
Decision-theoretic Clustering of Strategies

Nolan Bard, †Deon Nicholas, Csaba Szepesvári, and Michael Bowling
University of Alberta
Edmonton, Alberta

{nolan,szepesva,bowling}@cs.ualberta.ca

†University of Waterloo
Waterloo, Ontario

dnichola@uwaterloo.ca

ABSTRACT
Clustering agents by their behaviour can be crucial for build-
ing effective agent models. Traditional clustering typically
aims to group entities together based on a distance metric,
where a desirable clustering is one where the entities in a
cluster are spatially close together. Instead, one may de-
sire to cluster based on actionability, or the capacity for the
clusters to suggest how an agent should respond to maxi-
mize their utility with respect to the entities. Segmentation
problems examine this decision-theoretic clustering task. Al-
though finding optimal solutions to these problems is com-
putationally hard, greedy-based approximation algorithms
exist. However, in settings where the agent has a combina-
torially large number of candidate responses whose utilities
must be considered, these algorithms are often intractable.
In this work, we show that in many cases the utility func-
tion can be factored to allow for an efficient greedy algorithm
even when there are exponentially large response spaces. We
evaluate our technique theoretically, proving approximation
bounds, and empirically using extensive-form games by clus-
tering opponent strategies in toy poker games. Our results
demonstrate that these techniques yield dramatically im-
proved clusterings compared to a traditional distance-based
clustering approach in terms of both subjective quality and
utility obtained by responding to the clusters.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms;
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms

Keywords
Clustering; decision-theory; extensive-form games; agent
modelling; opponent modelling; maximum cover; poker

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Rock

Paper Scissors

P

S

RE
2

3

1

Figure 1: Rock-paper-scissors strategy simplex partitioned
into best response regions. Despite their spatial proximity,
1 and 2 fall into distinct best response regions (P and S).

1. INTRODUCTION
In domains where maximizing an agent’s utility is the

primary goal, agents may need to model other agents
or entities in their environment to improve their utility.
Clustering techniques can be beneficial in these settings
by allowing the agent to partition the set of entities into
similar groups called clusters. In this setting, a clustering’s
actionability — its capacity to suggest responses with
high utility to the agent — is the fundamental clustering
objective. Contrast this with many traditional clustering
problems, such as k-means and k-medians, where similarity
is measured by some notion of spatial distance between
the entities within the same cluster. For instance, the k-
means objective is to minimize the within-cluster sum of
squared Euclidean distances between each of the entities
and their cluster’s centroid. Despite an abundance of spatial
clustering techniques, these techniques may fail to capture
similarity in how the agent should respond to the entities.

To illustrate, we briefly examine the game of Rock-Paper-
Scissors. In this game, a static agent’s behaviour can be
specified by their probability distribution over choosing rock,
paper, and scissors. Figure 1 depicts a simplex representing
the space of possible probability distributions over these
three actions. The point E is the game’s Nash equilibrium of
1/3 for each action. Consider the points labelled 1,2, and 3.

17

Although 1 and 2 are spatially close, an agent’s response
for how to act with respect to them should be different as
their strategies do not share the same best response. In
contrast, 1 and 3 share the same best response (always play
paper) despite being spatially distant.

Although this type of decision-theoretic clustering may
appear to be a niche problem at first glance, it is actually
related to a range of optimization problems. Kleinberg and
colleagues [5] introduced and formalized this style of clus-
tering problem in the data mining community as segmen-
tation problems. Their work showed that optimal solutions
to this type of clustering induce optimal solutions to a form
of maximum coverage optimization, and vice versa. Lu and
Boutilier [10] highlighted several parallels between their bud-
geted social choice model and segmentation problems. Car-
lin and Zilberstein [3] also use a similar type of utility-based
clustering to group observations in Dec-POMDPs, reducing
the size of agent policies. Their algorithm, though, was pre-
sented with no approximation bounds.1

Due to the computational complexity of segmentation
problems (and many other similar maximum coverage based
problems) one typically forgoes exact solutions for efficient
approximate solutions to these problems. In particular,
Nemhauser and colleagues’ [11] greedy algorithm for maxi-
mizing monotone submodular functions is often used to at-
tack a segmentation problem’s maximum coverage formula-
tion. This approach iteratively constructs a solution by eval-
uating the marginal gain of each feasible response, adding
the greedy-best response. Unfortunately, as Kleinberg et
al. [6] noted, such greedy algorithms may not be efficient as
even a single step can be an NP-complete problem.

In this paper, we examine segmentation problems where
the response space is either exponential or infinite and the
standard greedy approximation is computationally infeasi-
ble. We show that despite this, in certain cases where the
utility function can be factored, an efficient response ora-
cle can be constructed. We then use such a response oracle
to operate directly on the partitioning formulation of a seg-
mentation problem by greedily merging clusters together in
an agglomerative (i.e., “bottom up”) clustering algorithm.
Finally, we evaluate our technique both theoretically and
empirically. Our theoretical results provide a guarantee on
the worst-case performance of our greedy algorithm relative
to the optimal clustering into k sets. This approximation
bound is shown to be tight within a factor of 2. We em-
pirically evaluate our technique using extensive-form games
by clustering agent strategies in two toy games of poker:
Kuhn poker and Leduc hold’em. Our results highlight the
benefit of clustering strategies based on their actionability
rather than their spatial similarity by contrasting our greedy
method with a traditional k-means clustering approach.

