10 0 5 1 12 LEAD 12
s7 12 9 8 9 0.35 9 0 5 1 NONE 9 12 1 10 0 5 1 12 NONE NONE

Table 1: Complete state representation for all states in Figure 1.

The time loss incurred by the human and the robots’ utility loss
can be combined to form the final reward function for this MDP:

Rss′ =−hu∆t−∑
r

U r
ss′

where hu is the utility of helping the human.
Note that when τu = 0, the robot is effectively idle as assigning

the robot to help the human incurs no utility loss. On the other
hand, a service task with τu >> hu would lead the system to incur
an extremely high negative reward if preempted. Also, for any other
action other than Wait, no time passes and the robots do not move
around in the environment and incur no utility loss. Consequently,
for actions other than Wait, Rss′ is always 0.

With the description of the MDP now complete, we next describe
how UCT can be used to approximately solve this MDP.

4. UCT-BASED SOLUTION
UCT is an anytime algorithm that continues improving its pol-

icy estimation during an episode by performing extra planning in
between decisions, making it well suited as a real-time solver for
the human guidance task as the policy can be updated whenever the
system is waiting for the human to move in the environment.

4.1 Background - UCT
While planning in an MDP using Value Iteration [16] provably

converges to the optimal policy, it can be too computationally ex-
pensive to calculate in scenarios where the state-action space is too

large, as is the case with the multi-robot human guidance MDP.
Therefore, it can be advantageous to use planners that restrict search
to a specific region of the state-action space. Specifically, in this pa-
per we will use the Upper Confidence bounds for Trees (UCT) [9]
planning algorithm. UCT has been shown to perform well on large
domains with a large numbers of actions, such as Go [4] and large
Partially Observable MDPs (POMDPs) [15].

Planning is performed by simulating a number of state-action tra-
jectories from the current MDP state, i.e. Monte Carlo rollouts. For
each state-action pair, UCT stores the number of visits for that pair
as well as the long term expected reward of choosing that action at
that state in a tree structure. During the planning phase, when the
state has been previously visited, the action with the highest upper
confidence bound on the estimated value is selected, and actions
are chosen randomly otherwise. This approach balances exploring
different actions with improving the estimate of promising actions.

To improve performance, this paper uses a modified version of
UCT [5]. The original UCT formulation stores the path to a given
state (i.e. the actions taken to reach that state) in its representa-
tion. However, our formulation drops this extra information to
merge more states, which may relax the tree into a graph. In addi-
tion, when updating the estimated value of a state-action, the orig-
inal UCT formulation only uses the reward accumulated from the
Monte Carlo rollout. In contrast, we use the eligibility trace up-
date used in Q learning, which combines the Monte Carlo estimate
with the current expected value of future states. Let Q(s,a) be the
estimated value of taking action a from state s, nsa be the number

1628

Action Preconditions Next State s′ = s except:
AssignRobot(r,v) s.assist.type 6= LEAD and s.robotr.h = NONE s′.robotr.h = u
ReleaseRobot(r) s.assist.type 6= LEAD and s.robotr.h 6= NONE s′.robotr.h = NONE
DirectHuman(r,v) s.assist.type 6=LEAD and isRobotExactlyAt(s.robotr,s.loc) and s.robotr.h= s.loc s′.assist.〈type, loc〉= 〈DIRECT,v〉
LeadHuman(r,v) s.assist.type 6=LEAD and isRobotExactlyAt(s.robotr,s.loc) and s.robotr.h= s.loc s′.assist.〈type, loc〉= 〈LEAD,v〉 and

s′.robotr.h = v
Wait s′.assist.〈type, loc〉= 〈NONE,NONE〉 and

other non-deterministic changes (Section 3.4).

