
Generalized Commitment Alignment

Amit K. Chopra
Lancaster University

Lancaster LA1 4WA, United Kingdom
a.chopra1@lancaster.ac.uk

Munindar P. Singh
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
The interoperability of interacting components means that
their expectations of each other remain in agreement. A
commitment captures what one agent (its creditor) may ex-
pect from another agent (its debtor). Chopra and Singh
(C&S) motivate commitment alignment as a meaning-based
form of interoperation and show how to ensure alignment
among agents despite asynchrony.

Although C&S’s approach demonstrates the key strengths
of relying on commitment semantics, it suffers from key
shortcomings, which limit its applicability in practice. One,
C&S do not model commitments properly, causing unaccept-
able interference between commitments in different transac-
tions. Two, they require that the communication infrastruc-
ture guarantee first-in first-out (FIFO) delivery of messages
for every agent-agent channel. Three, C&S guarantee align-
ment only in quiescent states (where no messages are in tran-
sit); however, such states may never obtain in enactments
of real systems.

Our approach retains and enhances C&S’s key strengths
and avoids their shortcomings by providing a declarative
semantics-based generalized treatment of alignment. Specif-
ically, we (1) motivate a declarative notion of alignment-
relevant system states termed completeness; (2) prove that
it coincides with alignment; and (3) provide the computa-
tions by which a system of agents provably progresses toward
alignment assuming eventual delivery of messages.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—
General ; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence—Multiagent systems

General Terms
Theory

Keywords
Interoperability; Commitments; Protocols; Transactions

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
This paper concerns decentralized multiagent systems in

which autonomous agents interact with each other. Nor-
mally, each agent in such a system would represent an au-
tonomous social principal, such as a human or an organiza-
tion. Specification of interaction protocols and infrastruc-
tures for the distributed enactment of such protocols are
major themes of research in multiagent systems.

An important class of approaches for specifying interac-
tion protocols is that of commitment protocols [12, 25, 26].
The formula C(x, y, r, u) represents a commitment, meaning
that x (the debtor) is committed to y (the creditor) that if
r (the antecedent) holds, then u (the consequent) will hold
[22]. A commitment protocol specifies the meanings of the
messages in terms of their effects on commitments. For ex-
ample, in a protocol for e-business, one could specify that
the message Offer from a merchant to a customer means
that the merchant is committed to the customer for deliver-
ing the goods offered if the customer pays the price quoted.
A growing body of work has addressed various aspects of
commitments and commitment protocols [2, 4, 8, 9, 13].

We address the challenges of enacting commitment proto-
cols in decentralized settings where the agents communicate
asynchronously and no central party maintains the defini-
tive global state. Instead each agent maintains its own state
based on the messages it has observed, both sent and re-
ceived. Generally, in a distributed system, agents’ observa-
tions may differ: agents may observe different sets of mes-
sages, and even when they observe the same messages, they
may do so in different orders. Coupled with the fact that
messages affect commitments, this means that the agents
may infer different active commitments at any given mo-
ment. Since commitments reflect the expectations one agent
has of another, such a difference in inferred commitments is
an indication of a failure of interoperability at the seman-
tic level. Preventing such interoperability failures would be
important in business and security settings.

Chopra and Singh [6] (C&S, for short) define commitment
misalignment as the following situation: an agent y infers it
is the creditor of a commitment whose debtor is x, but x
does not infer that it is the debtor of that commitment to
y. For example, upon observing the Offer message Bob (a
customer) may expect that if he pays the quoted price, then
Alice (the merchant) will deliver the offered goods. If Alice
does not also infer the same commitment, the two would be
misaligned. And that would indicate a potential breakdown
in interoperability. Commitment alignment is a novel and
useful concept: it characterizes interoperability in terms of

453

the meanings of interactions not merely in terms of message
transmission as traditionally understood, e.g., [1].

