
Swarm Robot Foraging with Wireless Sensor Motes

Katherine Russell
Dept. Computer Science
George Mason University

Fairfax, Virginia USA
krussellc@gmu.edu

Michael Schader
Dept. Computer Science
George Mason University

Fairfax, Virginia USA
mschader@gmu.edu

Kevin Andrea
Dept. Computer Science
George Mason University

Fairfax, Virginia USA
kandrea@gmu.edu

Sean Luke
Dept. Computer Science
George Mason University

Fairfax, Virginia, USA
sean@cs.gmu.edu

ABSTRACT
We investigate the use of wireless sensor motes as mobile deploy-
able waypoints for swarm robot navigation in a foraging scenario.
Each robot can deploy, retrieve, and optimize the location of the
sensor motes. After deployment, the robots treat the sensor motes as
nodes in a sparse graph, and store and retrieve multiple pheromones
and flags locally in each of them. Pheromone information stored
in the sensor motes allows the robots to build up gradients to dif-
ferent targets of interest, and to determine which sensor motes are
good candidates to optimize location, or to harvest for reuse else-
where. Unlike many earlier pheromone-based foraging techniques,
our method must deal with the physical reality of deploying and
manipulating sensor motes, including a limited mote supply both on-
board and in total, robustly dealing with occlusion and interference
from other robots, and handling noise and robot or mote failure. We
demonstrate the effectiveness of the technique both on differential
drive robots of our own design, and in simulation, to examine its
ability to robustly deal with various failure modes and changes in
environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation, Performance

Keywords
Beacons; Pheromone Robotics; Sensor Motes

1. INTRODUCTION
A major hurdle to realistic swarm robotics is performing scalable

and reliable communication in difficult environments. A common
solution has been to apply indirect communication, where the local
environment itself is modified by the robots so as to leave informa-
tion for future robots visiting the area. Examples include leaving
trails of breadcrumbs, depositing pheromones, and erecting signs or
directional markers. Indirect communication is attractive for several
reasons. First, it scales to any arbitrary size area and number of
agents. Second, it is potentially long-lasting. Third, information
received through indirect communication is often highly relevant

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

to a robot’s current situation, since it was embedded locally in that
environment. Fourth, it is robust in scenarios where global commu-
nication modes (such as a global wireless network) are infeasible.

Inspired by ants and termites, and following the lead of the ar-
tificial life literature, some swarm robotics research has examined
simulating the embedding of pheromones directly in the environ-
ment, via drawing on surfaces with inks, scents, and phosphorescent
dyes. We think these approaches have limited practical utility, partly
because pheromones cannot store much information, and partly
because they may mar the environments in which the robots operate.

A common alternative is to scatter some form of breadcrumbs or
deployable waypoints in the environment. Robotic breadcrumbs may
be small barcodes, QR codes, or RFID tags, for example. Because
such objects often are read-only, much of the existing literature has
augmented this kind of indirect communication with some other
line-of-sight or global communication mode, or has treated such
breadcrumbs as trivial environmental markers.

In this paper we study the use of wireless sensor motes as so-
phisticated read/write breadcrumbs in a food foraging scenario for
a swarm of physical robots. A sensor mote is a tiny, low powered,
wireless computer outfitted with an array of sensors and designed
to run for months or years on batteries. Sensor motes are useful as
breadcrumbs particularly because they are small, long-lived, easy to
carry and deploy, and can store and retransmit significant amounts of
data. Though many sensor motes can form ad-hoc networks among
themselves, in this study they will only communicate with nearby
robots as they pass by. Robots will not communicate with each other
except indirectly through information stored in the motes.

Our experiments use small differential drive robots each outfitted
with a sensor mote (for communications), and capable of picking
up, moving, and releasing a single sensor mote in the environment.
Robots may acquire sensor motes at a nest (a home base) or serendip-
itously in the environment, then deploy these motes as bread-crumbs.
They can later optimize the location of these motes by physically
adjusting their location, and can reacquire them if they are no longer
needed. Robots may store and read various information in the sensor
motes, including the values of different kinds of pheromones, flags,
and atomic locks. The objective is for the robots to use the bread-
crumbs to discover a food source, then optimize the breadcrumbs
to shorten the trail between the nest and the food so as to maximize
the amount of food being brought back to the nest.

The algorithm we will develop here is inspired by the approach
we took in [9] and, as in that paper, we will likewise refer to our
sensor motes as beacons. However the algorithm described in [9],
while intended as a step in the direction of physical robots, cannot
actually be deployed to real robots for a large number of reasons
which we discuss later. Thus we have devised a major revision
which is capable of deployment to real robots, and which deals

287

robustly with sensor failure, occlusion, race conditions, noise, and
other issues encountered in dealing with physical swarm robots in
imprecise environments.

We will describe the algorithm in replicable detail, then discuss
our robot platform. After this we will show an experiment with the
physical robots, and validate a robot simulation with an identical
experiment. The simulator affords us both faster runtime and envi-
ronments with many more (virtual) robots. We will then perform
experiments in simulation involving varying levels of occlusion,
beacon reliability, and catastrophic beacon failure.

2. PREVIOUS WORK
Both pheromones and breadcrumbs are examples of local indirect

communication among swarm agents, where such agents leave in-
formation in the environment for later agents to exploit. Early work
in this area largely came from the artificial life community [2, 4,
12, 15, 19]. In this literature, simulated agents performed foraging
on a virtual grid, using a single pheromone, and agents typically
deposited and read pheromones on grid squares. Some work has ex-
tended this to multiple pheromone models [3, 25], and pheromones
with rich semantics (such as different evaporation rates [16]).