Table 2: Preconditions and transition functions for each action in the MDP.

of state-action visits, s′ be the resulting state, and 0≤ γ ≤ 1 be the
discount factor of future rewards ri. The new value is given by:

δt+1 = r0 + γ

[
λ

(
∑
i=1

γ
i−1ri

)
+(1−λ)max

a′
Qt(s′,a′)

]
−Qt(s,a)

Qt+1(s,a) = Qt(s,a)+
1

nsa +1
δt+1

where λ balances Monte Carlo versus Temporal Difference (TD)
updates. maxa′ Qt(s′,a′) is the maximum value over the experi-
enced actions from the next state including actions experienced in
the current rollout. Intuitively, when λ is close to 1, values received
from taking exploratory actions at future states strongly influence
the estimated value of a state-action pair. Using values close to 0
limits the effect of these exploratory actions. Finally, UCT esti-
mates the upper confidence bound using Q(s,a)+Cp

√
(lnns)/nsa,

where ns is the number of visits of the state and Cp =
√

2 when the
MDP rewards are scaled between 0 and 1. Cp can also be tuned
empirically to better balance exploration versus exploitation when
the number of rollouts is limited due to computational constraints.

In addition, UCT convergence can be further improved if a rea-
sonable yet suboptimal default policy is available. Whenever UCT
encounters a previously unseen state, it executes this default policy
instead of a randomly selected action. Using a default policy allows
UCT to converge to better actions faster higher up in the tree.

4.2 Transition Function
Before we can use UCT to solve the multi-robot human guid-

ance MDP, we need to provide UCT with a generative transition
model of the environment for drawing samples while planning.
This model needs to define distributions for all non-deterministic
events described in Section 3.4. While this model can be learned
from the environment, we leave learning to future work. Instead,
we supply a hand-coded model to UCT. As long as the model does
not deviate significantly from its real world counterpart, the policy
derived from planning should be successful.

4.2.1 Human Decision Model
The human decision model needs to account for a human’s deci-

sion to move to an adjacent node given his current location and the
assistance that the system has provided to him. We categorize this
model by the different types of assistance provided to the human at
his current location:

• s.assist.type = NONE: If no assistance is provided to the
human at his current location, we assume that the human will
continue moving in the same direction as he has been moving
in. To compute the distribution of his next location, we first
compute an expected direction of motion expDir ∈ [0,2π):

expDir = nodeAngle(s.locprev,s.loc).

Using expDir, we can calculate the distribution of transition
probabilities to adjacent nodes. The hand-coded model sim-

ulates the human’s uncertainty about which adjacent node
v ∈ adjacentNodes(s.loc) to move to next as:

edgeAngle = nodeAngle(loc,v)

P(v) =
1
c

exp
(
−absAngleDiff (edgeAngle,expDir)2

2σ2

)
+d

where c is a normalizing constant so that ∑v P(v) = 1 and
∑v d = 0.01. The value d is used to represent the inherent
unpredictability of humans. σ2 = 0.1 controls the spread of
the Gaussian function and represents how sure a human is to
move in the the expected direction of motion.

• s.assist.type=DIRECT: If a robot colocated with the human
gave directions, these directions will influence the human’s
decision. We calculate the expected direction of motion as:

expDir = nodeAngle(s.loc,s.assist.loc).

The probability of transitioning to adjacent nodes is calcu-
lated as before, except σ2 = 0.05, indicating the human is
more confident about moving in the expected direction of
motion than the case where no assistance was provided.

• s.assist.type = LEAD: If the human is being led by a robot
an adjacent node, then there is no non-determinism in the
human’s next location, and s′.loc = s.assist.loc.

4.2.2 Robot Task Generation Model
When a robot completes a service task, it is assigned a new ser-

vice task τ ′ with the following specifications:

• τ ′d : It is assumed that each robot has a home base (rhb ∈
Ng), and it performs tasks close to this home base. We first
generate a value k from a Poisson distribution with mean 1
that represents how far away from the robot’s home base rhb
the next task will be located. τ ′d is selected randomly from
{v : edgeDist(v,rhb) = k} where edgeDist(u,v) is the smallest
number of graph edges needed to traverse from u to v.