C&S formalize alignment and provide a method for ensur-
ing alignment among agents. Although we share C&S’s intu-
itions about commitment alignment, we find that their for-
malization and method embody limiting assumptions that
preclude practical application. Accordingly, we contribute a
generalized approach that tackles the following situations.

Independent transactions. Informally, a transaction log-
ically encapsulates a set of correlated commitments.
Reasoning about commitments in one transaction ide-
ally should not interfere with reasoning about com-
mitments in another. Suppose a customer is involved
in two transactions with a merchant, each involving a
commitment to deliver some book for some payment.
Then canceling one should not affect the other. C&S’s
approach does not support multiple transactions and
generates erroneous interference between commitments
of the same debtor-creditor pair.

We contribute a language that supports modeling com-
mitments as belonging to different transactions. We
formalize alignment for commitments in this language
and present a method that guarantees alignment.

Message delivery order. C&S require ordered communi-
cation, i.e., each channel is first-in first-out (FIFO).
FIFO delivery is not acceptable in every setting be-
cause it requires buffering messages to ensure in-order
delivery. Specifically, it hinders applications that re-
quire extremely low latency (e.g., in finance) and that
are storage-constrained (e.g., in the Internet of Things).

We contribute an approach that dispenses with FIFO
channels, which additionally leads to looser coupling
between agents with potential gains in performance.

System states under consideration. C&S define align-
ment to apply only in states that are quiescent, mean-
ing those states where no message is in transit. Doing
so eliminates false negatives. For instance, we should
not expect alignment when a debtor of a commitment
has sent a message to the creditor canceling the com-
mitment, but which the creditor has not yet received.
However, C&S’s approach additionally eliminates true
positives. Specifically, these are cases where we should
determine that the agents are aligned even though
some messages are in transit.

We contribute a notion of complete states that cap-
tures better where we expect alignment to hold. We
show that under our method, completeness with re-
spect to commitment implies alignment with respect
to the commitment, and vice versa.

Complexity. C&S’s approach mixes in procedural elements
to describe the notifications required from agents and
to model priority between debtors and creditors.

We contribute a significantly simplified, purely declar-
ative approach that requires fewer notifications and
avoids the notion of priority.

Organization. Section 2 motivates the challenge of align-
ment and provides a technical overview of C&S’s approach.
Section 3 describes the opportunities for improving over
C&S. Section 4 describes the details of our approach. Sec-
tion 5 discusses related work and directions for future work.

2. BACKGROUND ON ALIGNMENT
Fig. 1 reproduces C&S’s scenarios to motivate commit-

ment alignment. Each subfigure represents an enactment
in the manner of a sequence diagram. Here, a vertical line
represents an agent’s history; an arrow represents a message
exchange; time flows downward. Table 1 lists the messages
that concern us in this paper.

Figure 1: Alice and Bob are aligned in A, not in B, C, D.

Table 1: Messages and their effects; x and y are agents; r
and u are propositions.

Message Sender Receiver Näıve effect

Create(x, y, r, u) x y C(x, y, r, u)
Cancel(x, y, r, u) x y ¬C(x, y, r, u)
Release(x, y, r, u) y x ¬C(x, y, r, u)
Declare(x, y, p) x y p

Table 1 lists the messages corresponding to commitment
operations [21] and their näıve effects. We see below that
this näıve formulation is inapplicable in distributed settings.
Table 1 introduces Declare, by which a suitably empowered
agent [14] brings about relevant conditions that feature in
the antecedents or consequents of commitments. For exam-
ple, declaring a payment or delivery would cause the detach
or discharge of some commitments in Table 2. A received
Declare may be forwarded by an agent to others. Since the
identity of the declarer is not relevant for this paper, we use
Declare for both purposes.

Table 2 lists the example commitments we use as running
examples, especially to illustrate C&S’s approach.