Later work has come from the swarm robotics community. Some
of this work directly draws pheromones on the ground using odifer-
ous pens [20], ink [21], or phosphorescent paint [11]; or generally
emitting odors [10] or other detectable chemicals [18]. Other work
has approximated indirect communication using a breadcrumbs or
beacons of some sort, but usually this is augmented with some other
communication mode. For example, some work has used a global
wireless network to simulate local indirect communication [22, 23,
24, 26]. Other work has used line-of-sight or short-range commu-
nication [13, 14, 17], or presumed fixed global communications
devices embedded in the environment [1]. Robots have also commu-
nicated “pheromone”-like data by forming chains among themselves
rather than fixing information in the environment directly (such as
in [7, 8]). Finally, robots have themselves acted as mobile beacons
for other classes of robots [5].

We are interested in a system which performs indirect commu-
nication by deploying and otherwise manipulating beacons which
are capable of storing and transmitting rich information to local
robots. We first proposed this approach in [9], where simulated
swarm agents deployed, removed, and updated mobile beacons in
the environment. These beacons would store local pheromone infor-
mation deposited in them by the agents, and which acted as nodes
in a sparse graph embedded in the environment. The agents used
these beacons, and their pheromone information, to build up dif-
ferent gradients for other agents to follow. This model was meant
as a first-step towards deployment to real physical robots, but the
algorithm made a large number of simplifying assumptions which
would prevent this, including:

• The agents shared a global, immediately available pool of
beacons. An agent could immediately teleport a beacon from
this pool to itself, or transport a beacon from the environment
to the pool.

• The agents were point objects and could not collide with nor
obstruct one another. Any number of agents could arrive at a
given beacon at the same time.

• An agent could always see all beacons in its local environment:
beacons were never occluded, nor difficult to identify.

• The beacons were reliably read from, written to, deployed,
retrieved, and moved.

• The agents were not in parallel, and so could not encounter
race conditions when working with the same beacon.

• The algorithm was generally not robust to noise.

• The algorithm was not sufficiently conservative when moving
or retrieving beacons, and would often strand agents alone or
on “islands” of beacons, with no way for them to find their
way back home.

3. ALGORITHM DESCRIPTION
In this paper we describe a major revision of the technique de-

scribed in [9] and demonstrate its deployment for the first time to
actual physical robots. The “beacons” in our revised algorithm
are mobile wireless sensor motes which communicate with nearby
robots. One of the challenges in implementing this algorithm and
deploying it to real physical robots is that there are a great number
of corner cases and other critical implementation details necessary
to describe for purposes of replicability. We beg the reader’s indul-
gence as we discuss the algorithm in some detail here.

In the foraging scenario, robots emerge from a nest and search for
a food source, then iteratively bring pellets of food back from the
source to the nest. The sensor mote beacons deployed by the robots
form a sparse embedded graph in the environment. For simplicity’s
sake, we also associate the nest and the food with unique, immobile
beacons, though this is not a required feature of the environment.
Robots have the ability to both add and remove beacons from the
environment, as well as optimize beacon positions.

Each beacon stores several pieces of information. First, a beacon
stores three real-valued pheromones which establish gradients in the
environment to be followed by the robot: a pheromone associated
with a gradient to the nest, one to a food source, and an additional
wandering pheromone value meant to encourage exploration. As
robots visit beacons, a negative wander pheromone builds up and en-
courages them to look elsewhere. A robot’s behaviors are essentially
finite-state automata, where depending on the mode of the robot,
it will follow a certain pheromone gradient. Specifically, a robot
may be either FORAGING for food (following the food gradient) or
FERRYING food back to the nest (following the nest gradient). At all
times, the robot updates the local gradients of all three pheromones
based on new information.

Second, a beacon stores certain integer indicators: the first is the
id of the robot, if any, that is presently “in control of” the beacon
(this functions as an atomic lock when a robot wishes to move
or control the beacon). The second is a status which can be set
to one of two values: deployed, indicating that the beacon is in
use in the environment, and inactive, meaning that it is not in use.
New beacons, offered to robots at the nest or perhaps placed in the
environment by the experimenter, are initially set to inactive. The
status of a beacon may also be read as faulty if it is not operating
properly. The third is a last used timestamp which allows the beacon
to return a status of disused when it hasn’t been updated in some
period of time. This period is configurable: we set it to 3× the rough
time it takes for a robot to travel from one beacon to another.

We note that that neither unique robot ids nor a global clock is
required for the method proposed. Robot ids are merely a simple
method of creating unique locks for small swarms, but other low
conflict lock ids could be generated for larger swarms. Additionally,
the last used timestamp mentioned above is based on the beacon’s
internal clock and could be (and likely often is) completely out of
sync with the clocks of the robots and other beacons.

Beacon pheromones gradually decay by being iteratively multi-
plied by some value γ . The exact value is not important, but in our
simulation experiments, we cut down by γ = 0.99 every timestep.

288

Robots iterate the following loop. First, they identify the beacons
they can find in their immediate neighborhood (by looking about).
If they are not presently associated with a beacon, they attempt
to acquire one if it is available and appropriate. Then, if they are
associated with a current beacon c they will read and write to it, and
possibly move it. They also keep track of p, the beacon they were
previously associated with, and with the next beacon n which with
they intend to associate.

Below is that top-level loop. Note that initially Rferrying is set to
some positive constant REWARD: a robot starts at the nest, believing
it has just successfully ferried food back to the nest, has received a
reward accordingly, and is now FORAGING. Probabilities, such as
PAcquire, will be discussed in more detail later.

TopLevel()
1: global variables
2: mode← FORAGING . The robot’s current state
3: Rferrying← REWARD . Reward just received while ferrying
4: Rforaging← 0 . Reward just received while foraging
5: c← 2 . Current beacon, where 2 means “null”
6: p← 2 . Previous beacon
7: n← 2 . Next beacon
8: countdown← 0 . Timer used to explore for a while
9: deployFailed← false . Did beacon deployment fail last time?