• τ ′u: τ ′u is set to the problem-defined average task utility τ̄u.

• τ ′T : τ ′T is set to the problem-defined average task time τ̄T .

4.2.3 Object Motion Model
The object motion model used by the UCT solver is character-

ized by the following properties:

• Humans and robots move at constant speed along graph edges
at v̄h and v̄r, respectively.

• Collisions between different objects have no effect. Objects
can pass each other while traversing the same graph edge.

• Each robot selects the path to its destination using the short-
est path, computed using Dijkstra’s algorithm.

1629

• The time ∆t required for the human to walk to the adjacent
node is calculated as:

∆t = euclidDist(s.loc,s′.loc)/vh

where vh is the speed of the human during this transition. If
the human is being led to s′.loc by a robot, he can become
limited by the speed of the robot, and vh = min(v̄h, v̄r). If the
human is moving on his own accord, then vh = v̄h.

4.3 Limiting action branching
Given a graphical representation with 50 nodes and 10 robots

in the environment, the number of available actions can be greater
than 500. While UCT is an approximate solver commonly used
in domains with high action branching, this explosion in the state-
action space makes it infeasible to solve a non-deterministic MDP
in real-time. In this section, we detail some heuristics that are ap-
plied by the UCT solver to reduce the state-action size.

1. In the AssignRobot(r,v) action, instead of specifying which
robot r is assigned to a location v, select the robot automati-
cally using a heuristic. This heuristic effectively reduces the
action to AssignRobot(v), and attempts to minimize the util-
ity loss incurred by the system for selecting a particular robot
to service the assignment request. To select which robot r
is sent to v in AssignRobot(v), the solver first computes the
minimum time that the human needs to reach location v as:

tmin = pathDist(s.loc,v)/v̄h

Next, the system calculates the set R′ of all unassigned robots
that can reach the assigned location before the human:

R′ = {r : ∀r ∈ R | r.h = NONE and timeToDest(rs,v)< tmin}

If |R′| > 0 (a robot can reach l in time), the solver selects
from R′ the robot that has the minimal expected utility loss
caused by waiting for the human at v before moving to its
original service task destination τd :

argmin
r∈R′

[tmin +pathDist(v,τd)/v̄r− timeToDest(rs,τd)]

If |R′| = 0 (no robots can reach v in time), the solver selects
the robot that can reach assigned location v first:

argmin
r∈R

[timeToDest(rs,v)]

2. Prespecify the maximum number of simultaneously assigned
robots, since it is unlikely that the system will have to assign
all robots in the environment to help the human at the same
time. Given a user defined parameter maxAssignedRobots,
the AssignRobot action is allowed only if:

|{r : ∀r | s.robotr.τd 6= NONE}|< maxAssignedRobots

3. Reduce the abstraction introduced by executing different per-
mutations of the same AssignRobot, ReleaseRobot, Direc-
tHuman and LeadHuman actions before Wait is executed, as
these permutations results in the same final state in which
Wait is executed. Consequently, while executing actions, the
following priority order is imposed:

DirectHuman<ReleaseRobot<AssignRobot<LeadHuman

If an action with a higher priority has been executed, then no
action of a lower priority can be executed unless the Wait ac-
tion is executed. To enforce this constraint, the solver keeps
track of the action taken at the previous state.

4. Do not assign multiple robots to the same location. If any
robot r has been assigned to location v, i.e., s.robotr.h = v,
then AssignRobot(v) is not a valid action.

5. Automatically release the robot used to direct the human af-
ter the DirectHuman action is called.

6. Ensure that if a robot is colocated with the human, then it
provides assistance to the human before the Wait action is
called. This constraint is imposed by disallowing the Wait
action unless s.assist.type 6= NONE.

