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ABSTRACT
How to form a team for achieving a given set of tasks is
an important issue in multi-agent systems. Task-oriented
team formation is the problem of selecting a group of agents,
where each agent is characterized by a set of capabilities; the
objective is to achieve a given set of tasks, where each task
is made precise by a set of capabilities necessary for manag-
ing it. Robustness (i.e., the ability to reach the goal even if
some agents break down) is an expected property of a team.
In this paper, the focus is laid on the Task-Oriented Ro-
bust Team Formation (TORTF) problem. A formal frame-
work is defined and some decision and optimization problems
for TORTF are pointed out. The computational complex-
ity of TORTF is then identified. Interestingly, TORTF does
not prove more computationally demanding than the task-
efficient team formation problem, i.e., robustness is in some
sense “for free”. In order to solve these TORTF problems,
two algorithms, ART (Algorithm for Robust Team) for the
decision problem and AORT (Algorithm for Optimal Robust
Team) for bi-objective constraint optimization problems, are
presented and evaluated on a number of benchmarks.
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1. INTRODUCTION
Task-oriented team formation is the problem of forming

the best possible team to accomplish some tasks of inter-
est, given some limited resources. This problem is a key
issue for many applications related to multi-agent coopera-
tion, e.g., RoboCup rescue team [13], Unmanned Aerial Ve-
hicles (UAVs) operations [9], team formation in social net-
works [15], and online soccer prediction games [21].

In the following, we are interested in the robustness is-
sue for task-oriented team formation. Let us start with a
motivating example. Assume that you are a project leader.
There are a set of tasks to be achieved and a set of available
agents, where each agent has different skills to achieve the
tasks; the cost for hiring an agent typically varies with its
capabilities, and you have a limited budget c. Your objec-
tive is to select a team (i.e., a subset of agents), which is
able to achieve the tasks of interest. Considering a team
with all agents is enough to determine efficiently whether
the tasks will be achievable. But the great team does not
meet the budget constraint in the general case: one looks for
a c-costly team (i.e., a team which can accomplish the goal,
but for an expense upper bounded by the limited budget c)
or even for a team which minimizes the global expense.

Furthermore, what happens if some of the team members
fall sick once the team has been formed? Clearly enough,
some tasks might not be achieved and it becomes possible
that the whole project ends in failure. This is obviously un-
expected. In order to be able to manage the case when such
failures occur, an approach consists in addressing the ro-
bustness issue for task-oriented team formation at the team
design step. This is the main purpose of our work.

In this paper, a formal framework for the Task-Oriented
Robust Team Formation (TORTF) problem is first defined
and some decision and optimization problems for TORTF
are pointed out. A team is viewed as k-robust (for a given
non-negative integer k) if removing any k agents from it
leads to a remaining team which can still accomplish the
given tasks. For the decision problem, the aim is to com-
pute (when it exists) one c-costly and k-robust team, for a
given cost c and robustness k. For optimization problems,
one can be interested in optimizing the robustness of the
team, while keeping its cost below the given budget. Dually,
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one can also fix the robustness and try to find a cheapest
team meeting the robustness requirement. We can also view
the TORTF problem as a bi-objective constraint optimization
problem (i.e., optimizing both the cost and the robustness
of a team). Among these three optimization problems, this
paper focuses on the last one.

First of all, the computational complexity of TORTF is
identified. From a computational point of view, the task-
oriented team formation problem is similar to some well-
known NP-complete decision problems (e.g., SET COVER
problem [12]). When TORTF is considered, the robustness
property must be ensured on top of the task-oriented team
formation problem. This explains why TORTF cannot be
computationally easier than solving a task-oriented team
formation problem, since it requires to solve the original
task-oriented team formation problem and also to check the
k-robustness of the obtained team by removing any k agents
(i.e., any subset of size k) from it. However, we show that
TORTF does not prove more computationally demanding
than the task-oriented team formation problem since the
decision problem TORTF is NP-complete; as a by-product,
we get that the associated optimization problem TORTF is
NP-hard.

In order to solve the decision and optimization problems
for TORTF, two algorithms called ART (Algorithm for Ro-
bust Team) and AORT (Algorithm for Optimal Robust
Team) are presented and evaluated on a number of bench-
marks. ART is an algorithm which computes a c-costly
and k-robust team when it exists. AORT is a bi-objective
constraint optimization algorithm which aims at computing
every trade-off team (Pareto optimal solution), i.e., a team
T such that no other team is at the same time less expen-
sive and more robust than T . We expect that the decision
problem TORTF exhibits an easy-hard-easy phase transition
pattern, which is well-known as phase transition behavior in
Constraint Satisfaction Problem (CSP) [10]: for the given
cost c and robustness k, there exist problems where the al-
gorithm can easily find a team (or it can easily show that
there exists no team), and there exist problems (called crit-
ical points in CSP) where finding a team is difficult. We
also expect that for the bi-objective constraint optimization
problem TORTF, the number of trade-off teams is small. For
Multi-Objective Constraint Optimization Problem [20, 25],
in general, the number of Pareto optimal solutions becomes
larger when the number of objectives increases and it is of-
ten exponential in the number of agents, while the number
of objectives is two, and the number of trade-off teams is
bounded by the number of agents in TORTF problems.