10: loop
11: {neighbors, inactiveBeacons}← SurveySurroundings()

. Try to acquire a beacon if we don’t have one
12: if CanAcquireBeacon(inactiveBeacons) and Rand(PAcquire)
13: TryToAcquireBeacon(inactiveBeacons)
14: {neighbors, inactiveBeacons}←SurveySurroundings()

. Update the current beacon as needed
15: if c 6=2

16: deployFailed← false . Allow us to start deploying again
17: UpdateCurrentBeacon(neighbors) . See Section 3.1

18: DecideMode()
19: DecideAndGo(neighbors) . See Section 3.2

The UpdateCurrentBeacon(...) and DecideAndGo(...) sub-
algorithms will be described in later sections. For now, we describe
the other functions here.

Rand(prob) Return true with probability prob, else false.

SurveySurroundings() Returns two (possibly empty) sets: one
of nearby deployed beacons which are part of the network, and one
of nearby inactive beacons. The robot’s current beacon c is never
included in either set. In our physical robots, these sets are built
by rotating to visually observe nearby beacons, then querying the
observed beacons for their status. Other methods of observing the
local environment could easily replace this for robots with different
capabilities.

CanAcquireBeacon(inactiveBeacons) Returns true if the robot
could hold an additional beacon (in our scenario, this means that the
robot is holding no beacons at present, as our robots can only carry
one beacon at a time) and either inactiveBeacons is nonempty, or
the current beacon c is the nest.

TryToAcquireBeacon(inactiveBeacons) If inactiveBeacons is
nonempty, the robot chooses one at random and attempts to get a
lock on it. If this is successful, it goes to the beacon, acquires it, and

sets c← 2, as the robot could now be at an unknown location. If
inactiveBeacons is empty, the robot assumes it is at the nest, and so
attempts to get a beacon from the nest’s dispenser, acquire a lock on
it, and set c← nest.

DecideMode() Sets the current mode to FERRYING if the fol-
lowing scenario is true: (1) the current mode is FORAGING, (2) the
robot is not carrying any beacons, and (3) there is no trail to the
food from the current beacon (the FORAGING pheromone at c is
0). This mode change is done when the robot has reached an edge
in the beacon graph and decides it must expand the graph, but has
no beacon to contribute to this goal. Since beacons are generally
available at the nest, the robot changes its mode to head to the nest.

3.1 Updating the Current Beacon
The UpdateCurrentBeacon(...) sub-algorithm takes information

from the survey step and uses it to decide on what to change about
the current beacon c. The algorithm is as follows:

UpdateCurrentBeacon(neighbors)
1: UpdatePheromones(neighbors)
2: n← NextBeacon(neighbors, mode)
3: if CanMoveBeacon(neighbors) and Rand(POptimize)
4: MoveBeacon()
5: if CanRemoveBeacon(neighbors) and Rand(Premove)
6: RemoveBeacon()
7: UpdateLastUsed()

The process of updating the current beacon c involves updating
its pheromone values, then optionally optimizing or deleting c. Up-
dating the pheromone values follows essentially the same procedure
as in [9]. We then determine n ∈ neighbors, the next beacon to
follow for the current mode. n is also used later in the calculations
to determine whether c can be optimized or deleted.

UpdatePheromones(neighbors) As in [9], each pheromone
value Up(c)(∀p) at the current beacon c is updated using Equa-
tion 1, where c is the current beacon, Rp(∀p) is the reward for the
given pheromone, and γ is a value between 0 and 1.

Uforaging(c)←max(Uforaging(c), Rforaging + γ max
i∈neighbors

Uforaging(i))

Uferrying(c)←max(Uferrying(c), Rferrying + γ max
i∈neighbors

Uferrying(i))

Uwandering(c)←Uwandering(c)−1 (1)

This is a form of value iteration which builds up the foraging and
ferrying pheromone gradients in the environment. We want beacons
with very small pheromone values to be considered disused. Thus
if either Uforaging(c) or Uferrying(c) < ε , then it is simply set to 0
to indicate that the beacon is disused. In our experiments, we set
ε = 0.000000001.

NextBeacon(neighbors, mode) Finds the beacon n ∈ neighbors,
if any, with the highest pheromone value for the given mode. If there
is no such beacon, or if the associated pheromone for n is less than
or equal to the same pheromone in c, returns 2, else returns n.

CanMoveBeacon(neighbors) Returns true if (1) the robot can
carry more beacons, (2) there exists a path to optimize, that is:
c, p,n 6= 2, the pheromones for the current mode in c, p, and n
are in strictly increasing or decreasing order, and n, p ∈ neighbors,
(3) the robot is allowed to move the beacon (no other robot has

289

locked c, p, or n) (4) the swarm is not presently expanding the
network (c has both zero or both non-zero pheromone values for
FORAGING and FERRYING) (5) the robot would not be breaking
any other path between the neighbors. This last step can be defined
as follows: there does not exist a strictly increasing or decreasing
ordering y→ c→ z, where y,z ∈ neighbors, for the FERRYING or
FORAGING pheromones, other than p→ c→ n, which would be
disrupted by the movement of c (so either there is no path y→ c→ z,
or robots can travel directly between beacons y and z).

MoveBeacon() The robot attempts to acquire a lock on c, p, and
n. If it cannot get a lock it releases all locks it has acquired and gives
up moving the beacon. Otherwise it picks up c and attempts to move
it directly between p and n. This fails if an obstacle is encountered
in placing the beacon. There are two options for failure recovery:
(1) attempt to put the beacon back, or (2) deposit the beacon at the
robot’s current location. We used option 2.

CanRemoveBeacon(neighbors) Performs a series of checks to
determine if the current beacon c can be safely removed from the
network. These are heuristics to determine if the beacon is either
at an edge of the graph which not presently being expanded by the
swarm, is redundant, or is on an island formed by erroneous past
removals or optimizations. An island is a disconnected subgraph of
beacons for which there is no path to the nest.