7. Do not assign a robot to a location from which a robot has
just been released, unless the Wait action is executed. To
enforce this constraint, the solver keeps track of all the nodes
from where robots were released since the last Wait action.

Of all the heuristics outlined above, the first three have the great-
est impact on reducing action branching.

5. EXPERIMENTS
The ultimate test of the solution proposed in Section 4 is whether

it can be deployed on physical multi-robot service robots that are
continually operational in a way that is useful to people. Since we
do not have access to such a system at present, in this paper we
validate the algorithm via simulation experiments. We begin with a
simplified setting in Section 5.1 to validate that UCT effectively ap-
proximates the optimal solution when it is available. In Section 5.2
we then evaluate performance on the complete problem in a way
that is meant to capture its future intended use in the real world.

5.1 Instantaneous Robot Motion Domain
In preliminary work, we described a multi-robot human guid-

ance domain with instantaneous robot motion (IRM) [8], which we
briefly revisit here. In the IRM domain, robots are instantaneously
moved to their destinations, and the utility of background service
tasks is not considered. One way to visualize this domain is to
imagine an assistance interface (display) installed at every key lo-
cation in the environment that directs people to the next assistance
interface or the goal. The only restriction this domain has is on the
number of times directions can be given to the human, i.e. there is
a limit on the total number of robots that can be assigned to help
the human (maxRobots). As in the full version of the domain, there
is non-determinism based on the human’s stochastic decisions to
move to a particular adjacent location. The objective in this do-
main is to minimize the distance traveled by the human.

Due to the relatively small size of the state-space, this domain
can be solved optimally using offline Value Iteration, and then the
policy only needs to be looked up as the human is moving around in
the environment. In this experiment, we apply UCT to this domain;
UCT planning is performed whenever the system is waiting for the
human to move around in the environment. In this smaller domain,
no action restriction is required (unlike in Section 4.3), and the only
algorithmic parameters that need to be tuned are UCT’s confidence
bound parameter Cp and eligibility trace parameter λ .

Experiments in this section are performed on the topological en-
vironment depicted in Figure 3a. All results are averaged over
1,000 trials over randomly generated start and goal locations of the
human. Since the shortest distance between the start and goal loca-
tion is different in each trial, all results are normalized against the
shortest distance between the human’s start and goal locations for
that trial before results are aggregated.

Fig. 2a shows the average normalized distance walked by the
person to reach the goal while varying λ and maxRobots with Cp =

1630

(a) Varying λ (b) Varying Cp

Figure 2: (a) and (b) show the normalized distance at different
UCT parameters using a red(worse)-green(better) heatmap.

maxRobots 1 2 3 4 5
UCT 3.8 1.78 1.40 1.19 1.15

VI 3.46 1.70 1.24 1.14 1.12

Table 3: Average normalized distance traveled by the person
from start to goal. The VI result is in bold when it is statistically
better than the UCT using a two sample t-test with p = 0.95.

500. Irrespective of the value of total robot placements, best perfor-
mance is achieved when λ is close to 0. Since UCT does not con-
verge in the provided computation time, some exploratory actions
may be taken every rollout. In this domain, sub-optimal actions can
be extremely costly, such as sending the human in a direction away
from the goal. When λ is close to 1, backing up the true value of
the rollout up the tree leads to incorrect value estimation, degrading
performance. In contrast, when λ = 0, exploratory actions further
down the tree do not affect the value of a state-action pair, and the
values are closer to their true values, improving performance.

Fig. 2b shows the performance at different confidence bounds
when λ = 0. The results show that as expected, at low values of Cp,
UCT fails to explore sufficiently and performs poorly. The results
show the best performance with a confidence bound of Cp = 500.
Higher values produce a slight degradation in performance due to
over-exploration. Table 3 shows the performance of UCT(λ = 0,
Cp = 500) when compared to the Value Iteration baseline. When
UCT is allowed to give directions at least four times, the perfor-
mance of UCT is statistically indistinguishable from optimal.