Table 2: Example commitments. When the antecedent is
>, the commitment is unconditional. Here, bnw, gow, and
soc are names of books.

cA C(Alice,Bob, paid($12), delivered(bnw))
cUA C(Alice,Bob,>, delivered(bnw))
cB C(Alice,Bob, paid($12), delivered(gow))
cUB C(Alice,Bob,>, delivered(gow))
cAB C(Alice,Bob, paid($12), delivered(bnw)∧delivered(gow))
cUAB C(Alice,Bob,>, delivered(bnw) ∧ delivered(gow))
cC C(Alice,Bob, paid($15), delivered(soc))
cUC C(Alice,Bob,>, delivered(soc))
cUAC C(Alice,Bob,>, delivered(bnw) ∧ delivered(soc))

Following the näıve effects in Table 1, let us see how the
enactments from Fig. 1 fare from the point of view of align-
ment at the moment denoted by the dashed line.

Example 1: In Fig. 1(A), there is no misalignment. Both
Alice and Bob infer that cA.

454

In Fig. 1(B), Alice and Bob are misaligned. Bob infers
cA but Alice does not. The reason is that Bob observes the
second create after the release whereas Alice observes them
in the opposite order.

In Fig. 1(C), Alice and Bob are misaligned. Bob infers
cUA (because of the detach when he sends the declare) but
Alice does not because she had already canceled cA by the
time the declare arrives and so there is nothing to detach.

In Fig. 1(D), Alice and Bob are misaligned. Bob infers cA
but Alice does not.

2.1 Technical Preliminaries
We introduce some technical details. B1–B8 are postulates

for commitment reasoning [22].

B1. discharge. u→ ¬C(r, u)

B2. detach. C(r ∧ s, u) ∧ r → C(s, u)

B3. augment. From C(r, u), s ` r, s 6` u infer C(s, u)

B4. l-disjoin. C(r, u) ∧ C(s, u)→ C(r ∨ s, u)

B5. r-conjoin. C(r, u) ∧ C(r, v)→ C(r, u ∧ v)

B6. consistency. ¬C(r,⊥)

B7. nonvacuity. From r ` u infer ¬C(r, u)

B8. weaken. C(r, u ∧ v) ∧ ¬u→ C(r, u)

Definition 1: A commitment C(r, u) is stronger than C(s, v)
(with the same debtor and creditor), or C(r, u) � C(s, v),
if and only if u ` v and s ` r. If C(r, u) � C(s, v) but
C(s, v) 6� C(r, u), C(r, u) is strictly stronger than C(s, v) or
C(r, u) � C(s, v).

For example, from Table 2, cUAB � cAB � cA and cUAB �
cUA � cA but cB 6� cA and cA 6� cB . Let’s say an agent
infers cA and cB . Then, by B5, the agent infers cAB as well,
which is strictly stronger than both cA and cB .

2.2 C&S’s Solution for Ensuring Alignment
In C&S’s solution, agents can send any message at any

time. The effects of the messages, however, are not com-
puted according to Table 1 but by rules C&S provide. For
instance, Bob’s observation of the second create in Fig. 1(B)
is a noop because it is not strictly stronger than commit-
ments that held previously (Principle of Novel Creation).
This solves the misalignment in Fig. 1(B). C&S address
Fig. 1(D) by treating a released or canceled commitment as
having held previously (Principle of Accommodation), thus
making Bob’s observation of the create a noop.

C&S characterize the problem in Fig. 1(C) as arising from
a race between the debtor’s (Alice’s) cancelation and the
creditor’s (Bob’s) detach. To address this misalignment,
they assign priorities to actions as part of the protocol spec-
ification, and prescribe actions that agents must take de-
pending on who has priority (Principle of Priority). In this
example, if Alice has priority (for cA’s cancellation), then
Bob must release Alice from cUA upon observing the cancel.
Alternatively, if Bob has priority, then Alice must explicitly
create cUA. In either case, the misalignment is avoided.