2. BACKGROUND
We begin our exposition by introducing segmentation

problems, followed by a brief description of our experimen-
tal domain of extensive-form games.

1The theoretical results from this paper can also be applied
to their problem, giving an algorithm with approximation
guarantees for the single-agent case. Whether the same
principles can give an algorithm with approximation bounds
for the multi-agent case is open.

2.1 Segmentation Problems
Segmentation problems [5] examine the challenge of de-

termining how an agent should respond to maximize utility
given information about different entities2. For example,
a commercial enterprise with information about their cus-
tomers could act homogeneously across the customers, but
the enterprise may be able to increase its utility by tailoring
their response (e.g., marketing strategy, product line) to
each customer’s preferences. While such individual person-
alization is often impractical, a more limited form of person-
alization where the market of customers is segmented (i.e.,
clustered) into k groups may still be beneficial.

One way to view segmentation problems is as clustering
problems where the desired clustering depends on a utility
function u(e, r) that specifies the utility of response r ∈ R
with respect to an entity e ∈ E being clustered. Unlike
traditional clustering approaches, this approach directly
optimizes for the actionability of the clustering.

More formally, let E and R be sets (E finite), and u :
E ×R→ R be a utility function. For convenience, we let
Part(E) denote the set of partitions of E:

Part(E) =
{
P ∈ 22E : ∪P = E;A,B ∈ P ⇒ A ∩B = ∅

}
.

For k ∈ N, we shall also use Partk(E) to denote the set of
k-element partitions of E:

Partk(E) = {P ∈ Part(E) : |P | = k} .

We abuse notation slightly to define several recurring
terms for utility over subsets and partitions of E. For
P ∈ Part(E), C ⊂ E, r ∈ R, let

u(C, r) =
∑
e∈C

u(e, r),

u(C) = max
r∈R

u(C, r), and

u(P) =
∑
C∈P

u(C).

In words, u(C, r) is the total utility of a “cluster” of entities
C ⊂ E when the response is r, u(C) is the utility of C and
u(P) is the utility of partition P .

The partitioning form of a segmentation problem consid-
ers the problem of finding a partition of E that gives the
highest utility amongst all k-element partitions:

P ∗k = argmax
P∈Partk(E)

u(P) = argmax
P∈Partk(E)

∑
C∈P

max
r∈R

∑
e∈C

u(e, r).

(1)
For clarity, note that this assumes clustering E is our ground
truth objective: other potential entities are ignored. Finally,
we let u∗k denote the utility of an optimal k-element
partition: u∗k = maxP∈Partk(E) u(P).

To provide more visual intuition of this problem, we can
view the problem as an optimization on a matrix. Let U be
an |E|× |R| matrix where the (i, j)-th entry Ui,j = u(ei, rj).
Then, given k < |E|, the goal of the optimization is to find a
partition P = {C1, . . . , Ck} of the rows of U that maximizes
the sum of the utilities over the rows when all rows in
the same cluster must share the same response column rj .
Figure 2 depicts an example of this matrix form.

2Kleinberg and colleagues referred to the entities and re-
sponses as customers and decisions, respectively.

18

Cluster 1
4
7
2

Cluster 2 9

Cluster 3
3
5

Figure 2: Matrix view of a segmentation problem with an
objective value of 30.

Kleinberg and colleagues showed that this partitioning
view of a segmentation problem is also equivalent to the
following maximum coverage based optimization,

argmax
R′⊆R
|R′|=k

∑
e∈E

max
r∈R′

u(e, r). (2)

In our matrix view of this problem, one can think of
Equation 2 as choosing the set of k columns of the matrix
U that maximally cover the rows of the matrix.

The utility of optimal solutions to these two views of a
segmentation problem not only have equal value, u∗k, but
one can construct a solution to Equation 2 given a solution
to Equation 1, and vice versa. Though straightforward, we
show these constructions and their computational cost in the
following two lemmas.

Lemma 1. Partitions induce covers.
Given P ∈ Partk(E) where v = u(P), one can construct

R′ ⊆ R with |R′| ≤ k such that
∑

e∈E maxr∈R′ u(e, r) ≥ v
in O(|E||R|) evaluations of u.

Proof. We prove this by constructing R′ ⊆ R. Begin
with R′ = ∅. Then for each C ∈ P , add rC =
argmaxr∈R u(C, r) to R′. This adds at most k unique
elements to R′. Finally, observe that R′ has a maximum
coverage value of at least v.

v =
∑
C∈P

max
r∈R

∑
e∈C

u(e, r) =
∑
C∈P

max
r∈R′

∑
e∈C

u(e, r)

≤
∑
C∈P

∑
e∈C

max
r∈R′

u(e, r) =
∑
e∈E

max
r∈R′

u(e, r)

Lemma 2. Covers induce partitions.
Given R′ = {r1, . . . , rk}, R′ ⊆ R such that v =∑
e∈E maxr∈R′ u(e, r), one can construct P ∈ Part(E)

where |P | ≤ k and u(P) ≥ v in O(k|E|) evaluations of u.