These results show that the performance of UCT can be tuned
to be comparable to the optimal policy in a smaller and similar
domain. In the next section, we examine UCT’s performance in the
full multi-robot guidance domain described in Section 3, which is
too complex for VI. We also use the best UCT parameters identified
in this section throughout the rest of the paper.

5.2 Complete Multi-Robot Guidance Domain
In this section, we perform simulated evaluations of the UCT-

based solution to the multi-robot guidance problem, and compare
how it performs against the single robot approach of leading the
person from start to goal. The goal of these evaluations is to deter-
mine the environmental conditions in which each solution performs
better. In order to perform these evaluations, we need a complete
description of the transition function of the environment. As de-
scribed in Section 4.2, UCT planning uses static models to draw
transition samples. We perform one set of experiments with these
exact models, but also perform experiments with different models
to evaluate planning with inaccurate models.

Similar to the previous set of experiments all results in this sec-

tion are averaged across 1000 trials with randomly assigned start
and goal locations for the human. Since the shortest distance be-
tween the start and goal location is different in each trial, all re-
sults are normalized against the time required by the human to walk
along the shortest path from the start to the goal.

Across all the experiments, the following parameters were kept
constant: (i) The utility for guiding the human hu is 1.0. (ii) The
average task time τ̄T is 5 seconds. (iii) The maximum number of
simultaneously assigned robots maxAssignedRobots was set to 1.
(iv) UCT parameters λ and Cp were set to 0 and 500, respectively.

Since we cannot solve for the optimal solution to this MDP in a
reasonable amount of time, evaluations have only been performed
against the single robot approach to guidance. The single robot
approach can be implemented using an MDP policy that uses the
robot initially colocated with the human to lead the human all the
way to the goal. This policy can be implemented by alternating the
LeadHuman and the Wait action along the shortest path to the goal.

The UCT solution described in Section 4 is implemented as de-
scribed, and planning is run whenever the Wait action is executed
and the system is waiting for the human to move to the next goal.
The single robot approach described above is used as the default
policy for UCT whenever a robot is colocated with the human, i.e.
when a robot is available to lead the human to the goal. In situations
where a robot is not colocated with the human, instead of taking a
random action at unseen states during planning, we implement the
following heuristic as a default policy that attempts to send a robot
to the person to provide assistance. The complete heuristic is de-
scribed in Algorithm 1. The heuristic iteratively finds the best loca-
tion in the human’s likely path (lines 12-22) where an unassigned
robot can reach in time, and sends a robot to that location (line 10).
If a robot is attempting to help the human at a location different
than the one computed by the heuristic, then it is released (line 6).
In all other cases the system waits.

Algorithm 1 Default planning policy in states where no robot is
colocated with the human.
1: curNode← s.loc, curDir← nodeAngle(s.loc, s.locprev).
2: while true do
3: if |R′|> 0 in AssignRobot(curNode) then . (see Sec. 4.3)
4: if r.h 6= NONE for any r ∈ s.robots then
5: if AssignRobot(curNode) will not assign r then
6: return ReleaseRobot(r)
7: end if
8: return Wait
9: end if

10: return AssignRobot(curNode)
11: end if
12: A← adjacentNodes(curNode)
13: diff ← Map(), dir← Map()
14: for all a ∈ A do
15: dir[a]← nodeAngle(curNode, a)
16: diff [a]← absAngleDiff (curDir, dir[a])
17: end for
18: nextNode← argmin(diff)
19: if diff [nextNode] > π/4 then
20: break
21: end if
22: curDir← dir[nextNode], curNode← nextNode
23: end while
24: return Wait

In this set of experiments, we vary the average robot speed v̄r
and the average service task utility τ̄u while keeping the average