This function returns true if all of the following are true: (1) No
one is using another beacon on this path (there is no lock on c, and
p and n have no locks or are 2) (2) Neither the FERRYING nor
FORAGING pheromone values at c are zero, or they both are (3) A
heavily used but occluded path is not likely to be broken (any of
the following are true: c is disused, there is more than one beacon
in neighbors, or both pheromones FERRYING and FORAGING are
zero) (4) p and n are within range of each other, if they exist: that
is, removing c would not break the path from p to n (5) Any of the
following is true: (a) Both FERRYING and FORAGING pheromones
are zero. In other words, the robot believes it is on an island with no
gradient to either food or the nest. Or: (b) neighbors is empty and
the status of c is disused. This indicates that the beacon is likely an
unimportant part of the network. Or: (c) there is a redundant beacon
which can take the place of c. That is, there exists a beacon b ∈
neighbors with higher pheromone values than c in both FERRYING
and FORAGING, which is in range of all other beacons in neighbors.

RemoveBeacon() The robot sets the deployed status of c to
false, resets all pheromones on c, and attempts to acquire c if the
robot can carry more beacons. If it cannot acquire c, it will leave it
on the field to be (potentially) acquired by robots at a later time.

UpdateLastUsed() Asks c to update its last used timestamp
(so it will not report that it is disused for a while).

3.2 Deciding What To Do Next
Finally, the DecideAndGo(neighbors) sub-algorithm decides

where to go next, attempts to travel there, and potentially deploys a
beacon if appropriate. To begin, the robot tries to go to the food or
nest if it exists, otherwise it considers exploration. Exploration is
designed to add some amount of randomness to the algorithm, by
making the robot do a random walk through the graph for some EX-
PLORECOUNTDOWN steps. This is done with probability PExplore.
Next, the robot will try following the current pheromone trail — the
primary robot behavior — with probability PFollow. If the robot can
not follow the trail, it will try to deploy a beacon, if it can, with

PDeploy probability (or with 100% probability if it has no neighbors).
If deployment is not an option, it may wander about, following the
WANDERING pheromone, which is higher for beacons not frequently
visited. As a last resort, the robot will panic.

DecideAndGo(neighbors)
1: if mode=FORAGING and food is within range
2: GoTo(food) . This will also update Rferrying

3: else if mode=FERRYING and nest is within range
4: GoTo(nest) . This will also update Rforaging

5: else
6: if countdown = 0 and Rand(pExplore)
7: countdown← EXPLORECOUNTDOWN
8: if countdown > 0 and neighbors is nonempty
9: GoTo(random neighbor ∈ neighbors)

10: countdown← countdown−1
11: else if n 6=2 and Rand(pFollow)
12: GoTo(n)
13: else if CanDeploy(neighbors) and either Rand(pDeploy)

or neighbors is empty
14: Deploy(neighbors)
15: else if neighbors is nonempty
16: n← NextWanderBeacon(neighbors)
17: GoTo(n)
18: else
19: Panic()

GoTo(beacon) Tries to move to the given beacon. If successful,
c is set to beacon and n is set to 2. If beacon is the food source,
the robot picks up a food pellet, sets Rforaging to REWARD, and sets
mode to FERRYING. If the beacon is the nest, the robot deposits
any food it is carrying, sets Rferrying to REWARD, sets mode to
FORAGING, and, if the robot arrived with food and with a beacon,
returns the beacon to the nest if Rand(Preturn) is true. Beacons are
returned so that there are occasionally robots traversing the field
who can pick up inactive beacons abandoned by other robots.

GoTo(beacon) can fail in some cases. It is possible to temporarily
lose sight of the target beacon as the robot approaches it. To correct
for this, if a robot loses sight of a beacon without sensing an obstacle
(such as a robot or another beacon), it will wait for a few seconds
to see if the beacon becomes visible again before declaring failure.
However, if an obstacle is detected when sight is lost, the robot will
attempt to go around the object and continue towards the target.

If GoTo(beacon) fails, c and n are both set to 2.

CanDeploy(neighbors) Returns true if all of the following are
true: (1) deployFailed is false or the list of neighbors is empty,
(2) the robot is carrying a beacon, (3) there is a reasonable place to
deploy. On our robots, a reasonable place to deploy was determined
by the fact that either the list of neighbors contains fewer than four
neighbors or a pair of consecutive neighbors can be found in a
rotational sweep of whose angle is greater than 90 degrees. Other
methods would work as well and might be preferable with more
capable robots or when a different density of beacons was desirable.

Deploy(neighbors) Attempts to place a beacon in the optimal
direction (our robots chose the largest angle among those found as
described in CanDeploy()) at a distance slightly smaller than the
range at which a robot can see a beacon from another beacon.

Deployment can fail if there is an obstacle (such as a robot) in
the way of deploying at a given location. Deployment will also
fail if doing so would deploy the beacon very close to previously-
undetected beacons (because they were out of range at the time that

290

Figure 1: Physical Robot Setup. (Left) Differential-drive robot with sensor mote (at top), holding a beacon (a soda can wrapped
in a unique bar code). The soda can is associated with a unique sensor mote. (Center) Larger food/nest beacon (to allow more
robots to congregate) at left, also associated with a unique sensor mote, with regular beacon shown at right. (Right) Robots at work
ferrying food to the nest in an environment of deployed beacons.

CanDeploy() was called). To detect this second situation, our robots
walked some distance in the deploy direction and verified that there
are no additional beacons near that location now visible which had
not been previously.

If deployment fails, c is set to 2 as it is now at an unknown
location, and deployFailed is set to true. deployFailed prevents a
second deployment without first returning to a beacon in the network.
Without this, it is possible that a robot could make repeated attempts
to deploy in bad locations (such as along a wall), and eventually
form a single-beacon island. deployFailed will be reset next time
that c is set in the main loop.