Proof. We prove this by constructing such a partition
as follows. Initialize P = {C1, . . . , Ck} where Ci = ∅. For
each e ∈ E, add e to Ci where i = argmaxj∈{1,...,k} u(e, rj).
Finally, remove Ci if it remained empty. P is clearly a
partition of E of size at most k where u(P) ≥ v since for
each Ci ∈ P , u(Ci) ≥ u(Ci, ri).

The equivalence of these two problems means that tech-
niques for solving the maximum coverage based problem in
Equation 2 can also be used to solve the partitioning prob-
lem in Equation 1. Unfortunately, this type of weighted
maximum coverage problem is known to be computation-
ally hard. Cornuejols et al. [4] showed that when u is a
nonnegative utility function, the weighted maximum cover-
age optimization in Equation 2 is NP-complete. Kleinberg et

al. also showed on several constrained response spaces that
for u a general linear function, the segmentation problems
are still NP-complete [5], or more specifically MAXSNP-
complete [6].

Due to these negative complexity results, approximate so-
lutions to segmentation problems are typically sought in
lieu of exact solutions. Nemhauser and colleagues [11]
showed that when u is constrained to nonnegative values,
the weighted maximum coverage problem is submodular and
a (1 − 1/e)-approximation to the optimal solution can be
computed using a greedy approximation algorithm. Their
greedy algorithm iteratively constructs R′ ⊆ R by adding
r ∈ R \R′ that maximally increases the objective given the
previously selected elements in R′. In many natural settings
the response space R is either exponential or infinite and
solving even a single step of such a greedy algorithm may be
NP-complete. Kleinberg et al. [6] introduce several approx-
imation algorithms for segmentation problems. In addition
to some greedy approximations, which greedily add the re-
sponse that maximizes the marginal gain like Nemhauser
and colleagues’ algorithm, they also introduce efficient ap-
proximation algorithms that avoid enumerating the response
space by exploiting domain-specific assumptions about the
utility function’s structure.

In many domains, the utility function does not conform
to the assumptions required by Kleinberg and colleagues’
algorithms. In this work, we develop efficient approximation
algorithms by assuming that the utility function’s structure
admits a specific type of efficient oracle. Before describing
the details of our oracle, we introduce our experimental
domain of extensive-form games: a broad class of problems
that admit such oracles but do not satisfy the assumptions
required by Kleinberg and colleagues’ approaches.

2.2 Extensive-form Games
The experimental results in this paper will examine

clustering strategies in extensive-form games. Extensive-
form games provide a general model to represent sequential
interactions between agents in an environment. Extensive-
form games can be viewed as a tree consisting of nodes
corresponding to states of the game where some player acts,
and edges representing each of the actions available to a
player. Leaves of the tree represent the end of the game
and assign utilities to each of the players. In games with
a stochastic element, a special chance player acts according
to a known distribution. In games of imperfect information,
some actions are not fully observed by some of the players.
These players are then unable to distinguish which of several
game states they are in. A set of these indistinguishable
states is called an information set. A strategy for a player
specifies a distribution for each information set over the
available actions. One potential use for clustering strategies
is to help produce a portfolio of“expert”responses that could
be used to implicitly model agents in these games [2].

3. EXPLOITING STRUCTURED UTILITY
In settings where the response space is too large to enu-

merate efficiently, algorithms that avoid enumerating the
candidate responses are necessary. We examine problems
where structure in the utility function u allows the best re-
sponse for a given set of entities to be efficiently computed
despite a prohibitively large response space. Next, we for-
malize this response oracle, provide examples of problems

19

where such an oracle exists, and show how one can incorpo-
rate a response oracle into an efficient greedy agglomerative
clustering algorithm.

3.1 Response Oracles
In some settings the utility function u can be factored to

enable the efficient computation of the response (i.e., column
of U) that maximally covers a given set of entities. Formally,
given C ⊆ E a response oracle f : 2E → R is defined as

f(C) ≡ argmax
r∈R

u(C, r).

By definition, this means u(C, f(C)), the utility obtained by
the response oracle on C, is u(C).

We provide some domains where such a response oracle
can be computed efficiently, taking time logarithmic in
the size of the response space, and then present a greedy
algorithm that capitalizes on this oracle.

Example: Extensive-form Games.
Let the entities E consist of observed opponent strategies

and let the response space R be the possible strategies that
our agent could employ. Even if our agent only considers
pure strategies (where a player acts deterministically at each
of the game’s information sets) the size of the response space
is exponential in the number of the game’s information sets.
The response oracle f(C) in this setting is a best response
to the average of the sequence-form representations [7] of
the strategies in C. Due to an extensive-form game’s tree
structure, this can be computed in time linear in the number
of information sets.