As an application domain, we believe that forming rescue
teams (i.e., the ability to continue rescue operations even if
some rescue members are involved in an accident) is promis-
ing. Consider the problem of forming a rescue team in a
disaster area. There are a set of tasks to be achieved and a
set of available rescue robots, where each robot has different
skills to achieve the tasks, e.g., providing medical treatment,
acting as a firefighter, driving a vehicle, etc. Assume that
their current positions are different (e.g., a robot is charging
her battery in the robot station and some robots are outside
and waiting for a command). Forming a rescue team which
is both efficient (by considering the distance to the disaster
area) and robust of the team (i.e., still able to accomplish
the set of tasks even if some robots break down), amounts
to a TORTF problem. Moreover, nurse scheduling prob-

lems [22] when the bounded working hours of each nurse is
considered and the robustness of the whole team expected,
also corresponds to TORTF problems. Finally, the design
of fault tolerant system (i.e., the ability to continue operat-
ing tasks even if some components break down) is another
application domain which is worth being investigated.

The rest of the paper is organized as follows. In the next
section, our framework for the Task-Oriented Robust Team
Formation TORTF problem is introduced and some deci-
sion and optimization problems for TORTF are provided.
The computational complexity of TORTF is then identified.
The next section presents the algorithm for TORTF. After-
wards, some empirical results are provided. Just before the
concluding section, some related works are discussed.

2. FRAMEWORK FOR TASK-ORIENTED
ROBUST TEAM FORMATION

In this section, the problem of task-oriented robust team
formation is formally defined. Both the decision problem
(finding out a team which is “sufficiently” robust and cheap)
and the optimization problem (finding out every team which
is optimally robust and/or cheap) are considered. Also, the
computational complexity of TORTF is identified.

Definition 1. (Team formation problem description) A
team formation problem description is a tuple TF = 〈A, P,
f, α〉 where A = {a1, a2, ..., an} is a set of agents, P = {p1,
p2, ..., pm} is a set of tasks, f : 2A → N is a cost function, and
α is a mapping from A to 2P . Both f and α are supposed to
be computable in polynomial time. A set of agents T ⊆ A is
called a team, and a set of tasks G ⊆ P is said to be a goal.

We first recall two standard properties of expected teams,
namely team cost and team efficiency, that both apply to any
team T ⊆ A. These two properties are defined as follows.

Definition 2. (Team affordability) Let TF = 〈A,P, f,
α〉 be a team formation problem description. Given a team
T ⊆ A and a non-negative integer c, T is said to be c-costly
if the cost of T is less than c:

f(T ) ≤ c.

For simplicity, in this paper, we assume that the cost of
a team is given by the sum of the costs of each agent ai of
the team T , i.e., f(T ) =

∑
ai∈T f(ai).

Definition 3. (Team efficiency) Let TF = 〈A,P, f, α〉
be a team formation problem description. Given a team
T ⊆ A and a goal G ⊆ P , T is said to be efficient with
respect to G if T can accomplish G:

G ⊆
⋃

ai∈T

α(ai).

Example 1. (Team affordability and efficiency) Consider
the following TORTF instance: let TF = 〈{a1, a2, ..., a6},
{p1, p2, ..., p5}, f, α〉 be a team formation description and
G = {p1, p3} be a goal. We set the cost c to c = 8. Table 1
shows a set of accomplishable tasks and the cost of each
agent of A. We assume that a set of tasks is given by a
mapping α (e.g., α(a1) = {p1, p2}, agent a1 can accomplish
the tasks p1 and p2), and the cost is provided by f (e.g.,
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Table 1: Accomplishable tasks and cost of each
agent.

agent accomplishable tasks cost
a1 {p1, p2} 4
a2 {p1, p3} 3
a3 {p1, p2, p3} 5
a4 {p3, p4} 2
a5 {p1, p2, p4, p5} 9
a6 {p5} 1

f(a1) = 4). Consider a team T ′ = {a2, a3}. Since f(T ′) =
f(a2) + f(a3) = 8, T ′ is 8-costly. Also, since G = {p1, p3} ⊆
α(T ′) = {p1, p2, p3}, T ′ is efficient w.r.t. G.

These two properties are standard ones. When considered
together, they require the cost for a team to be kept under
a certain threshold while covering the given set of tasks.
The corresponding decision problem, namely Task Efficient
Team Formation (TETF), is defined as follows:

Definition 4. (TETF)

• Input: A team formation problem description TF =
〈A,P, f, α〉, a non-negative integer c and a goal G ⊆ P ,

• Question: Does there exist a team T ⊆ A such that
T is c-costly and efficient w.r.t G ?

We get the following complexity result:

Proposition 1. TETF is NP-complete.

Proof. Let TF = 〈A,P, f, α〉, G ⊆ P and c, k ≥ 0. To
check whether there exists a team T ⊆ A that is c-costly
and efficient w.r.t. G, it is enough to guess a team T ⊆ A
and check in polynomial time that T is c-costly and effi-
cient w.r.t. G. Therefore, TETF ∈ NP. Let us prove now
that TETF is NP-hard. We consider the following polyno-
mial reduction from the well-known NP-hard problem SET
COVER [12]: given a collection C of subsets of a finite set
S and a non-negative integer k, does C contain a cover for
S of size c or less, i.e., a subset C′ ⊆ C with |C′| ≤ c such
that every element of S belongs to at least one member of
C′? Let COV = 〈C, S, c〉 where C = {C1, C2, . . . , Cn} is a
collection of subsets from a finite set S = {p1, p2, . . . , pm}
and c be a non-negative integer. We associate with COV in
polynomial time the tuple 〈TF,G, c〉 where TF is the team
formation TF = 〈A,S, F, α〉 defined as A = {a1, a2, . . . , an},
P = S, for every T ⊆ A, f(T ) = |T | and for every ai ∈ A,
α(ai) = Ci, and G = P (i.e., G = S). Additionally, we
associate with every set C′ ⊆ C the team TC′ ⊆ A defined
as TC′ = {ai ∈ A | Ci ∈ C′}. Now, let C′ ⊆ C. On the
one hand, C′ has a size of c or less if and only if |TC′ | ≤ c if
and only if f(TC′) ≤ c if and only if TC′ is c-costly. On the
other hand, C′ is a cover for S if and only if S ⊆