If deployment is successful, c is set to the deployed beacon, the
lock is released for that beacon, and the inactive status on the beacon
is set to false.

NextWanderBeacon(neighbors) Finds the beacon n ∈ neigh-
bors, if any, with the highest pheromone value WANDERING. If
there is no such beacon, returns 2.

Panic() p is set to 2 and a spiral (or some other) search pattern is
initiated. While the search pattern is running, the robot constantly
searches for deployed beacons which are not c. The search pattern
stops when such a beacon is found. c is then set to 2.

4. EXPERIMENTS
Physical Robot Platform. Our test platform for the algorithm
is shown in Figure 1, and consisted of multiple small robots, mobile
beacons, and larger food and nest beacons.

The robots were small differential drive robots of our own design,
capable of grasping a single beacon (in the form of a soda can) and
moving it from place to place. These robots had an Arduino Uno
microcontroller coupled with a Raspberry Pi Linux computer, and
were outfitted with a camera, 802.11 wireless communication (not
needed here), USB interfaces, five Sharp IR infrared distance sen-
sors, two simple bump sensors, two encoded wheels, an embedded
gripper capable of collecting small cans, a flat push surface, and an
I2C-driven display. The robots acted entirely autonomously.

The robots were also outfitted with a Tmote Sky wireless sensor
mote attached to the Raspberry Pi. The sensor motes used a version
of Contiki OS, an operating system designed for wireless low-power
and lossy networks (LLNs) [6]. The sensor motes communicated
over 802.15.4, channel 26, via UDP multicast. Flooding was not

used, but a double send was used to decrease the chance of missed
messages.

A beacon was a soda can wrapped in a unique barcode which
could be read by the robot’s camera. Each such beacon was asso-
ciated with a unique sensor mote. The food and nest were larger
“beacons”, also wrapped in a unique barcode each, and associated
with unique sensor motes. These objects were larger to make it
easier for more robots to congregate near them.

When a robot approached a beacon, the robot’s onboard sen-
sor mote could exchange messages with the beacon’s sensor mote.
Though our environment was small enough that most sensor motes
could see one another, we required that robots would not communi-
cate with one another, nor with distant beacons, nor would beacons
communicate with one another.

Simulator. There were several physical limitations on both our
robots and our environment. First, the battery life prevented us
from running large numbers of robots for a prolonged period of
time. Second, we were physically limited in the size of the field.
Third, the speed of the physical experiments was too slow to gather
more than a few runs per treatment. Fourth, it was not possible
to smoothly “ramp down” the sensor motes to introduce noise and
reliability issues. For these reasons we also developed a simulator
testbed which tried to replicate the physical environment, robots,
beacons, and many of the issues involved in their operation (such as
occlusion, sensor mote failure, etc.).

We will begin with a physical robot experiment and a simulator
validation, then discuss simulated experimental results under various
conditions. We will discuss details special to the simulator later
with its experiments.

Experimental Details. The robot system had the following
user-defined parameters, expressed as probabilities. These will be
specified in the experimental sections:

PFollow How often the robot tried to follow the gradient.
PExplore How often the robot would begin exploring.
PAcquire How often the robot tried to acquire a beacon.
PReturn How often a robot would return a beacon upon

arrival to the nest with food.
PDeploy How often the robot tried to deploy a beacon.
POptimize How often the robot tried to optimize a beacon.
PRemove How often the robot tried to remove a beacon.

291

15 20 30 45 60
0

2

4

6

8

10

12

14

15 20 30 45 60

Minutes

To
ta
lP
el
le
ts
G
at
he
re
d

8 Robots

4 Robots

2 Robots

1 Robot

Figure 2: Performance of varying numbers of physical robots
in environment with pre-deployed beacons. Measurement is
sum total food pellets gathered so far.

Additionally, the robots had the constant EXPLORECOUNTDOWN,
which defined how many beacon-hops a robot would travel before it
stopped exploring.

All experimental runs were done 100 times each, except for the
physical robot tests. Experiments were verified for statistical signifi-
cance using an ANOVA at p = 0.05 with a Tukey post-hoc test.

5. PHYSICAL ROBOT EXPERIMENT
AND VALIDATION

Our first experiment exhibited the basic features of the algorithm
and tested performance. We pre-deployed a grid of 28 beacons in
the environment, including the nest and food. The grid of beacons
included a reasonable trail from food to nest, but did not establish
a pheromone gradient for the rest of the field. Since a path was
already established, the robots were given parameters conducive to
foraging: PFollow← 0.95, PExplore← 0.05. All other probabilities
were set to 0. EXPLORECOUNTDOWN was set to 1, so that random
walks were performed for only one step.

We varied the number of robots to observe performance. 5 runs
each were performed for teams of 1, 2, 4, and 8 robots. Each run
lasted one hour, and the amount of food gathered so far was recorded
at 15, 20, 30, 45, and 60 minutes. Robots were released one at a
time (half-way through the survey step of the previous robot) to
avoid traffic jams near the nest and to prevent robots from panicking
due to complete occlusion at the start.

Results. Figure 2 shows the performance results for various num-
bers of physical robots in our testbed. These results were verified
with an ANOVA at the 60 minute mark: all differences are statisti-
cally significant.

While it might be expected that increasing the number of robots
would have a beneficial effect on the amount of food gathered, this
was in not certain at the outset. Occlusion was a serious issue in
finding and using the optimal path, and traffic jams were common
when multiple robots were on the field. However, robots would
take advantage of their explore and wander behaviors to visit nearby
beacons, establishing new paths or merely get out of the way of
other robots. As a result the speedup was sublinear but substantial.