C&S introduce two additional principles, which we men-
tion for completeness. The Principle of Complete Erasure
states that canceling or releasing a commitment removes
all weaker commitments if no strictly stronger commitment
holds; otherwise, it is a noop. The Principle of Notification
states that debtors must be notified by creditors of detaches
and creditors must be notified by debtors of discharges.

C&S show that a multiagent system is aligned in states
where all notifications have been sent (“integral”), and no
messages are in transit (“quiescent”): if a creditor infers a
commitment, then the debtor also infers it.

3. GENERALIZATION OPPORTUNITIES
We now motivate opportunities for improvements by dis-

cussing the limitations of C&S’s approach.

3.1 Independent Transactions
Conceptually, the idea behind a transaction is that it en-

capsulates a set of related events or operations. Specifically,
events in independent transactions will not affect each other.
Thus, events concerning a commitment in one transaction
should not affect a commitment in another transaction. For
example, as illustrated in Section 1, canceling a commitment
for a book in one transaction should not affect a commit-
ment for a book in another transaction. A key limitation of
C&S’s approach is that it does not support multiple trans-
actions. In effect, it treats all commitments as being in the
same implicit transaction. Example 2 illustrates this.

Figure 2: Aligned but unrealistic outcomes due to the lack
of transactions in C&S.

Example 2: See Fig. 2(A). Alice creates cA and cC . Let’s
assume that the two commitments are in separate transac-
tions. Accordingly, we expect no interference between them.
Bob sends payment for both books (via a Declare message).
Hence, Bob infers the unconditional versions of both com-
mitments, cUA and cUC . Due to B5, however, Bob infers
cUAC , which is strictly stronger than cUA and cUC . There-
fore, Alice’s cancelation of cUC is ineffective (by C&S’s Prin-
ciple of Complete Erasure).

Interestingly, C&S advocate using domain identifiers in
the content of the commitment to enable making the “same”
commitment twice (Ex. 5 on p. 940). In the spirit of their ex-
ample, Alice could have created C(Alice,Bob, paid(id0, $12),
delivered(id0, bnw)) and C(Alice,Bob, paid(id1, $15),
delivered(id1, soc)) instead of cA and cC , respectively; here,
id0 and id1 serve to distinguish the transactions. However,
notice that from their unconditional versions, one would still
infer C(Alice,Bob,>, delivered(id0, bnw) ∧ delivered(id1, soc))
(again, by B5). This means that, just as in Example 2, the
unconditional commitment for soc cannot be canceled by
Alice. This means that the two commitments, even with
domain identifiers to help distinguish them, are not in sep-
arate transactions. In Section 4, we adopt C&S’s intuition
about using domain identifiers but treat it more fully in or-
der to avoid such anomalies.

455

Example 3 shows an enactment where the outcome fol-
lowing C&S’s approach is especially undesirable.

Example 3: See Fig. 2(B). Assume cA and cC are in dif-
ferent transactions. Alice’s cancel is treated as a noop by
Bob because Bob already infers the stronger cUAC . Alice,
in contrast, infers cUA but not cUC upon seeing Bob’s de-
clare because she had already canceled cC . Therefore, Al-
ice does not infer cUAC . A potential misalignment ensues:
Bob infers cUAC , which Alice does not. C&S’s Principle of
Priority kicks in to handle this. Let’s say Alice has prior-
ity. Accordingly, Bob releases Alice from cUAC , thus fixing
the misalignment. Notice that a release of just cUC would
not have worked—it would in fact be a noop because cUAC

holds (Principle of Complete Erasure). But releasing cUAC

gets rid of cUA as well (by Principle of Complete Erasure).
In effect, fixing a misalignment for one commitment cC gets
rid of an unrelated commitment in a different transaction,
which is highly undesirable.

To bring out the magnitude of the problem highlighted
in Example 3, imagine that instead of just cUA there were
a million unconditional commitments from Alice to Bob,
each for the delivery of some item, that held for Bob at the
point where Bob receives Alice’s cancelation of cC . Then,
Bob would need to release Alice from all those—practically
speaking, wipe the slate clean—to produce alignment.