⋃
Ci∈C′ Ci

if and only if for every G ⊆
⋃

ai∈TC′
α(ai), if and only if

TC′ is efficient w.r.t. G. Therefore, C contains a cover for
S of size c or less if and only if there is a team T ⊆ A that
is c-costly and efficient w.r.t. G. This shows that TETF is
NP-hard, thus TETF is NP-complete.

The induced optimization problem can be expressed as
follows: given a team formation problem description, find

a subset of agents of minimal cost that is efficient w.r.t. a
given goal. This problem is NP-hard, since the associated
decision problem is NP-hard as well.

Robustness can now be defined in formal terms as follows:

Definition 5. (Team robustness) Let TF = 〈A,P, f, α〉
be a team formation problem description. Given a team
T ⊆ A, a goal G ⊆ P and a non-negative integer k, T is said
to be k-robust w.r.t. G if for every set of agents T ′ ⊆ T ,
such that |T ′| ≤ k, the team T \ T ′ is efficient w.r.t. G.

This property is a generalization of the property of team
efficiency (Definition 3), considered at different strength de-
grees, depending on the choice of the value k. This will be
more salient given the following observations:

Observation 1. Let T ⊆ A and G ⊆ P . T is efficient
w.r.t G if and only if it is 0-robust w.r.t. G.

To complete this observation, let us point out that team
efficiency is the weakest version of team robustness, and that
the property of k-robustness is monotonic when the values
of k vary:

Observation 2. Let T ⊆ A, G ⊆ P and k > 0. If T is
k-robust w.r.t. G, then T is (k − 1)-robust w.r.t. G.

Therefore, a team T is considered to be “more robust”
than a team T ′ for a given goal G if and only if there is a
non-negative integer k such that T is k-robust w.r.t. G while
T ′ is not. Moreover, strengthening the notion of robustness
for a given team w.r.t. a given goal comes to a limit, which
is linearly bounded by the number of agents in the team:

Observation 3. Let T ⊆ A and G ⊆ P . For every k ≥
|T |, T is not k-robust w.r.t G.

Accordingly, the notion of k-robustness is non-trivial only
when k takes its value within the set {0, . . . , |T |−1}. 1 From
Observations 2 and 3, for any given team T ⊆ A and a non-
empty goal G, we can conclude that when T is efficient w.r.t.
G, there exists a unique, highest value k ∈ {0, . . . , |T | − 1}
such that T is k-robust. We call this value the “degree of
robustness” of a team w.r.t. G:

Definition 6. (Degree of robustness) Let TF = 〈A,P, f,
α〉 be a team formation problem description. Given a team
T ⊆ A and a goal G ⊆ P , the degree of robustness of T
w.r.t. G, denoted degG(T ) is defined as −∞ if T is not
efficient w.r.t. G, and by degG(T ) = max{k ∈ {0, |T | −
1 | T is k-robust w.r.t. G} otherwise.

When the robustness issue is added on top of this problem,
the resulting problem cannot become computationally easier
than the TETF problem since it requires to solve a TETF
problem and also to check the k-robustness of the obtained
solution (team)/ However, we show that the complexity of
the resulting problem does not increase.

First, we show that for a given team T ⊆ A and a goal
G ⊆ P , whether T is k-robust w.r.t. G can be decided in

1Please note that Observation 3 holds for non-empty sets of
tasks only; indeed k-robustness w.r.t. an empty set of tasks
would be trivially satisfied for any team T . However, this
specific case can be ignored since we initially assumed goals
to be non-empty sets of tasks in Definition 7.
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polynomial time. Before proving it, let us first introduce
the following notation: for every task pi ∈ P and every
team T ⊆ A, let pi(T ) be the set of agents from T that can
perform the task pi, i.e., pi(T ) = {ai ∈ T | pi ∈ α(ai)}. The
following proposition holds:

Proposition 2. Given a team T ⊆ A, a non-negative
integer k and a goal G ⊆ P , T is k-robust w.r.t. G if and
only if for every task pi ∈ G, we have : |pi(T )| > k.

Proof. Let T ⊆ A, k be a non-negative integer and
G ⊆ P . (If Part) Assume T is not k-robust w.r.t. G. By
Definition 5, there exists a subset T ′ ⊆ T of agents such that
|T ′| ≤ k and such that the team T \ T ′ is not G-efficient.
Then from Definition 3, there exists a task pi ∈ G such that
pi /∈

⋃
ai∈T\T ′ α(ai), or equivalently, that pi /∈ α(ai) for ev-

ery ai ∈ T \ T ′, that is, |pi(T \ T ′)| = 0. Yet |T ′| ≤ k, so
|pi(T ′)| ≤ k, thus we get that |pi(T )| ≤ k.

(Only If Part) Assume that there exists a task pi ∈ G such
that |pi(T )| ≤ k. Let T ′ ⊆ T defined as T ′ = pi(T ). Then
by definition of pi(T \T ′), we have pi /∈

⋃
ai∈T\T ′ α(ai), thus

from Definition 3, T \T ′ is not efficient w.r.t. G. Moreover,
since T ′ = pi(T ) and |pi(T )| ≤ k, we have |T ′| ≤ k. Hence,
from Definition 5, T \ T ′ is not k-robust w.r.t. G.