Of additional interest was the visibly slower start to the 8 robot
experiments. This was due to early traffic jams among them. Once
the robots had spread out, the collection rate sped up.

800 (15 Min) 1600 (30 Min) 2400 (45 Min) 3200 (60 Min)
0

5

10

15

20
800 (15 Min) 1600 (30 Min) 2400 (45 Min) 3200 (60 Min)

Timesteps

To
ta
lP
el
le
ts
G
at
he
re
d

16 Robots

8 Robots

4 Robots

1 Robot

32 Robots

64 Robots

2 Robots

Figure 3: Validation of simulated model, with field size iden-
tical to physical robots in Figure 2. Note that 800 simulation
timesteps roughly equals 15 minutes of physical robot time.
Measurement is sum total food pellets gathered so far.

5.1 Simulation Validation
We next sought to validate the simulator against the physical robot

results. Our simulator had several additional parameters meant to
help approximate certain physical realities of interest:

POcclude When two robots are near one another, one robot may
occlude certain beacons normally visible to the other robot. Many
variables determine the occlusion. To keep things simple, we defined
an occlusion parameter (POcclude) which described the probability
that a robot next to a beacon would occlude that beacon from another
robot. Occluded beacons were removed from the neighbors list.

PUnreliable This described the (usually low) probability that a
robot could not properly communicate with a sensor mote. A mal-
functioning beacon was removed from the neighbors list. Addi-
tionally, if Rand(PUnreliable) was true, then UpdatePheromones(...)
would immediately fail.

PGiveUp When a robot bumps into another robot, it tries to maneu-
ver around it and reestablish visual contact with its target beacon.
This can be difficult if the area is crowded. In simulation this was
handled with a probability PGiveUp of giving up going to a target
beacon after bumping into and going around a robot.

The time to do twelve iterations of the loop (roughly equivalent
to crossing the field and returning) was measured in the simulator
to be approximately 800 “steps” and on the physical robots to be
about 15 minutes. Other configurable parameters include: the field
size (65×100 units in the validation experiment), the nest location
(50,95), the food location (7,7), the robot radius (2), the beacon
range (15), the minimum distance from a beacon needed to interact
with it (2), the robot forward speed (0.2 units per timestep), the robot
rotation speed (1 radian per timestep), and the maximum number of
beacons a robot could hold (1). The settings for these correspond
with a translation of the real field into simulated space.

Using this simulator, we established the same setup as the physi-
cal robot experiment, with 28 predeployed beacons (including the
food and nest) and a predefined path. Robots were introduced to
the field one at a time. and parameters were set to either the same
as the real robot experiments or, for the simulator specific param-
eters, they were set to mimic the physical attributes of the robots.
Specifically, we set POcclude← 0.25 based on the number of robots
that could physically surround a beacon, and PGiveUp← 0.5 based

292

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)
0

5

10

15

20

25

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)

Timesteps

P
el
le
ts
G
at
he
re
d
In
P
as
t1
5
M
in
ut
es

0% Occlusion
30% Occlusion

90% Occlusion

10% Occlusion

70% Occlusion

100% Occlusion

Figure 4: Occlusion results, with no beacon removal or opti-
mization. Measurement is food pellets gathered in the past 15
minutes.

% Removal and
% Occlusion Optimization

0% 0% 25% 50%
10% 50% 25% 0%
30% 50% 25% 0%
70% 50% 0% 25%
90% 0% 25% 50%

100% 0% 25% 50%

Table 1: Occlusion Results by Removal and Optimization Prob-
ability. The various removal and optimization behavior proba-
bility settings are sorted by performance, with higher perfor-
mance further to the right. Overbars group together settings
with no statistically significant differences among them. Com-
pare to Figure 5.

on observation of the robots during the physical robot experiments.
By default we also left PUnreliable← 0.

The number of robots in the field was varied in the same way as
the physical robot experiments, except that 100 runs were performed
for 1, 2, 4, 8, 16, 32, and 64 robots. Each run was a simulation of 1
hour (3200 steps) with the amount of food recorded at 15, 30, 45,
and 60 minutes.

Results. Figure 3 shows the performance results for 1, 2, 4, 8, 16,
32, and 64 robots in the simulation environment. These results were
verified with an ANOVA at the 3200 timestep (60 minute) mark. All
differences are statistically significant.

The speedup was nearly the same as for the (1–8) physical robots,
and continued until 16 robots. At this point crowding began to
take its toll, causing performance to drop with 32 robots, then
significantly drop with 64 (these also had increasingly slow start-up
times). With 128 robots (not shown), the swarm was paralyzed. This
was expected due to the relative size of the robots to the field.

6. SIMULATION EXPERIMENTS
We then used the simulation to examine the robustness of the

method under different physical challenges. To test with more
robots, we increased the size of the field (to 100×100, with the nest
at 10,10 and the food at 90,90), reduced the size of the robots (to
0.5), and slightly increased the beacon range (to 20). We also ex-
tended the experiment length to 12 hours (38400 timesteps). We no

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)
0

5

10

15

20

25

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)

Timesteps

P
el
le
ts
G
at
he
re
d
In
P
as
t1
5
M
in
ut
es

30% Occlusion

90% Occlusion

0% Occlusion

70% Occlusion

100% Occlusion

Figure 5: Full occlusion results. 10% Occlusion removed for
clarity (they are similar to 30% Occlusion). Solid lines ——
— indicate no beacon removal or optimization (same as in Fig-
ure 4). Dotted lines - - - - indicate 25% probability of beacon
removal or optimization. Dashed lines – – – indicate 50% prob-
ability of beacon removal or optimization. Measurement is food
pellets gathered in the past 15 minutes. Compare to Table 1.

longer used pre-deployed beacons: in all experiments, robots were
responsible for deploying beacons and were permitted only a fixed
number of beacons to use in the field (160 total beacons). These
changes allowed us to use 100 robots in our simulation experiments.