Example: Budgeted Social Choice.
In the case of maximizing social welfare, Lu and

Boutilier’s [10] limited choice model of budgeted social
choice is equivalent to the segmentation problem optimiza-
tion in Equation 2 (with entities and responses instead called
agents and alternatives, respectively). In their formulation,
they assume that the responses can be enumerated and use
Nemhauser and colleagues’ greedy algorithm. Suppose the
responses consist of products represented by feature vec-
tors r = (r1, . . . , rn) ∈ R1 × . . . × Rn and that the util-
ity function can be factored into u(e, r) =

∑n
i=1 ui(e, ri)

where ui : E × Ri → R. Then the response oracle
f(C) can compute each ri of the optimal response as
argmaxri∈Ri

∑
e∈C ui(e, ri). Instead of enumerating the∏n

i=1 |Ri| possible responses in R, the response oracle can
be computed efficiently in time O(|C|

∑n
i=1 |Ri|).

3.2 A Greedy Heuristic
Since both exact solutions and algorithms similar to

Nemhauser and colleagues’ greedy algorithm are infeasi-
ble on segmentation problems with a large response space,
we propose an alternative greedy approximation algorithm.
Like others, our approach acts greedily based on the
marginal change in utility, but it does so when considering
how to merge clusters in an agglomerative hierarchical clus-
tering algorithm [13]. Our algorithm is efficient, requiring
a polynomial number of oracle queries, provided an efficient
response oracle.

In an agglomerative clustering algorithm, one starts with
a partition of singletons and builds a solution in a “bottom
up” manner by iteratively coarsening the partition. Unlike
Nemhauser and colleagues’ greedy algorithm, which acted
greedily according to the maximum marginal gain, we

greedily merge clusters that incur the minimal marginal loss.
This is because the objective value of Equation 1 is vacuously
maximized by the initial partition of singletons (when the
size of the partition is unconstrained). One can view this as
a greedy heuristic for the following optimization.

min
P∈Partk(E)

[∑
e∈E

max
r∗∈R

u(e, r∗)− u(P)

]
(3)

Conceptually, this objective function represents the utility
lost by responding to the entities in clusters rather than
individually. Note that a partition that optimizes our
original objective in Equation 1 also optimizes Equation 3,
and vice versa.

Our algorithm starts with the trivial partition P0 =
{{e} : e ∈ E} where every entity is in its own set. On
each iteration we coarsen the partition by greedily merging
together the two sets in the current partition that incur the
minimal marginal loss in the objective value of Equation 3.
This is repeated until we have a partition that satisfies the
cardinality constraint k.

More formally, let Coarse(P) be all the 1-step coarsenings
of partition P = {C1, . . . , Ck}:

Coarse(P) = {Merge(P,Ci, Cj) : 1 ≤ i < j ≤ k} ,

where

Merge(P,Ci, Cj) = P \ {Ci, Cj} ∪ {Ci ∪ Cj}

is the partition that results from P by merging Ci and Cj .
Then, the greedy algorithm can be written as in Algorithm 1.
Note that the combination of sets Ci, Cj ∈ P that produce
the optimal coarsening are exactly those for which the
marginal loss u(Ci) + u(Cj)− u(Ci ∪ Cj) is minimal.

Algorithm 1 Greedy response oracle clustering

Require: Set E of entities, a response oracle f , utility
function u, k
Initialization: G = P0 = {{e} : e ∈ E}
while |G| > k do
G← argmaxP∈Coarse(G) u(P)

end while
return G

A naive implementation of this algorithm must compute
the marginal loss for all combinations Ci, Cj ∈ P on each of
the |E| − k iterations. This implementation would require
O(|E|3) calls to the oracle. By noticing some structure
in the computation, we can use memoization to improve
this. After computing the marginal loss for all combinations
Ci, Cj ∈ P of candidate merges on the first iteration, the
marginal losses for all candidates can be updated after each
merge with at most O(|E|) calls to the response oracle. If
Ci and Cj are merged, we need only compute the marginal
losses for all pairs of clusters that involve the new cluster
Ci ∪ Cj . This memoization implementation only needs a
total of O(|E|2) calls to the oracle. Additionally, since we
know that the marginal loss is always nonnegative, we can
lazily update the marginal losses (only evaluating them while
no zero loss candidate exists) to further reduce computation.
Finally, each marginal loss computation is independent from
the others and therefore amenable to parallelization.

Unlike clustering algorithms where the desired number of
clusters k needs to be specified in advance (e.g., Lloyd’s

20

algorithm for k-means), our greedy algorithm’s iterative and
deterministic nature means that it could be run a single
time for |E| iterations, reporting the partitions and objective
value on each iteration. This enables users to directly
evaluate the trade-off between the objective and the number
of clusters.

In the remainder of the paper, we evaluate our greedy
algorithm both theoretically, proving approximation bounds
on the solution quality, and empirically by clustering agent
strategies in toy poker games. We begin with our theoretical
analysis.