Let us consider how we can avoid priority. Consider Ex-
ample 4, which C&S support.

Example 4: See Fig. 2(C). Alice creates cA and cC . She then
cancels cC , which makes cC go away. Only cA remains.

At first glance, it appears reasonable to remove commit-
ments piecemeal, as in Example 4. But what if Bob had
detached the commitments concurrently with Alice’s cance-
lation, as in Example 3?

In general, a conditional commitment may be detached at
any time and thus its cancelation would inherently lead to
an undefined state. C&S’s notion of priority seeks to repair
this undefined state. Instead we should prevent it. In this
spirit, a simpler alternative is to treat cancelations and re-
leases not at the level of commitments but at the level of the
transaction. In other words, a cancelation wipes out all the
commitments in a transaction. Notice that unlike the wipe-
out in Example 3, the scope of the wipeout is limited by the
transaction. Applying this idea to Example 4, if cA and cC
were part of the same transaction, canceling the transaction
would remove them both; if they belonged to different trans-
actions, then canceling the transaction of cC would remove
only cC . Analogous reasoning applies to Example 3.

Once a transaction is removed by the observation of either
a cancel or release, no commitment belonging to the transac-
tion can hold again—the transaction is used up. This idea is
especially important in non-FIFO settings, where messages
can be delivered in any order (as we shall see below). In case
a debtor changes it mind after sending the cancel and wants
to “recreate” the commitments in a canceled transaction, it
must do so in a new transaction.

3.2 Message Delivery Order
Fig. 3(A) shows a first-in first-out (FIFO) enactment, in

which messages between any two agents are delivered in or-
der. Fig. 3(B) shows a non-FIFO variant of the enactment.
Bob sees the creates of cA and cB before the cancel of cA.
Therefore, Bob already infers cA (by B5) when the cancel
arrives. Since the cancel is for a weaker commitment than

Figure 3: In (A), messages are delivered on FIFO basis;
Alice and Bob are aligned. In (B) and (C) messages are not
delivered on FIFO basis, which causes misalignment.

what already holds (cAB � cA), the cancel is a noop. Hence
Alice and Bob are misaligned: Bob infers cAB at the dashed
line but Alice does not. An analogous situation obtains when
Alice discharges cA, as in Fig. 3(C).

When we deal with commitments in transactional scope,
a general solution is to treat the observation of a cancel as
removing all the commitments in that transaction (taking
care of the problem in Fig. 3(B)), and to prohibit the sending
of creates after some commitment in the transaction has
been discharged (taking care of the problem in Fig. 3(C)).

C&S require FIFO message delivery. Although FIFO is
supported in enterprise message queues, it limits applica-
bility in settings where buffering is not appropriate, such
as low-latency finance and sensing applications and settings
where the infrastructure has reduced capabilities for storage.
Our approach avoids assuming FIFO but without limiting
the range of enactments that the agents can realize.

3.3 Systems States
C&S’s notion of alignment exploits the inherent asym-

metry of a commitment. Alignment requires only that a
debtor meet a creditor’s expectations, not that a creditor
must have some expectation: introducing unnecessary ex-
pectations would only couple the parties unnecessarily.

Figure 4: The dotted lines indicate nonquiescent system
states. In (A) and (B), the agents are misaligned. How-
ever, in (C) the agents are aligned.

Asynchronous message transmission is causally asymmet-
ric: the sender is aware of a message before the receiver is.
Therefore, agents can be in disagreement in states where the
relevant information has not propagated to the concerned
agents. For example, when a debtor has sent a cancel mes-
sage for a commitment but the creditor has not seen it yet,
the creditor will infer the commitment but the debtor will
not. Fig. 4(A) shows this state using a dashed line. In
Fig. 4(B), the dashed line indicates a system state where the
detach of a commitment has not propagated to the debtor.
C&S formalize the idea that only quiescent states, where no
message is in transit, are relevant for alignment. That is, the
states denoted by the dashed lines in Fig. 4 are irrelevant.