As a direct consequence, the degree of robustness of a
team w.r.t. a goal can be computed in polynomial time:

Corollary 1. Given a team T ⊆ A, and a goal G ⊆ P ,
we have degG(T ) = min{|pi(T )| − 1 | pi ∈ G}.

We can now generalize the decision problem TETF to the
Task-Oriented Robust Team Formation (TORTF) problem.
TORTF is formally defined as follows:

Definition 7. (TORTF)

• Input: A team formation problem description TF =
〈A,P, f, α〉, two non-negative integers c, k and a goal
G ⊆ P ,

• Question: Does there exist a team T ⊆ A such that
T is c-costly and k-robust w.r.t. G ?

From Observation 1 and Proposition 1, TORTF is a gen-
eralization of TETF, thus it is an NP-hard problem. How-
ever, from Proposition 2, since it turns out that TORTF is
not harder than TETF, the following corollary holds.

Corollary 2. TORTF is NP-complete.

Example 2. (Team robustness) We consider the same
TORTF instance as in Example 1: let TF = 〈{a1, a2, ..., a6},
{p1, p2, ..., p5}, f, α〉 be a team formation and G = {p1, p3}
be a goal. We set the cost c and the degree of robustness k
to c = 8 and k = 1. Consider a team T ′ = {a2, a3}. Since
α(T ′ \ {a2}) = α(a3) = {p1, p2, p3} ⊃ G and α(T ′ \ {a3}) =
α(a2) = {p1, p3} = G, T ′ is 1-robust w.r.t. G. This means
that T ′ can accomplish a goal G, even if any agent (i.e.,
k = 1), is removed from T ′. Similarly, T ′ = {a2, a3} is the
team that is 8-costly (see example 1) and 1-robust. From
Observation 3, the degree of robustness of this team is one.

Beyond the decision problem TORTF, several constraint
optimization problems for TORTF are meaningful. Mainly,
one can be interested in optimizing the degree of robustness

of the team, while keeping its cost below the given budget.
Dually, one can also fix the minimal degree of robustness
which is expected, and try to point out a cheapest team
meeting the robustness requirement.2 We can also view
the TORTF problem as a bi-objective constraint optimiza-
tion problem, and be interested in computing Pareto opti-
mal (i.e., non-dominated) robust teams. Clearly, all those
optimization problems are NP-hard, since the associated de-
cision problem is NP-hard as well. In the following, we focus
on the bi-objective constraint optimization problem, only.
To be more precise, we are interested in computing all the
Pareto optimal solutions of a TORTF problem:

Definition 8. (Dominance) Let TF = 〈A,P, f, α〉 be
a team formation problem description, G ⊆ P be a goal
and T, T ′ ⊆ A be two teams. T dominates T ′ if and only
if degG(T ) ≥ degG(T ′) and f(T ) < f(T ′), or degG(T ) >
degG(T ′) and f(T ) ≤ f(T ′).

Definition 9. (Pareto optimality) Let TF = 〈A,P, f,
α〉 be a team formation problem description, G ⊆ P be
a goal. A team T ⊆ A which is efficient w.r.t. G is a
Pareto optimal robust team (also called a “trade-off” team in
the following) if no team T ′ ⊆ A that is efficient w.r.t. G
dominates T .

In order to solve it, our problem is modeled as a Multi-
Objective Constraint Optimization Problem (MO-COP) [20,
25] (the extension of mono-objective Constraint Optimiza-
tion Problem (COP) [7, 28] to multi-criteria decision mak-
ing). A COP consists of a set of variables, and a value as-
signment of those variables is sought in such a way that the
sum of the resulting costs is optimized. In our framework,
each agent ai is identified by a variable xi. It takes its value
from a finite, discrete domain {join,not join}, expressing
whether the agent will participate or not to the team. A
team is a set of agents who choose the value join. In case
all agents choose not join, the (empty) team cannot achieve
any tasks and its cost is 0. Deriving a trade-off team consists
in finding a value assignment to all agents so that the cost
of the team is minimized and the degree of robustness of the
team is maximized. Compared to typical MO-COPs (i.e.,
problems with more than two objectives), the number of
Pareto optimal solutions (trade-off teams) of TORTF prob-
lem is “small”, since (i) our problem is a bi-objective COP3,
and (ii) the number of trade-off teams is bounded by the
number of agents |A|, i.e., for each k, there exists at most
one Pareto optimal robust team and k is bounded by |A|,
while the number of Pareto optimal solutions in MO-COPs
is exponential in the number of agents, i.e., every possible
assignment can be Pareto optimal solution in the worst case.

Example 3. (Bi-objective constraint optimization prob-
lem) We consider the same instance as in Example 1, but
the goal is changed to G = {p3}. The purpose is now to find
the set of trade-off teams w.r.t. the cost c of the team and
the number of removal agents k. Table 2 shows all Pareto
optimal robust teams. There are three teams with one agent
that can accomplish the goal, i.e., T1 = {a4}, T ′

1 = {a3}, and

2These problems can be represented as Constraint Op-
timization Problems [28] and solved using existing COP
solvers.
3In general, the number of Pareto optimal solutions becomes
larger when the number of objectives increases.
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Table 2: All trade-off teams for bi-objective con-
straint optimization problem.

team agents accomplishable tasks cost k
T1 {a4} {p3, p4} 2 0
T2 {a2, a4} {p1, p3, p4} 5 1
T3 {a2, a3, a4} {p1, p2, p3, p4} 10 2

Algorithm 1 AORT (and ART )

1: INPUT : a team formation problem description TF and
non-negative integers maxCost and k, (plus a Boolean
value Decision when decision problems are to be han-
dled).