4. THEORETICAL RESULTS
Our theoretical analysis examines the worst-case be-

haviour of our greedy clustering algorithm. Theorem 1 es-
tablishes a lower bound on the utility of a clustering pro-
duced by our greedy algorithm, relative to the optimal clus-
tering into k sets. Theorem 2 then shows that this lower
bound is tight (within a factor of 2) and cannot be improved
substantially.

In this section we fix E and we denote its cardinality by m.
Using the subsequent three lemmas, we prove the following
result:

Theorem 1. Let u be a nonnegative valued utility func-
tion, 1 ≤ k ≤ m. Then u(Gk) ≥ max

(
1
k
, k
m

)
u∗k ≥ 1√

m
u∗k,

where Gk is a k-element partition of E returned by the greedy
algorithm.

Note that the second inequality follows trivially from
max

(
1
k
, k
m

)
≥ mins>0 max

(
1
s
, s
m

)
= 1√

m
. Hence, it re-

mains to prove the first inequality. We prove this by showing
that u(Gk) ≥ k

m
u∗k in Lemma 4, and that u(G) ≥ 1

k
u∗k in

Lemma 5. We begin by proving a lower bound on the utility
for a single coarsening step of the greedy algorithm.

Lemma 3. Let u be a nonnegative valued utility function,
G ∈ Part(E), C = argminC∈G u(C). Then, for any C′ ∈ G,
C′ 6= C,

max
P∈Coarse(G)

u(P) ≥ u(Merge(G,C,C′)) ≥
(

1− 1

|G|

)
u(G) .

Proof. The first inequality holds by the definition of
Coarse. Hence, it remains to prove the second. For this,
let k = |G|. By the choice of C and the definition of u(G),
u(G) ≥ ku(C), or u(C) ≤ u(G)/k. Pick any C′ ∈ G, C′ 6= C
and set G′ = Merge(G,C,C′). Let r′ = argmaxr∈R u(C′, r).
Then,

u(G′) =
∑
A∈G′

u(A) =

u(G)︷ ︸︸ ︷∑
A∈G

u(A) +u(C ∪ C′)− (u(C) + u(C′))

≥ u(G) + u(C ∪ C′, r′)− (u(C) + u(C′))

= u(G) + u(C, r′) +����u(C′, r′)− u(C)−���u(C′)

≥ u(G)− u(C) (since u is nonnegative)

≥
(

1− 1

k

)
u(G) . (by the choice of C)

Lemma 4. Assume that u is nonnegative valued. Fix
1 ≤ i ≤ m and let Gi denote the i-element partition returned
by the greedy algorithm. Then, u(Gi) ≥ i

m
u(Gm) ≥ i

m
u∗i .

Proof. By using Lemma 3 (m− i)-times, we get

u(Gi) ≥

(
m−1∏
j=i

j

j + 1

)
u(Gm) ,

which proves the first half of the lemma. For the second part
just combine this with u(Gm) = u∗m ≥ u∗m−1 ≥ · · · ≥ u∗i .

It remains to prove that the following lemma holds:

Lemma 5. Assume that u is nonnegative valued. Let
G ∈ Partk(E). Then, u(G) ≥ 1

k
u∗k.

Proof. Let P ∗k = argmaxP∈Partk(E) u(P), and C =

argmaxC′∈P∗
k
u(C′). Then, u∗k = u(P ∗k) ≤ ku(C), hence

it suffices to show that u(G) ≥ u(C). Let rC =
argmaxr∈R u(C, r). We have

u(G) =
∑
C′∈G

u(C′)

≥
∑
C′∈G

u(C′, rC) =
∑
e∈E

u(e, rC)

≥ u(C, rC) (since u is nonnegative)

= u(C) .

The next result establishes that the bound in Theorem 1
cannot be substantially improved:

Theorem 2. Let k be a positive integer. For each ε > 0,
there exists a nonnegative utility function on a set of entities
E of m = k2 elements and on a set R of k2+k responses such
that if Gk is the k-element partition returned by the greedy
algorithm when fed with k and u then u(Gk)− ε ≤ 2√

m
u∗k.

Proof. We will construct a matrix of size k2 × (k2 +
k) holding the values of the utility function. Let E =
{1, . . . , k2}, I denote the k × k identity matrix, ε > 0 and
define the k × k matrix Qε by

Qε =

2 + ε ε . . . ε
ε 2 + ε . . . ε
...

...
. . .

...
ε ε . . . 2 + ε

 .

Finally, as in Section 2.1, the k2× (k2 +k) matrix represent-
ing the utility function u is given by

U =

I Qε 0 . . . 0
I 0 Qε . . . 0
...

...
...

. . .
...

I 0 0 . . . Qε

 .

Let C1 = {1, . . . , k}, C2 = {k + 1, . . . , 2k}, . . ., Ck =
{k2 − k + 1, . . . , k2}. Note that {C1, . . . , Ck} ∈ Partk(E).
We claim that the greedy algorithm returns the k-element
partition Gk = {C1, . . . , Ck}.

To show this, let Gi denote the i-element partition
computed by the greedy algorithm. We claim that for
any C ∈ Gi, C ⊂ Cp for some 1 ≤ p ≤ k (i.e., Gi is
a refinement of Gk). This clearly suffices to prove that
Gk = {C1, . . . , Ck}. Since Gm = {{1}, . . . , {k2}}, the claim
holds for i = m.