1631

(a) Environment (b) Normalized Time (c) Normalized Reward

Figure 3: (a) The evaluation environment of size 46.8m × 46.8m. For the service task generation model presented in Section 4.2, the
home bases rhb of the 10 robots are marked using squares. (b) and (c) show the normalized time and reward for different approaches
in the multi-robot guidance MDP under varying average robot speed v̄r and average service task utility τ̄u.

human speed v̄h fixed at 1m/s. The evaluation uses the exact tran-
sition model used by UCT planning, and the results are presented
in Fig. 3. Fig. 3b shows the average normalized time required by
the human to reach the destination, and Fig. 3c shows the average
normalized system reward. The single robot which leads the per-
son to the goal at the robot’s speed requires v̄h/v̄r normalized time
to lead the person to the goal. In comparison, the multi-robot UCT
approach gets the human to his goal faster than the single robot ap-
proach for v̄r ≤ 0.7 when the average service task utility is 1 (same
as the utility for guiding the human hu), and is always faster or
equivalent when the average service task utility is 0.

In terms of the system reward, UCT always performs better than
or equivalent to the single robot irrespective of the value of τ̄u, as
depicted in Fig. 3c. It should be noted that as τ̄u approaches 0
and v̄r approaches v̄h, UCT and the single robot approach perform
equivalently as the single robot policy is optimal, and indeed UCT
executes this policy. In other words, as the service task utility in-
creases or robots are slower than humans, the UCT solutions acts as
a seamless transition from a single robot to a multi-robot approach.

In Table 4, we tabulate the normalized time and reward at one set
of environmental parameters (v̄r = 0.5, τ̄u = 1), but differ the evalu-
ation model from the one used in UCT planning. In the real world,
any planning in this domain will always be done with a model that
is not completely accurate, and in this set of experiments we ver-
ify whether the UCT solution is likely to hold up in the real world.
During evaluation, we either change the motion model by changing
the human’s actual speed during evaluation or change the human
decision model by multiplying mσ 2 to the variance in the human’s
decision (explained in Section 4.2). All planning is performed with
v̄h = 1.0 and mσ 2 = 1. As Table 4 shows, UCT accrues more reward
than the baseline despite planning with inaccurate models.

6. DISCUSSION AND FUTURE WORK
The main contributions of this paper are formulating the problem

of guiding a human unfamiliar with the environment using multiple
robots as an MDP, providing one solution to this problem based on
UCT, and evaluating this solution compared to a single robot ap-
proach. The key research challenges that needs to be answered to
construct a system that performs multi-robot guidance in the real
world are (i) an effective probabilistic planning algorithm suited to
the task; (ii) a multi-robot platform capable of smooth navigation
and communication; and (iii) constructing models of real humans

Params. Method Norm. Time Norm. Reward
v̄h = 1 SingleRobot 2.00±0.00 -5.36±0.03

m
σ2 = 1 UCT 1.57±0.03 -2.34±0.06

v̄h = 0.8 SingleRobot 1.60±0.00 -4.29±0.03
m

σ2 = 1 UCT 1.52±0.03 -2.25±0.06
v̄h = 0.5 SingleRobot 1.00±0.00 -2.68±0.03
m

σ2 = 1 UCT 1.45±0.04 -2.09±0.06
v̄h = 1 SingleRobot 2.00±0.00 -5.36±0.03

m
σ2 = 0.5 UCT 1.44±0.03 -2.13±0.06
v̄h = 1 SingleRobot 2.00±0.00 -5.36±0.03

m
σ2 = 2.0 UCT 1.99±0.07 -3.08±0.06

Table 4: Normalized time and reward at v̄r = 0.5 and τ̄u = 1. A
statistically better result is in bold (using a t-test with p = 0.95).
The first row of parameters corresponds to perfect planning.

in the environment via real human user evaluations. We have ad-
dressed the first challenge in this paper.