2: OUTPUT : the set of all trade-off teams PF

3: PF ← ∅: // a set of teams
4: T ← ∅ // a set of agents

5: solve (1, T , PF , TF , maxCost, k, (Decision)) // start
with the first agent of the ordering

6: Return PF

T ′′
1 = {a2} (see Table 1). Since the costs of T1, T ′

1 and T ′′
1 are

f(T1) = 2, f(T ′
1) = 5 and f(T ′′

1 ) = 3, and all teams are 0-
robust ones (from Observation 3), T1 dominates T ′

1 and T ′′
1 ,

i.e., the cost of T1 (f(T1) = 2) is smaller than 5 (= f(T ′
1))

and 3 (= f(T ′′
1 )). Let vi be the vector of values for Ti where

1 ≤ i ≤ 3. The following three bi-objective vectors are ob-
tained: v1 = (2, 0), v2 = (5, 1), and v3 = (10, 2) (the first
coordinate represents the cost of each team and the second
coordinate gives the degree of robustness). Clearly, no solu-
tion (team) is dominated by another one, hence {T1, T2, T3}
is the set of Pareto optimal robust (trade-off) teams of this
bi-objective constraint optimization problem.

3. ALGORITHMS FOR TASK-ORIENTED
ROBUST TEAM FORMATION

In this section, in order to solve decision and optimization
TORTF problems, we present a branch and bound search-
based algorithm, which is a widely used technique for solving
MO-COPs [20]. When the decision problem is considered,
the algorithm is referred to as ART : this algorithm aims
at computing one ”satisfying” solution, i.e., a c-costly and
k-robust team where c and k are given. When bi-objective
constraint optimization problems are considered, the algo-
rithm is referred to as AORT : this algorithm computes ev-
ery Pareto optimal robust team (each of them corresponds
to a trade-off between cost c and degree of robustness k).
We mainly describe how AORT works, since ART can be
viewed as a by-product of AORT .

Algorithms 1 and 2 give the pseudo-codes for AORT (and
also ART ). Initialization is made in Algorithm 1 where the
input is a team formation problem description TF , two non-
negative integers maxCost and k, and the expected output
is the set of all trade-off teams PF (lines 1 and 2). In this
algorithm, we assume that a variable ordering (correspond-
ing to an ordering over agents) is provided. The algorithm
starts the search with the first agent w.r.t. this ordering
(line 5). The search is based on a recursive call to solve, de-
tailed in Algorithm 2. This algorithm successively considers
each agent as part of the team (then out of the team), build-
ing partial teams until either one of the bounding functions
is unsatisfied or a full assignment is reached.

Algorithm 2 solve(N ,T ,PF ,TF ,maxCost,k,(Decision))

1: INPUT : a non-negative integer N , a team T , a set of
teams PF , a team formation problem description TF ,
two non-negative integers maxCost and k (plus an addi-
tional Boolean value Decision when decision problems
are to be handled).

2: // 1) Check whether all agents has been assigned
3: if N > |A| then
4: if T is not efficient then
5: Return
6: end if
7: if Decision then return {T} // for decision problem
8: end if
9: if T is not dominated by any element of PF then

10: Remove all teams dominated by T from PF
11: PF ← PF ∪ {T}
12: end if
13: Return
14: end if

15: // 2) Assign agent N
16: a: the N th agent of A
17: T ← T ∪ {a}
18: // 3) Check the affordability
19: if cost(T ) > maxCost then
20: solve (N + 1, T \ {a}, PF , TF , maxCost, k)
21: Return
22: end if

23: // 4) Check the efficiency
24: MinAgent := 0
25: if T is not efficient then
26: MinAgent←MinAgent+ k + 1
27: end if
28: if T is kT -robust and kT < k then // kT is the degree

of robustness of the current team
29: MinAgent←MinAgent+ (k − kT )
30: end if
31: if (|A| −N) < MinAgent then
32: T ← T \ {a}
33: Return
34: end if

35: // 5) Check the dominance
36: Maxk := (|A| −N)
37: if T is kT -robust then
38: Maxk ←Maxk + kT
39: end if
40: for all team T ′ of PF do
41: if cost(T ′) < cost(T ) and kT ′ ≥Maxk then
42: solve(N + 1, T \ {a}, PF , TF , maxCost, k)
43: Return
44: end if
45: end for

46: // 6) Continue the search with the next agent
47: solve(N + 1, T , PF , TF , maxCost, k)
48: solve(N + 1, T \ {a}, PF , TF , maxCost, k)

49: Return

Let us first describe the optimization case where we con-
sider parameters k = 0 and maxCost =∞. Function solve
takes an integer N as parameter and assigns the N -th agent
of A to the team T (line 17 in Algorithm 2). It then checks
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the affordability, efficiency and dominance of the partial
team. The team T is not affordable if its cost is superior
to maxCost. In this case, the partial team T is ignored and
the algorithm continues the search without considering the
N -th agent as part of the team (line 20). For ensuring effi-
ciency (line 23-34), the algorithm checks if the robustness k
that is expected is reachable, based on the current robust-
ness kT of the team T and the remaining agents that can
be added. In case k is not reachable, the current partial
team T can be given up. Finally, the algorithm checks if T
is not dominated by another team in PF (where the teams
found previously are stored) (line 35-45). To do this, the
maximum possible robustness (denoted Maxk) that T can
reach is computed by adding the current robustness kT to
the number of remaining agents that can be added (|A|−N).
The algorithm then checks if there exists a team T ′ in PF
that has a cost lower than the one of T and for a degree of
robustness higher or equal to Maxk. If such team T ′ exists,
then T can be given up (line 42).