Let us assume that it holds up to k < i ≤ m. Consider
C,C′ ∈ Gi. By the induction hypothesis, Gi is a refinement

21

of Gk and therefore C ⊂ Cp and C′ ⊂ Cq for some
1 ≤ p, q ≤ k. Then, u(C) = 2 + |C|ε and u(C′) = 2 + |C′|ε.
If C and C′ were merged, the marginal loss due to merging
is `(C,C′) = u(C) + u(C′) − u(C ∪ C′). The greedy
algorithm merges the two elements of Gi that minimize this
loss. If p = q then u(C ∪ C′) = 2 + (|C| + |C′|)ε and
`(C,C′) = 2. If p 6= q then u(C ∪ C′) = 2 + max(|C|, |C′|)ε
and `(C,C′) = 2+(|C|+|C′|−max(|C|, |C′|))ε. Since ε > 0,
the loss due to merging two clusters within the same block
is always smaller than that of when the two clusters belong
to different blocks. Hence, the greedy algorithm will choose
to merge clusters within the same block. This shows that
the induction hypothesis also holds for i − 1, finishing the
proof of the claim.

We also claim that as long as ε is small enough, the opti-
mal k-element partition is P ∗k = {{1, k + 1, 2k + 1, . . . , k2 −
k+1}, {2, k+2, 2k+2, . . . , k2−k+2}, . . . , {2k, 3k, . . . , k2}}.
Let C∗i be the ith cluster in P ∗k . Then, for any C ⊂ E, if
ni = |C ∩ C∗i |, 1 ≤ i ≤ k, n(C) = max(n1, . . . , nk), we
have n(C) ≤ k and u(C) = max(n1, . . . , nk, 2 + n1ε, . . . , 2 +
nkε) = max(n(C), 2 + n(C)ε) ≤ max(k, 2 + kε) ≤ k, as
long as ε ≤ 1 − 2

k
. Hence, for such an ε, for any k-

element partition, P = {A1, . . . , Ak}, u(P) =
∑k

i=1 u(Ai) =∑k
i=1 max(n(Ai), 2 + n(Ai)ε) ≤ k2 = u(P ∗k), showing that

P ∗k is indeed an optimal partition.
Now, u(Gk) = k(2 + kε) = 2k + k2ε, while u∗k = u(P ∗k) =

k2. Hence, 2√
m
u∗k = 2

k
k2 = 2k ≥ u(Gk)− k2ε, finishing the

proof.

While these theoretical results provide guarantees about
our greedy algorithm’s worse-case performance, it can per-
form much better in practice. In the next section, we empir-
ically evaluate our greedy algorithm’s practical performance
by clustering agent strategies in two toy poker games.

5. EMPIRICAL RESULTS
We demonstrate the performance of our greedy heuristic

algorithm by clustering agent strategies for extensive-form
games. In particular, our experiments examine poker: a
popular family of games that can be modelled as extensive-
form games. We begin our empirical analysis with a brief
introduction of poker and the two small poker games used
in our experiments: Kuhn poker and Leduc hold’em. We
then describe how we cast this problem as a segmentation
problem, the design of our empirical evaluation, and finally
present our results.

5.1 Poker
Poker is a family of stochastic imperfect information

games where each agent’s goal is to maximize their winnings
against some opponents. While there are numerous poker
variants, their rules share similar structure. A game begins
with chance dealing cards from a deck to each player, and
typically one or more players are forced to place bets. All
bets contribute to the pot which is paid to the winner.
The game proceeds through a number of betting rounds
consisting of actions by the players. Players can fold
(conceding the pot), call (matching the maximum previous
bet), or raise (increasing the maximum bet). A betting
round ends if every player except the last player to bet
has called the outstanding bet or folded. If only one player
remains, they win the pot and the game ends. Between
betting rounds, players’ hands change in some way due

to chance events. One common way this happens is that
chance deals some number of “community” cards which are
visible and usable by all players. At the end of the final
betting round, if more than one player remains, a showdown
occurs. In a showdown, all remaining players reveal their
cards, evaluate their hands based on their cards and any
community cards, and the player with the strongest hand is
awarded the pot (or it is split in the event of a tie). In limit
poker variants, bets are of a fixed size and the maximum
number of bets within a betting round is limited.

5.1.1 Kuhn Poker
Kuhn poker is a toy variant of poker that is small enough

that a game theoretic analysis can be done by hand [8]. It
is a two-player zero-sum poker game with a deck of three
cards: jack, queen, and king. In Kuhn poker, both players
must make an initial forced bet (ante) and are dealt a single
private card. Betting occurs in a single betting round with
betting limited to at most a single bet of a fixed size.

In Kuhn’s analysis, he showed that strategies playing cer-
tain actions from certain information sets were dominated.
For example, when holding the king (the strongest card) a
player should never fold. If all such actions are eliminated,
then strategies in the resulting undominated version of Kuhn
poker can be parameterized with three parameters (α, β, γ)
for player one, and two parameters (η, ξ) for player two. Our
experiments examine this undominated Kuhn poker game.