The formulation described in this paper is designed to be suit-
able for implementation in the real world, and our experiments
show that the system performs reasonably well even in situations
where it plans with inaccurate models. However, a number of real
world challenges such as robot localization; noise in human per-
ception; inter-robot communication errors; action execution fail-
ure; and space management between robots and humans need to be
tackled to construct a real multi-robot system. As such, it is neces-
sary to implement this guidance system on a multi-robot platform
to validate the applicability of this work in the real world.

This work should be useful in other tasks where multiple ser-
vice robots need to be interrupted from their service tasks to work
on an on-demand task such as an unexpected delivery, as well as
tasks where multiple people need to be serviced simultaneously. In
addition, this paper focuses on a centralized approach and it may
be necessary to look into distributed solutions for scalability. The
framework in this paper for interrupting service robots for human-
guidance should serve well as a basis for these future applications.

Acknowledgments
Tools developed by the ROS community have been used in this
work. This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in
part by NSF (CNS-1330072, CNS-1305287), ONR (21C184-01),
AFOSR (FA8750-14-1-0070, FA9550-14-1-0087) and Yujin Robot.

1632

REFERENCES
[1] J. Baus, A. Krüger, and W. Wahlster. A resource-adaptive

mobile navigation system. In International Conference on
Intelligent User Interfaces, 2002.

[2] A. Butz, J. Baus, A. Krüger, and M. Lohse. A hybrid indoor
navigation system. In International Conference on Intelligent
User Interfaces, 2001.

[3] D. L. Chen and R. J. Mooney. Learning to interpret natural
language navigation instructions from observations. In
Conference on Artificial Intelligence (AAAI), 2011.

[4] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT
for Monte-Carlo Go. In Conference on Neural Information
Processing Systems (NIPS), 2006.

[5] T. Hester and P. Stone. Texplore: real-time sample-efficient
reinforcement learning for robots. Machine Learning, 2013.

[6] J. Hightower. Amazon is replacing people with drones and
robots.
http://flagpole.com/news/news-features/2014/09/24/amazon-
is-replacing-people-with-drones-and-robots, 2014. Accessed:
2014-10-21.

[7] R. A. Howard. Dynamic Probabilistic Systems, Volume II:
Semi-Markov and Decision Processes. Courier Dover
Publications, 2013.

[8] P. Khandelwal and P. Stone. Multi-robot human guidance
using topological graphs. In AAAI Spring 2014 Symposium
on Qualitative Representations for Robots, March 2014.

[9] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In European Conference on Machine Learning
(ECML), 2006.

[10] G. Lacey and K. M. Dawson-Howe. The application of
robotics to a mobility aid for the elderly blind. Robotics and
Autonomous Systems, 1998.

[11] J. Markoff. Beep, says the bellhop.
http://www.nytimes.com/2014/08/12/technology/hotel-to-
begin-testing-botlr-a-robotic-bellhop.html, 2014. Accessed:
2014-10-21.

[12] M. Montemerlo, J. Pineau, N. Roy, et al. Experiences with a
mobile robotic guide for the elderly. In Innovative
Applications of Artificial Intelligence (IAAI), 2002.

[13] R. Philippsen and R. Siegwart. Smooth and efficient obstacle
avoidance for a tour guide robot. In International Conference
on Robotics and Automation (ICRA), 2003.

[14] Y. Rogers, W. R. Hazlewood, P. Marshall, et al. Ambient
influence: Can twinkly lights lure and abstract
representations trigger behavioral change? In International
Conference on Ubiquitous computing (UBICOMP), 2010.

[15] D. Silver and J. Veness. Monte-Carlo planning in large
POMDPs. In Conference on Neural Information Processing
Systems (NIPS). 2010.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. Cambridge University Press, 1998.

[17] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, et al.
Understanding natural language commands for robotic
navigation and mobile manipulation. In Conference on
Artificial Intelligence (AAAI), 2011.

[18] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers,
F. Dellaert, D. Fox, et al. MINERVA: A second-generation
museum tour-guide robot. In International Conference on
Robotics and Automation (ICRA), 1999.

1633