If the three conditions (i.e., affordability, efficiency and
dominance) are satisfied, the search considers theN -th agent
as part of team (line 47) and then not part of it (line 48).
When the last agent (w.r.t. the ordering) has been assigned,
an assignment to all agents is obtained (line 3). If T is
efficient and not Pareto dominated by another team in PF ,
then T is added to PF (line 11) and the solutions of PF
dominated by T are removed.

When the bi-objective constraint optimization problem
with parameters k = 0 and maxCost =∞ is considered, ev-
ery team T will pass the affordability and efficiency checks
(line 18 and 23). However, when the decision problem is
considered instead, all checks must be performed and the
algorithm must stop once the first efficient solution is found.
We can easily obtain ART for the decision problem by re-
moving the dominance check (line 35) and giving the fixed
maxCost and k. Clearly enough, the time complexities of
ART and AORT are exponential in the number of agents.

Example 4. (AORT) We explain how AORT works on
Example 1. The input is a TORTF instance with A = {a1,
a2, ..., a6} and G = {p1, p2, ..., p5}. In order to find each
Pareto optimal solution, every possible team in A must be
considered; for each of them, its cost as well its k-robustness
must be computed. During the search, a vector of solutions
is maintained for each possible k and is updated whenever a
new Pareto optimal solution is found. For example, assume
that the assignment A1 = {a1, a2, a3, a4, a5, a6} has been
found as a possible solution for k = 1 with cost = 24. When
the assignment A′

1 = {a3, a4, a5, a6} leading to k = 1 and
cost = 17 is considered, the complete assignment A1 can be
replaced by A′

1 since, for the same value of k, A′
1 has an

inferior cost. For k = 0, if A0 = {a1, a4, a5} with cost =
15 has been previously found, and the assignment A′

0 =
{a1, a4, a6} with cost = 7 is considered, A0 can be replaced
by A′

0 since, for the same value of k, A′
0 has an inferior cost.

Finally, the algorithm returns two solutions A′
0 and A′

1 that
are the cost minimal teams for k = 0 and k = 1 respectively.

Example 5. (ART) We now explain how ART works, us-
ing again Example 1 where the set of agents A = {a2, a3, a4}
is considered, only. We want to determine if there exists a
team T that realizes G = {p3} so that T is 7-costly and
1-robust. ART starts with the empty set ∅ and tries adding
agents until either it finds a 7-costly and 1-robust team or

Table 3: Average number of trade-off teams ob-
tained by AORT (and also Naive) for |G| = 3, 5, 7, 9, 11.

# agents \|G| 3 5 7 9 11
10 3.7 3.5 3.2 2.7 2.7
15 5.8 5.0 4.7 4.6 4.2
20 7.6 7.1 6.8 6.4 6.3
25 10.2 9.4 8.8 8.5 8.6
30 12.1 11.3 10.8 10.6 10.6

the team cost exceeds 7. Starting from the empty set ∅,
the first agent a2 is added and thus the algorithm checks
the team {a2}. This team accomplishes {p3} but it is not
1-robust. The search continues by adding the next agent
a3. The team {a2, a3} which is 1-robust but not 7-costly
(cost = 8), is obtained. The algorithm does not add any
further agent to the team {a2, a3}. Indeed, this team is
not 7-costly and since adding agents can only increase the
cost, no supersets of {a2, a3} are 7-costly. The algorithm
then backtracks to the team {a2} and adds agent {a4}. The
team {a2, a4} is obtained: this team accomplishes the tasks,
is 1-robust and 7-costly (cost = 5). Thus ART stops the
search and outputs {a2, a4}.

4. SOME EMPIRICAL RESULTS

Figure 1: ART with heuristic h1.

Figure 2: ART with heuristic h2.

Figure 3: ART with heuristic h3.
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Table 4: Average runtime of AORT and Naive for |G| = 3, 5, 7, 9 and 11.
Naive AORT

# agents |G| = 3 |G| = 5 |G| = 7 |G| = 9 |G| = 11 |G| = 3 |G| = 5 |G| = 7 |G| = 9 |G| = 11
10 0.01 0.01 0.01 0.01 0.01 0.001 (0.001) 0.002 (0.001) 0.003 (0.001) 0.01 (0.001) 0.01 (0.001)
15 0.1 0.11 0.12 0.13 0.14 0.05 (0.04) 0.05 (0.05) 0.06 (0.06) 0.07 (0.07) 0.06 (0.06)
20 3.2 3.5 3.7 4.0 4.3 0.8 (0.8) 1.3 (1.2) 1.2 (1.2) 1.4 (1.4) 1.5 (1.4)
25 94.6 103.5 111.7 121.2 129.6 17.4 (17.4) 22.0 (22.8) 23.2 (25.6) 25.2 (28.9) 29.1 (32.0)
30 3175 3412 3661 3965 4241 266 (340) 430 (486) 527 (555) 486 (650) 592 (734)

In this section, the performances of ART and AORT on
a number of benchmarks are reported. The empirical pro-
tocol we considered is as follows. The number of accom-
plishable tasks per agent has been chosen uniformly at ran-
dom within range [1...10]. The cost of each agent has also
been chosen uniformly at random within range [1000:20000].
The cost f(T ) of a team T was defined additively: f(T ) =∑

a∈T f(a). Tasks have been also chosen at random within
range [1...10], considering a uniform distribution, for defin-
ing goals G. For bi-objective constraint optimization prob-
lems for TORTF, the domain of each variable is of size two,
i.e., {join,not join}. We present some representative re-
sults.4 Each data point in the graphs and tables is an av-
erage value over 100 instances. ART and AORT have been
implemented in Python; experiments have been carried out
on a One Core Computer running at 2.6GHz with 12GB
RAM. For assessing the performances of ART , the follow-
ing three agent ordering heuristics have been considered:

• h1 : random order.