456

However, the above formulation is too strong. In Fig. 4(C),
even though the state indicated by the dashed line is not
quiescent, the agents are aligned. Two commitments in dif-
ferent transactions would not affect each other. So even if a
cancel for one is in transit, the agents may be aligned with
respect to the other. In other words, we should able to claim
alignment for each commitment independently.

Further, consider that in practice quiescent states may
never obtain in a distributed system. Hence, to define align-
ment in quiescent states severely limits its practical value.
Ideally, we would like to semantically characterize relevant
states with respect to a commitment and show alignment in
those states with respect to that commitment. Further, to
show that our characterization is not too strong, we would
like to show that if the agents are in agreement with respect
to the commitment in some state, then the state is relevant
in our characterization.

4. TECHNICAL FRAMEWORK
We now describe our framework in terms of a language

and models of computation.
Let P be a finite set of predicates. Each predicate has a

signature consisting of a list of domains. The first domain
is the set of natural numbers (N) and is treated as the ID
of the predicate. Each domain is a set of values, written as
constants in the syntax.

An atom is obtained from a predicate by applying the
predicate on a list of constants, each constant representing
a value drawn from the corresponding domain (the partic-
ular constants chosen would depend on an agent’s internal
reasoning, which is outside the scope of this paper). Let ι
be the value of ID in an atom. Then we say that the atom
belongs to the transaction whose identifier is ι. More simply,
we will say the atom belongs to transaction ι. We require
that any expression that involves two or more atoms, e.g., a
DNF or a commitment expression, involves atoms with the
same value for ID. Let ι be the value of ID in a commitment
expression. Then we say that the commitment (expression)
belongs to transaction ι. Any commitment belongs to only
one transaction but one transaction may include multiple
commitments. Below, we use ι as the generic transaction
identifier in our formal definitions. For each transaction ι,
we define a special atom >(ι) that represents true in that
transaction.

Table 3 introduces our syntax. Here X is a set of agents.
As remarked above, we restrict our attention to expres-
sions (Comm in Table 3) that involve atoms with the same
ID. This is a reasonable restriction because otherwise there
would be no way to correlate the events that discharge a
commitment with those that detach it. Specifically, the com-
mitment C(Alice,Bob, paid(20, $12), delivered(15, bnw)) is mal-
formed because it mixes transactions with IDs 20 and 15, re-
spectively. But C(Alice,Bob, paid(15, $12), delivered(15, bnw))
meets our restriction. C(Alice,Bob,>(15), delivered(15, bnw))
represents the unconditional variant of the commitment; it
too meets our restriction. Unconditional commitments of
the sort allowed in C&S, e.g., C(Alice,Bob,>, delivered(15,
bnw)), are not included in our language.

The fact that the antecedent in an unconditional com-
mitment is qualified with a transaction identifier is key to
blocking reasoning across transactions. For example, from
C(Alice,Bob,>(15), delivered(15, bnw)) and C(Alice,Bob,
>(16), delivered(16, gow)), you cannot derive a stronger com-

Table 3: Formal syntax.

Base −→ Comm | Atom | removed(X , X , N)
Comm −→ C(X , X , DNF, CNF)
DNF −→ And | And ∨ DNF
CNF −→ Or | Or ∧ CNF
And −→ Atom | Atom ∧ And
Or −→ Atom | Atom ∨ Or
Message −→ Declare(X , X , And) | Cancel(X , X , N)|

Create(X , X , DNF, CNF) | Release(X , X , N)

mitment by applying B5, as you could with cUA and cUB to
derive cUAB . From C(Alice,Bob,>(15), delivered(15, bnw))
and C(Alice,Bob,>(15), delivered(15, gow)), however, you get
C(Alice,Bob,>(15), delivered(15, bnw) ∧ delivered(15, gow)).