5.1.2 Leduc Hold’em
Leduc hold’em [12] is another two-player zero-sum variant

of poker which, though larger than Kuhn poker, is still small
relative to common poker games played by humans. As
in Kuhn poker, the game begins with both players forced
to bet an ante and being dealt a single private card. The
deck in Leduc hold’em consists of six cards with three ranks
(jack, queen, and king) and two suits. Leduc has two betting
rounds with betting limited to a maximum of two fixed-size
bets per round. After the first betting round, chance deals
a public community card. In a showdown, a pair of cards
now beats any other hand.

5.2 Experimental Design
To evaluate our greedy decision-theoretic clustering algo-

rithm, we contrast its performance with a k-means clustering
algorithm in the domains of Kuhn and Leduc hold’em poker.
We start by describing how clustering agents in an extensive-
form game can be cast as a segmentation problem, and then
detail our benchmark k-means algorithm before moving on
to our empirical data.

In this setting, we seek a partition of a set E of static agent
strategies that optimizes Equation 1. In our experiments,
we generate the agents in E by sampling 200 strategies
uniformly at random from the strategy space. Though not
constructed explicitly, the utility matrix U can be viewed as
having a column for each possible strategy and entries u(e, r)
corresponding to the expected utility of playing strategy
r against static agent e. As mentioned previously, the
response oracle f(C) for a set of strategies C is the best
response to the average of the sequence-form representations
of the strategies in C.

Each of our experiments contrasts our greedy algorithm
with the standard k-means clustering algorithm, i.e. Lloyd’s
algorithm [9], using the sequence-form representation [7]

22

0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.2

0.4

0.6

0.8

1.0
ξ

(a) k-means

0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.2

0.4

0.6

0.8

1.0

ξ

(b) Greedy agglomerative clustering

Figure 3: Clusters of player two Kuhn poker agents found using k-means clustering over the sequence-form representations
and our greedy heuristic algorithm (k = 6). Marker shape and colour indicate cluster membership.

of an agent’s strategy as its feature vector. We initialize
the cluster centroids using the k-means++ algorithm [1].
Note that while the locally optimal clustering found by
Lloyd’s algorithm may be arbitrarily bad in terms of the
k-means objective, initializing with k-means++ provides an
approximation guarantee on the solution quality. Despite
this, the stochasticity of the k-means initialization impacts
which local optimum is found. In our experiments, k-means
is restarted 50 times and the clustering with the best k-
means objective (i.e., minimal within-cluster sum of squared
Euclidean distances) is reported.

5.3 Results
We begin the analysis of our greedy clustering algorithm

by examining both its qualitative and quantitative perfor-
mance when clustering player two’s strategies in undomi-
nated Kuhn poker.

5.3.1 Kuhn Poker
Figure 3 contrasts clusterings produced by k-means and

our greedy algorithm to demonstrate the qualitative differ-
ences in these clustering approaches. These figures visual-
ize each of the 200 agent strategies according to their two
parameters, η and ξ. The marker shape and colour corre-
spond to which cluster each strategy is assigned to. As with
the rock-paper-scissors example, the boundary lines between
each of the best response regions are plotted. This parti-
tions the strategy space into six regions each with a distinct
best response. The k-means and greedy algorithms were run
with k = 6 clusters as this is sufficient to optimally partition
the strategies. Figure 3a illustrates how k-means tends to
produce relatively spherical clusters of similar size. Unsur-
prisingly, k-means’ optimization of spatial distances results
in clusters that fail to respect these boundaries. In contrast,
our greedy algorithm (Figure 3b) is able to exactly partition
the agents according to the best response regions.

Next, we examine the quantitative performance of these
algorithms in terms of the utility lost due to responding
to agents in clusters rather than as individuals (as in

Equation 3). Figure 4a shows the loss incurred by k-
means and our greedy algorithm as we vary the number of
clusters for undominated Kuhn poker. In this domain we
also compute the optimal clustering through enumerating
all possible combinations of k of the six best responses and
then inducing the corresponding partition as per Lemma 2.
Results have been averaged over 50 trials each sampling a
new set of 200 agents. The trend lines show the mean value
for the loss and the surrounding shaded region indicates the
95% confidence interval (which is occasionally difficult to
see as it is smaller than the line width). Values are in milli
big blinds per game (i.e., thousandths of the initial ante).
While the greedy algorithm manages to achieve zero loss
once allowed the six clusters required to guarantee the points
can be properly partitioned, k-means is unable to reach zero
loss even after being given twice as many clusters. This
result also highlights how our greedy algorithm can obtain
considerably more of the optimal clustering’s utility than is
guaranteed by our worst-case approximation bound.