For the parameters, we started with defaults similar to the
physical robot experiments, and adjusted them to more effi-
ciently explore the environment, forage, and ferry. They were:
PFollow←0.9, PExplore←0.05, PAcquire←0.75, PReturn←0.5,
PDeploy←0.25, POptimize←0, PRemove←0, PGiveUp←0.05,
POcclude←0.01, PUnreliable←0.

6.1 Beacon Occlusion
Resource blocking and occlusion is a common problem for swarm

robots, especially when robots must share resources (such as the
beacons). We expected our algorithm to behave robustly with regard
to this issue. The default simulation parameters were used, except
POcclude, which was given the values 0.0, 0.1, 0.3, 0.7, 0.9, and 1.0.

Results. Figure 4 shows the performance of the system over the
simulated twelve hour period, measured by number of food pellets
returned to the nest in the past fifteen minutes. An ANOVA of the
sample at hour 12 indicates that the 0%, 10%, and 30% occlusion
amounts are not statistically significantly different: but all other
amounts are. It should be noted that 100% occlusion means that a
robot using a beacon will always occlude it.

As can be seen, small amounts of occlusion are not particularly
detrimental: but the effect quickly grows with more occlusion.

Effect of Beacon Removal and Optimization. As noted
in [9], beacon removal and optimization would be expected to sig-
nificantly improve performance as robots straighten out the path to
the food. However occlusion can have a serious detrimental impact
on both removal and optimization, as these behaviors are heavily
reliant on being able to accurately see p and n as well as make
changes based on the neighbors list. We wondered what impact
varying levels of occlusion would have on them.

To this end, we re-ran the same occlusion experiment two more
times, once with POptimize and PRemove both set to 0.25, then again
with both of them set to 0.5.

293

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)
0

5

10

15

20

25

30
0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)

Timesteps

P
el
le
ts
G
at
he
re
d
In
P
as
t1
5
M
in
ut
es

95% Reliable

50% Reliable

100% Reliable

75% Reliable

Figure 6: Beacon reliability results. Measurement is food pel-
lets gathered in the past 15 minutes.

Figure 5 expands on Figure 4, including results when the robots
use beacon removal or optimization with a 25% or 50% probability.
For clarity the 10% occlusion results are not shown, as they are the
same pattern as the 30% results. Table 1 summarizes the statistical
significance results, verified with an ANOVA at hour 12.

With 0% occlusion, turning on removal and optimization at ei-
ther level significantly increased its performance over the basic
experiment. This result was expected.

As occlusion increased (10% and 30%), increasing removal and
optimization worsened performance. This seemed natural as higher
levels of occlusion would quickly hamper the ability to do removal
or optimization: the robots were essentially wasting their time.

What wasn’t expected was that at high levels of occlusion (90%
and 100%), increasing removal and optimization once again signifi-
cantly improved performance. A closer examination of the results
revealed that this was an effect of the maximum number of beacons
(160) allotted to the robots. With high levels of occlusion, the robots
would deploy large numbers of beacons very densely near the nest,
and only sparsely near the food source. When the robots ran out
of beacons, optimization and removal enabled them to redistribute
the beacons to provide new food routes; without optimization or
removal, the robots were often stuck on a difficult-to-see single path.

6.2 Beacon Reliability
A large deployment of beacons might involve hundreds or thou-

sands of sensor motes. This would require small, inexpensive dis-
posable units likely to have reliability issues, especially if deployed
over a period of years. We wanted to test the robustness of our
approach over different amounts of beacon reliability. To this end
the same default parameters were used, but we varied PUnreliable.
Optimize and deletion were not permitted for this experiment.

Figure 6 shows the results when the robots are operating under
varying levels of beacon reliability. The differences between 100%
and 95% reliability are not statistically significant, but all other dif-
ferences are. The percentage of reliability almost perfectly linearly
correlates with performance.

Since unreliability acts very much like a occlusion, but with addi-
tional consequences that can harm pheromone updates (keeping a
beacon out-of-date compared to its neighbors) we expected that reli-
ability would be an issue. However, small amounts of unreliability
(for example, 5%) were handled robustly by the system.

6.3 Recovery from Beacon Removal
Finally, we wished to consider what would happen if beacons

were removed wholesale from the environment, breaking existing

0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)
0

5

10

15

20

25

30
0 12800 (4 Hours) 25600 (8 Hours) 38400 (12 Hours)

Timesteps

P
el
le
ts
G
at
he
re
d
In
P
as
t1
5
M
in
ut
es 1 Beacon

2 Beacons

4 Beacons

0 Beacons

3 Beacons

Figure 7: Beacon removal recovery results, for varying width
strips removed (measured in number of beacon ranges across).
Measurement is food pellets gathered in the past 15 minutes.

paths to the food. Quite unlike the algorithm in [9], our method was
meant to robustly handle this situation.

Our test scenario was as follows: The default parameters were
used, such that removal and optimization were disabled. We then
allowed the robots to deploy beacons and establish a path from the
nest to the food. We then eliminated a roughly vertical strip of
beacons centered in the field and pushed the robots in this area to
the border of the strip (depending on which side they were closest
to). This strip was some n number of beacon ranges wide: we chose
values from 1 to 4 (20, 40, 60, and 80 units wide). This final value
removed nearly all the beacons on the field between the nest and the
food (the field being only 100 units wide). As a control, we included
the scenario where no beacons were removed (n = 0).

Results. As shown in Figure 7, the robots were clearly capable of
recovering from catastrophic beacon failure. Recovery was not total,
but it was close. As expected, the rate and degree of recovery was
largely related to the number of beacons removed.