• h2 : order the agents based on the number of skills.

• h3 : order the agents based on the costs.

Figures 1-3 present the results obtained by ART with h1,
h2 and h3 with 25 agents and different values of the cost
c and the degree of robustness k. As we expected, for all
results, we can observe the shape of the curve (easy-hard-
easy transition) in graphs, which is well-known as “phase
transition behavior” in CSP [10]. For example, the peak
(where the required runtime is maximum) occurs around
6000 for the costs and 9 for the degree of robustness in Fig.1.
We call such a peak the critical area. In the critical area, we
get the case where the search space is not greatly reduced
(the cost is not low enough and the degree of robustness is
not high enough) and also the case where finding a solution
is the most difficult (the cost is not high enough to have a
team with many agents and the degree of robustness is not
low enough to be able to reach it with only a few agents).
Also, we can see that before and after the critical area ART
can find a solution quickly, i.e., it can easily find a team for
the given cost c and the degree of robustness k (e.g., c is
around 6000 and k is 4 in Fig.1), or it can easily find that
there exists no team for the given c and k (e.g., c is around
6000 and k is 14 in Fig.1). Moreover, when we compare the
effect of variable-ordering heuristics, h3 outperforms h1 and
h2. The average runtime of ART with h3 at the critical area
is 4.2s (Fig.3), while they are 5.3s and 7.5s for ART with h1
and h2 (Fig.1 and Fig.2).

We also compared the performances of AORT with those
of a naive (brute-force) algorithm (without pruning) for sev-
eral numbers of agents and goal tasks. Table 3 shows the
number of trade-off teams (i.e., Pareto optimal solutions)

4We observed similar results for other settings.

obtained by these algorithms. As we expected, for all re-
sults, i.e., |G| = 3, 5, 7, 9 and 11, the number of trade-off
teams increases slightly with the number of agents. Thus,
for |G| = 3, there exist in average 3.7 trade-off teams for 10
agents, 7.6 trade-off teams for 20 agents, and 12.1 trade-off
teams for 30 agents. Also, we can observe that the number
of trade-off teams becomes smaller, when the number of goal
tasks increases. Thus, when the number of agents is 30, the
average number of trade-off teams for |G| = 3 is 12.1, while
there exist 10.6 trade-off teams for |G| = 11. The results
can be explained by the fact that the number of teams de-
pends heavily on the maximal degree of robustness (denoted
kmax) of the problem under consideration. For example, if
the team containing all agents is 8-robust, we can expect
to find a 9-robust team (one per possible k between 0 and
kmax). Since a wide cost range per agent and a uniform dis-
tribution model have been considered in our experiments the
cases when several teams exist for the same k and the same
cost are avoided. Thus, increasing the number of agents
increases the potential kmax, while increasing the number
of tasks makes robustness more difficult to be achieved and
decreases kmax.

Note that finding all trade-off teams of a TORTF prob-
lem is generally easier than solving a bi-objective COP. In
TORTF problem, the number of solutions is bounded by the
number of agents, i.e., there exist at most |A| − 1 trade-off
teams where A is a set of agents. On the other hand, in a
bi-objective COP, the number of Pareto optimal solutions is
often exponential in the number of agents (i.e., all assign-
ments are Pareto optimal solutions in the worst case).

Table 4 gives the average runtimes of AORT and of the
naive algorithm. The results of AORT with h3 and h1 are
reported. The results between brackets indicate the results
of AORT with h1. The naive algorithm utilizes h1 for agent
ordering. In all cases (i.e. |G| = 3, 5, 7, 9 and 11), we can
observe that the difference between the results of AORT and
those of the naive algorithm becomes larger, when the num-
ber of agents increases. For example, in case |G| = 3, the
average runtime of AORT is 0.001s for 10 agents, 0.8s for
20 agents and 266s for 30 agents, while the corresponding
runtimes of the naive algorithm are respectively 0.01s, 3.2s
and 3175s. For |G| = 11, the average runtime of AORT is
0.01s for 10 agents, 1.5s for 20 agents and 592s for 30 agents,
while they are 0.01s, 4.3s and 4241s for the naive algorithm.
Also, when the number of agents is at least 25, we can ob-
serve that the difference between the results of AORT and
those of the naive algorithm increases with the number of
goal tasks. Moreover, the effect of variable-ordering heuris-
tics (i.e., h1 and h3) becomes significant, when the number
of agents becomes larger. Thus, for |G| = 11, the average
runtime of AORT with h3 is 592s for 30 agents, while it is
734s for AORT with h1.
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In summary, as we expected, these experimental results
reveal that (i) there exists the easy-hard-easy transition for
decision problems, and (ii) for bi-objective constraint opti-
mization problems, the number of trade-off teams increases
slightly with the number of agents. Additionally, we ex-
amined the effect of agent-ordering heuristics. For decision
problems, we compared the performances of ART with three
agent-ordering heuristics (i.e., random ordering h1, skill-
based ordering h2 and cost-based ordering h3) and observed
that h3 outperforms h1 and h2. For optimization problems,
we also observed that h3 is more effective than h1, when the
number of agents increases.