5.3.2 Leduc Hold’em
Though Kuhn poker provides a convenient domain for

visualizing strategies and best response regions, clustering
agents in such small domains can be done through direct
analysis of the game or brute force enumeration of a player’s
pure strategies. Leduc hold’em better demonstrates the
value of a response oracle as the game is sufficiently large
that such enumeration is infeasible. Figure 4b shows similar
quantitative performance results for the domain of Leduc
hold’em where strategies for player one are being clustered.
Note that the results in Figure 4 exploit the fact that the
greedy algorithm’s performance can be computed for each k
with little additional computation (though Figure 4b omits
values over 64). It is clear in these results that our greedy
clustering algorithm substantially outperforms k-means. In
particular, the greedy algorithm achieves approximately the
same performance with 7 clusters as k-means does with 64.

Finally, it is interesting to note the rate of improvement
as we allow for more clusters. In particular, although the

23

2 4 6 8 10 12

k (number of clusters)

0

10

20

30

40

50

60
M

ea
n

lo
ss

vs
.

si
ng

le
to

n
re

sp
on

se
s

(m
bb

/g
)

Greedy
k-means
Optimal

(a) Kuhn poker

10 20 30 40 50 60

k (number of clusters)

0

50

100

150

200

250

300

350

M
ea

n
lo

ss
vs

.
si

ng
le

to
n

re
sp

on
se

s
(m

bb
/g

)

Greedy
k-means

(b) Leduc hold’em

Figure 4: Performance of different clustering techniques in small poker domains

greedy algorithm initially improves rapidly as we increase
the number of clusters, the rate of improvement quickly
levels off and leaves a very long tail compared to Kuhn
poker. This is likely due both to the increased complexity
of the game and also the uniform random sampling of the
strategy space. Unlike Kuhn poker where we would expect
each best response region to contain multiple of the 200
sampled strategies, the more complex strategy space of
Leduc hold’em likely means any given best response region
is (at best) sparsely sampled. If the agents being clustered
were covered by relatively few of a game’s best response
regions, then this long tail may not be present.

6. CONCLUSION
Agents seeking to maximize their utility may be able to

improve their performance by exploiting models of other
agents or entities in their environment. In these settings,
clustering techniques can be beneficial for extracting similar
groups of entities. Despite the ubiquity of spatial clustering
techniques, spatial similarity may be insufficient for cap-
turing similarity in how an agent should respond to these
groups. Instead, practitioners with utilitarian clustering ob-
jectives may prefer to explicitly optimize the utility of an
agent’s responses to the clusters. Although work related to
segmentation problems provide techniques to optimize for
such actionable clusters, these techniques may be computa-
tionally infeasible for domains with large response spaces.

We introduced an efficient greedy algorithm for this type
of decision-theoretic clustering that can exploit the structure
of certain domains. We proved worst-case approximation
bounds on the quality of solutions produced by our greedy
algorithm. Finally, we showed how to apply this technique
to extensive-form games, and empirically demonstrated the
value of this approach by comparing it to k-means for
clustering agent behaviours in two toy games of poker.

Acknowledgements
The authors would like to thank all of the members of the
Computer Poker Research Group at the University of Al-
berta for helpful conversations pertaining to this research.
This research was supported by NSERC and Alberta Inno-
vates Technology Futures. Computing resources were pro-
vided by Calcul Québec, Westgrid, and Compute Canada.

REFERENCES
[1] D. Arthur and S. Vassilvitskii. K-means++: The

advantages of careful seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 1027–1035,
2007.

[2] N. Bard, M. Johanson, N. Burch, and M. Bowling.
Online implicit agent modelling. In Proceedings of the
Twelfth International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’13, 2013.

[3] A. Carlin and S. Zilberstein. Value-based observation
compression for DEC-POMDPs. In Proceedings of the
Seventh International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’08, pages
501–508, 2008.

[4] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser.
Location of Bank Accounts to Optimize Float: An
Analytic Study of Exact and Approximate
Algorithms. Management science, 23(8):789–810, 1977.

[5] J. M. Kleinberg, C. H. Papadimitriou, and
P. Raghavan. A microeconomic view of data mining.
Data Mining and Knowledge Discovery, 2(4):311–324,
1998.

[6] J. M. Kleinberg, C. H. Papadimitriou, and
P. Raghavan. Segmentation problems. Journal of the
ACM, 51(2):263–280, 2004.

[7] D. Koller, N. Megiddo, and B. von Stengel. Fast
algorithms for finding randomized strategies in game
trees. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’94, pages
750–759, 1994.

[8] H. W. Kuhn. A simplified two-person poker.
Contributions to the Theory of Games, 1:97–103, 1950.

[9] S. P. Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
1982.

[10] T. Lu and C. Boutilier. Budgeted social choice: From
consensus to personalized decision making. In
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, IJCAI ’11, pages
280–286. AAAI Press, 2011.

[11] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis

24

of approximations for maximizing submodular set
functions — I. Mathematical Programming,
14(1):265–294, 1978.

[12] F. Southey, M. Bowling, B. Larson, C. Piccione,
N. Burch, D. Billings, and C. Rayner. Bayes’ bluff:
Opponent modelling in poker. In Proceedings of the

21st Annual Conference on Uncertainty in Artificial
Intelligence, UAI ’05, pages 550–558, 2005.

[13] J. H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, March 1963.

25