Notice in Table 3, cancel and release take a transaction
identifier as a parameter. And, removed is a stative that
records that a cancel or release was observed.

Below, x, y, z are agents; p . . .w are DNF or CNF ex-
pressions; ∨, ∧, and ¬ are the usual connectives; ` is the
usual propositional inference symbol. To reduce clutter, we
omit the debtor and creditor from expressions when they are
understood, e.g., writing C(r, u) instead of C(x, y, r, u).

Let ι be the ID of all atoms that appear in C(r, u); that is,
let C(r, u) belong to transaction ι. Since all atoms have the
same ID, if we need to refer to the ID, we need write it only
once to make it explicit. Specifically, we will write C(ι, r, u)
when we wish to make the ID explicit.

4.1 Messages and Observations
Agents communicate by point-to-point messaging. Here

m(x, y) indicates a message m from x to y. An agent ob-
serves all and only those messages that it sends or receives.
All facts relevant to an enactment arise from the observa-
tions an agent makes during its interactions with others. An
agent’s internal reasoning is irrelevant for our purposes.

An agent x’s observation sequence 〈m0, . . . ,mn〉x describes
the sequence of messages x observes in a particular execu-
tion. For an observation sequence o = 〈. . . ,m〉 and message
m′, we define the concatenation of o with m′ as 〈. . . ,m,m′〉
and write it as o;m′.

Let A be a system of k agents. Then, O = [O0 . . . Oi . . .
Ok−1] is an observation vector over A, where the Ois are
the observation sequences, one for each of the k agents. An
observation vector is thus a snapshot of the system. Below,
O is an observation vector and Ox is agent x’s observation
sequence within O. Now we define important concepts con-
cerning observation sequences and vectors.

Definition 2: The length of an observation sequence is the
number of observations it contains. The length of an ob-
servation vector is the sum of the lengths of its observation
sequences. If O = [O0 . . . Oi . . . Ok−1] is of length n, then
we write On to denote its length and On

i to denote the ob-
servation sequence of agent i.

Definition 3: Let o′ be an observation sequence. Then o is
a subsequence of o′, denoted by o v o′ iff
• o′ = o, or
• for some message m, o′ = o;m, or
• for some observation sequence o′′, o v o′′ v o′.

If o v o′ but o 6= o′, then we say that o′ strictly extends o
and write it as o < o′.

457

Definition 4: Let O = [O0 . . . Oi . . . Ok−1] and O′ = [O′0
. . . O′i . . . O

′
k−1]. We say that that O′ extends O, denoted by

O v O′, iff each Oi v O′i. If O v O′ but O 6= O′, then we
say that O′ strictly extends O and write it as O < O′.

Finally, Definition 5 defines an operator that gives the re-
mainder of an observation sequence after removing a prefix.

Definition 5: Let o = 〈m0, . . . ,ml〉 and o′ = 〈m0, . . . ,ml,
ml+1, . . . ,mi〉. Then o′ \ o = 〈ml+1, . . . ,mi〉.

4.2 Agent Snapshots and Local Maintenance
We now formalize the treatment of an agent snapshot,

its local state as arising from its observation sequence. In
syntactic terms, a snapshot is a finite data structure. In se-
mantic terms, a snapshot yields a set of propositions that an
agent may logically infer from its observations. To enable
how an agent’s snapshot progresses based on its observa-
tions, we introduce two update operators called addition ⊕
and subtraction 	, which respectively “add” or “subtract”
propositions from its snapshot. These operators ensure that
the resulting representation is consistent according to the
postulates of this paper, and that only the essential (i.e.,
minimal) changes are made due to each message. We now
describe a way in which to implement the update operators.

Let S be a set of base propositions, i.e., atoms, commit-
ments, or removeds. Specifically, S may represent the snap-
shot of an agent arising from a sequence of observations. In
logical terms, the state of the agent is [[S]], the deductive
closure of its snapshot. We extend ` to apply to snapshots:
S ` p means p ∈ [[S]]. We assume that ` respects B1 to B8.