5. OTHER RELATED WORK
Many works have been devoted so far to the problem of

forming teams. Classically, a set of tasks and a set of agents
are given; each agent has some capabilities and some skills
are required to achieve each task. The team performance is
often viewed as the set of all capabilities of its members.

Thus, Nair et al. [23] worked on forming a team with the
maximum expected value so that the team has all required
skills to accomplish the tasks of interest. Vidal et al. [29]
focused on task-oriented domain problems and showed how
the benefits of teaming and selflessness arise in this domain.
Bachrach et al. [4] introduced coalitional skill games, where
the aim is to make a coalition among agents so that it can
cover a set of required skills for a given task (team efficiency).
Other works considered e.g., the optimal joint action with
a new ad-hoc agent [1] where agents compute their actions
based on the observations of their teammates, configuration
of a network of agents [8], and minimal coordination cost for
a single task [15]. Liemhetcharat et al. [16, 18] considered
synergetic effects among agents, and introduced a (weighted)
synergy graph model to capture interactions among agents
in a team. Marcolino et al. [19] focused on the diversity of
a team and showed that a diverse team can overcome a uni-
form team. In this work, the authors provided optimal vot-
ing rules for selecting a diverse team. This property is also
important issue for team formation, when dynamic changes
are considered, e.g., some agents break down because of the
unexpected accident and injury. We plan to investigate the
relationship between diverse and robust teams.

In the context of robot team formation, Kaminka et al.
[11] introduced a behavior-based teamwork architecture that
automates collaboration in physical robots. Liemhetcharat
et al. [17] considered configurable robots that are composed
of modules, e.g., motors and sensors; he focused on the prob-
ability of module failures of each robot and considered how
to form a multi-robot team that is robust to failures.

Coalition Structure Generation (CSG) [3, 24, 27] involves
partitioning a set of agents into groups (called coalitions) so
that the sum of the values of all coalitions is maximized. A
partition is called a coalition structure. In CSG, the value
of a coalition is given by a black box function. It is well-
known that finding an optimal coalition structure is NP-
hard. Indeed, the decision problem associated with CSG is
equivalent to the complete set partition problem [30]. The
purpose is different from the one of team formation; indeed,
the objective of teal formation is to select a team (a subset
of agents), which can achieve the tasks of interest, while the
aim of CSG is to find an optimal partition of all agents.

None of those works actually considers the robustness is-
sue for team formation and multi-objective setting, making
them quite different from the present work.

Related to our work are also task-allocation problems [14,
31], which involve deciding how to assign a set of tasks to a
set of agents. The robustness issue has been considered for
these problems, e.g., in [2, 5]. In [2], Ali et al. investigated
how to determine a resource allocation so that the robust-
ness of desired system features against perturbations is max-
imized. This research addressed the design of a robustness
metric for resource allocations. In [5], Choi et al. worked on
task allocation to coordinate a fleet of autonomous vehicles
and presented decentralized task-allocation algorithms that
provides conflict-free solutions independent of inconsisten-
cies in Situational Awareness (i.e., robustness to inconsistent
SA). Our notion of robustness is consistent with these works:
some goal must still be accomplished even when some agents
break down, i.e., the formed team is robust against some po-
tential perturbations. However, our work differs from task-
allocation problems in the sense that the agents forming a
team are not effectively assigned to a specific task. In fact,
they are associated with a set of tasks which they have the
skill for. Therefore, our work can be used as an upstream
step of a task-allocation problem. Making such a link be-
tween these two frameworks is worth being considered for
further research, where the dependencies between both no-
tions of robustness will be investigated.

6. CONCLUSION
How to form a team for achieving a given set of tasks is

an important issue in multi-agent systems. Task-oriented
team formation is the problem of forming the best possible
team to achieve some tasks of interest, given some limited
resources. This paper investigated the robustness issue for
task-oriented team formation.

The contribution of this paper is mainly twofold:

• The concept of task-oriented robust team has been first
defined and studied. Especially, the issue of comput-
ing a robust, yet affordable team has been investigated
from a computational point of view. While robustness
generalizes the usual notion of team efficiency, this gen-
eralization does not lead to a computational shift.

• Two algorithms for solving the TORTF problem have
been provided and evaluated. ART for solving a de-
cision problem which aims at computing one c-costly
and k-robust team, for given cost c and robustness k.
AORT for solving a bi-objective constraint optimiza-
tion problem which aims at computing every Pareto
optimal robust solution. Experiments showed that (i)
an easy-hard-easy phase transition pattern can be ob-
served for decision problems, and (ii) for bi-objective
constraint optimization problems, the number of trade-
off teams increases slightly with the number of agents.

As a perspective for further research, we plan to develop
some efficient heuristics and algorithms (based on Russian
Doll Search [26]) for solving TORTF problems. Also, we
intend to apply our approach to some real-world problems,
especially rescue team formation, nurse scheduling problem
and fault tolerant system design. Furthermore, we plan to
extend our model to a dynamic setting in which goal tasks
change with time. An objective will be to develop an algo-
rithm that reconstructs the team after each change, and to
apply it to a distributed robot team reconfiguration prob-
lem [6].
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