7. CONCLUSION AND FUTURE WORK
We have demonstrated a multi-pheromone foraging algorithm de-

ployed to real robots, and which uses stores pheromone information
in mobile wireless sensor motes. We showed the technique running
on real swarm robots and in simulation, and demonstrated how the
algorithm deals robustly with noise, occlusion, and catastrophic
beacon failure.

We have barely tapped into the potential of wireless sensor motes
for with swarm robotics. Wireless sensor motes can hold much
richer information than a few pheromones and flags and they have
sensors on them which can assist robots. We intend to explore
how this might benefit collaboration among the robots to do more
complex behaviors other than collective foraging. Sensor motes
can also easily communicate with one another, something ignored
in our paper. This is no longer an indirect communication mode,
but sensor motes are designed to do this communication efficiently
and at extremely low power. We intend to further explore how this
combination: robot-deployable and re-deployable beacons, plus
both local and ad-hoc wireless communication, might enable much
less trivial robot behaviors.

8. ACKNOWLEDGMENTS
The work presented in this paper is supported by NSF NRI grant

1317813.

294

REFERENCES
[1] E.J. Barth. A dynamic programming approach to robotic

swarm navigation using relay markers. In Proceedings of the
2003 American Control Conference, volume 6, pages
5264–5269, June 2003.

[2] E. Bonabeau. Marginally stable swarms are flexible and
efficient. Phys. I France, pages 309–320, 1996.

[3] Colin Chibaya and Shaun Bangay. A probabilistic movement
model for shortest path formation in virtual ant-like agents. In
Proceedings of the Annual Research Conference of the South
African Institute of Computer Scientists and Information
Technologists on IT Research in Developing Countries, pages
9–18. ACM, 2007.

[4] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The
self-organizing exploratory pattern of the argentine ant. Insect
Behavior, 3:159–168, 1990.

[5] Frederick Ducatelle, Gianni A. Di Caro, Alexander Förster,
and Luca Gambardella. Mobile stigmergic markers for
navigation in a heterogeneous robotic swarm. In Swarm
Intelligence (ANTS), pages 456–463. Springer, 2010.

[6] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki: A
lightweight and flexible operating system for tiny networked
sensors. In IEEE International Conference on Local
Computer Networks, pages 455–462, 2004.

[7] S. Goss and J. L. Deneubourg. Harvesting by a group of
robots. In First European Conference on Artificial Life, pages
195–204. MIT Press, 1992.

[8] Nicholas Hoff, Robert Wood, and Radhika Nagpal. Effect of
sensor and actuator quality on robot swarm algorithm
performance. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2011.

[9] Brian Hrolenok, Sean Luke, Keith Sullivan, and Christopher
Vo. Collaborative foraging using beacons. In Proceedings of
the Ninth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2010), pages 1197–1204,
2010.

[10] Gideon Kowadlo and R. Andrew Russell. Robot odor
localization: A taxonomy and survey. Int. J. Rob. Res.,
27(8):869–894, August 2008.

[11] Ralf Mayet, Jonathan Rober, Thomas Schmickl, and Karl
Crailsheim. Antbots: A feasible visual emulation of
pheromone trails for swarm robots. In International
Conference on Swarm Intelligence, 2010.

[12] M. Nakamura and K. Kurumatani. Formation mechanism of
pheromone pattern and control of foraging behavior in an ant
colony model. In C. G. Langton and K. Shimohara, editors,
Proceedings of the Fifth International Workshop on the
Synthesis and Simulation of Living Systems, pages 67–76.
MIT Press, 1997.

[13] K.J. O’Hara and T.R. Balch. Distributed path planning for
robots in dynamic environments using a pervasive embedded
network. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 1538–1539, 2004.

[14] K.J. O’Hara, V. Bigio, S. Whitt, D. Walker, and T. Balch.
Evaluation of a large scale pervasive embedded network for
robot path planning. In Proceedings IEEE International
Conference on Robotics and Automation, pages 2072–2077,
May 2006.

[15] Liviu Panait and Sean Luke. A pheromone-based utility model
for collaborative foraging. In Proceedings of the Third
International Joint Conference on Autonomous Angents and
Multi Agent Systems (AAMAS), pages 36–43, 2004.

[16] H. Van Dyke Parunak, Sven A. Brueckner, and John Sauter.
Digital Pheromones for Coordination of Unmanned Vehicles,
pages 246–263. Springer, 2005.

[17] D. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee.
Pheromone Robotics. Autonomous Robots, 11(3):319–324,
2001.

[18] Anies Hannawati Purnamadjaja and R. Andrew Russell.
Bi-directional pheromone communication between robots.
Robotica, 28(1):69–79, March 2010.

[19] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations
in Massively Parallel Microworlds. MIT Press, 1994.

[20] Andrew Russell. Ant trails: an example for robots to follow?
In IEEE International Conference on Robotics and
Automation, 1999.

[21] J. Svennebring and S. Koenig. Building terrain-covering ant
robots: A feasibility study. Autonomous Robots,
16(3):313–332, 2004.

[22] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić.
Blazing a trail: insect-inspired resource transportation by a
robot team. In Proceedings of the International Symposium on
Distributed Autonomous Robot Systems, 2000.

[23] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić.
Whistling in the dark: Cooperative trail following in uncertain
localization space. In C. Sierra, M. Gini, and J. S.
Rosenschein, editors, Proceedings of the Fourth International
Conference on Autonomous Agents, pages 187–194. ACM,
2000.

[24] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić.
LOST: Localization-space trails for robot teams. IEEE
Transactions on Robotics and Automation, 18:796–812, 2002.

[25] M. Wodrich and G. Bilchev. Cooperative distributed search:
The ants’ way. Control and Cybernetics, 26, 1997.

[26] Vittorio Ziparo, A. Kleiner, B. Nebel, and Daniele Nardi.
RFID-based exploration for large robot teams. In IEEE
International Conference on Robotics and Automation, 2007.

295

