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ABSTRACT
We propose a potential-based reward shaping architecture
that is able to reduce learning speed, with no prior tuning
and extra environment samples required, via considering an
off-policy ensemble of value functions learning on a variety
of heuristics with a variety of scales.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
We are interested in methods that are capable of aiding

reinforcement learning (RL) [9] with as little extra mainte-
nance as possible. Potential-based reward shaping (PBRS)
is a simple framework for integrating domain knowledge into
RL, particularly attractive for its policy invariance guaran-
tees [8]. The efficacy of PBRS in reducing learning speed,
while repeatedly demonstrated in practice [3], is conditioned
on precise knowledge of both quality heuristics and their
magnitudes, which together define the potential function.
Recent literature in both active [1, 2] and latent [4] set-
tings has argued and demonstrated the benefits of maintain-
ing ensembles of policies shaped with simple-heuristic-based
potentials, rather than limiting to a single (but complex)
one. In this work we take this intuition further, to remove
the second requirement of knowing correct value magnitude
for the potentials,1 which is typically found via behind-the-
scenes tuning. The assumption of an ability to do so is
unrealistic, and defeats the purpose of a method intended
to reduce learning speed. By removing this assumption, we
achieve a PBRS architecture, that reduces learning speed at
no extra sample cost. Together with previous work [1, 4,

1Brys et al. [2] address the issue of relative scalings within
an ensemble, while our focus is the unknown absolute scale
for each heuristic.
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2], this allows the designer to benefit from a handful of sim-
ple heuristics, with no requirements on their quality, and no
additional tuning steps introduced, making the architecture
practical to use out of the box.

2. APPROACH
We assume the usual RL framework [9]. PBRS [8] aug-

ments the reward function R with an additional reward
F = γΦ′ − Φ, where Φ is the potential function over the
state(-action) space. We assume an off-policy latent learn-
ing setup, and maintain our Horde [10] of shapings as a
set D of Greedy-GQ(λ)-learners [6]. Given a set of poten-
tial functions Φ = {Φ1, . . .Φ`}, a range of scaling factors
ci = 〈ci1, . . . ciki

〉 for each Φi, and the base reward function
R, the ensemble reward function is a vector:

R = R+ 〈FΦ1

c11
, FΦ1

c12
, . . . , F

Φ`

c`
k`

〉 (1)

where FΦi

cij
(or simply F i

j ) is the potential-based shaping re-

ward w.r.t. the potential function Φi, scaled with the factor
cij . Adopting the terminology of Sutton et al. [10], we refer
to individual agents within Horde as demons. Each demon
dij learns a greedy policy πi

j w.r.t. its reward R + F i
j . Our

latent setting implies a fixed behavior policy πb, with all
πi
j learning in parallel from the experience generated by πb.

Because each policy πi
j is available separately at each step,

an ensemble policy πE can be devised by collecting votes on
action preferences from the demons dij , or any other suitable
ensemble technique [2].

3. EXPERIMENTS
We evaluate2 our approach in two common benchmark

problems: mountain car [9] and cart-pole [7]. We empiri-
cally show that an indiscriminate ensemble of simple heuris-
tics on general scaling ranges performs as well as one with
cherry-picked components. The behavior πb is a uniform
distribution over all actions at each time step. Evaluation
is done by interrupting learning every z episodes and exe-
cuting the queried greedy policy πi

j or ensemble policy πE

once. We report our results w.r.t. rank voting [11].

2For experiment details, see the full version of this paper [5].
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(a) The effect of scaling: mountain car
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(b) Ensemble performance: mountain car
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(c) Ensemble performance: cart-pole

Figure 1: (a) Each curve corresponds to the performance of a demon shaped with Φ2, with a scaling factor from the range C1.
(b),(c) The solid and dashed lines denote the mean performance of the demons w.r.t. a single shaping on a scale range, serving as

reference for the performance of the ensemble components. Note that there is no single demon with this performance.

Mountain Car
We define 3 shaping potentials, corresponding to the po-
sition (Φ1), height (Φ2), and speed (Φ3) of the car. We
consider two scaling ranges C1 = 〈20, 40, 60, 80, 100〉 and
C2 = 〈1, 10, 102, 103, 104〉, with the first being a reasonably
close range to the optimal scales c1, c2, c3, and the second
being a general sweep, with no intuition or knowledge of the
optimal scale. Fig. 1(a) presents a comparison of the per-
formance of Φ2 over the (reasonable) scaling range C1, illus-
trating the dramatic effect small differences in scale can have
on a shaping’s performance. Now let EC1 and EC2 be the
ensembles w.r.t. all three shapings on C1 and C2, resp., each
totaling in 16 demons (including the base learner), and let
E be the ensemble w.r.t. the three shapings on tuned scal-
ings c1, c2, c3. EC1 and EC2 are both statistically the same
(p > 0.05) as the tuned ensemble E, despite their compo-
nents having a much wider range of performance (Fig. 1(b)).

Cart-Pole
We define 2 shaping potentials, corresponding to the angle
(Φ1) and angular speed (Φ2) of the pole. We consider a
general scaling range C = 〈1, 10, 102, 103, 104〉, and three
ensembles: E1

C resp. E2
C only comprised of the demons

shaped w.r.t. Φ1 resp. Φ2 across C (5 demons each), and EC

containing all 11 demons (including the base learner). All
ensembles improve over the base learner (Fig. 1(c)). The
performance of E2

C matches that of its average, as all of its
components perform similarly, while E1

C does much better
than the corresponding average. The global ensemble EC

correctly identifies both which shaping to follow: its per-
formance lies between the average of Φ1 across C and E1

C ,
always outperforming Φ2, and on what scales: its final per-
formance matches that of E1

C , significantly improving over
the average of Φ1 across C.

4. CLOSING REMARKS
We described a PBRS architecture that, through the use

of an ensemble, can speed up learning by leveraging infor-
mation from just a handful of imperfect heuristics, with no
prior tuning required. In realistic settings, where little in-
formation is available a priori and environment samples are
costly, this is the first practical reward shaping method,
readily usable off-the-shelf. Note that the added compu-
tational expense is only linear in the number of non-zero

features: Horde has been demonstrated to be able to learn
thousands of policies in real time [10].
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