Then we define the operators to modify snapshots. Be-
low, β is an atom or a removed(ι). And, χ(S) is the set of
commitments in S. That is, χ(S) = {C(r, u) : C(r, u) ∈ S}.
Definition 6 says that adding a β gets rid of all commit-
ments that are discharged by the addition, and adding a
commitment is only effective if the transaction has not been
removed and if the commitment has not been discharged.

Definition 6: We define ⊕ as follows.

• Given snapshot S and β, S⊕β = (S ∪{β}) \ {C(r, u) :
C(r, u) ∈ χ(S), S ∪ {β} 6` u}

• Given snapshot S and β1, . . . , βk, S⊕ (β1 ∧ . . .∧βk) =
(S ⊕ β1) . . .⊕ βk

• Given snapshot S and C(ι, r, u), S ⊕ C(ι, r, u) = S if
S ` removed(ι) ∨ u; else S ∪ {C(ι, r, u)}.

Definition 7 says that removing a transaction amounts to
removing all commitments with that transaction’s identifier.

Definition 7: Given snapshot S and ι, we define 	 as follows:
S 	 ι = S ⊕ removed(ι) \ {C(ι, s, v) : C(ι, s, v) ∈ χ(S)}.

Let S(o) be the snapshot corresponding to the sequence of
observations o. Then we compute S(o;m) from S(o) via one
or more applications of the above update operators. The
specific applications of the operators depend upon the se-
mantics of the message m. In U1–U5, o is either x’s or y’s
observation sequence. S(〈 〉) is easily finitely stored.

U1. S(〈 〉) = {>[ι]}, for every possible binding of ι

U2. S(o;Create(r, u)) = S(o)⊕ C(r, u)

U3. S(o;Release(ι)) = S(o)	 ι

U4. S(o;Cancel(ι)) = S(o)	 ι

U5. S(o;Declare(β0 ∧ . . . ∧ βk) = S(o)⊕ β0 ∧ . . . ∧ βk

Our only constraint is that once an agent infers an atom
with identifier ι, it no longer send any further creates for
commitments with ι. This reflects the intuition that once
an agent begins discharging commitments in a transaction,
it should not introduce new commitments to the transaction.
The constraint helps address the problem in Fig. 3(C).

Lemma 1 means that if observation sequence derives a
commitment of identifier ι, then it cannot derive its conse-
quent or removed(ι).

Lemma 1: If S(o) ` C(ι, r, u), then S(o) ` ¬removed(ι)∧¬u.

4.3 Alignment in Relevant States
As discussed in Section 3, defining alignment as holding

only in quiescent states is too strong. We need a notion
that coincides with alignment. Definition 8 characterizes
such a notion. It defines only those vectors to be complete
with respect to a commitment where if the debtor does not
infer the commitment, then the creditor does not infer it
too or the creditor knows that it was either discharged or its
transaction removed. Consider a vector where the creditor
infers a commitment because of a detach but the debtor
does not because it has not received information about the
detach. Such a vector would be incomplete as well.

Definition 8: O is complete with respect to C(ι, r, u) if and
only if S(Ox) ` ¬C(r, u)⇒ S(Oy) ` ¬C(r, u)∨u∨removed(ι).

Notice that if O is complete with respect to C(s, v) and
C(s, v) � C(r, u), it does not imply that O is complete with
respect to C(r, u). To see this, let Ox be 〈Create(x, y, r, u ∧
v),Declare(z, x, u)〉 and Oy be 〈Create(x, y, r, u ∧ v)〉; this O
is complete with respect to C(x, y, r, u∧v) but not complete
with respect to C(x, y, r, u).

Definition 9 says that a vector is aligned for a commitment
if and only if the following condition is met: if the creditor’s
observation sequence in the vector derives the commitment,
then the debtor’s observation sequence in the vector derives
the commitment as well.

Definition 9: O is aligned with respect to C(r, u) if and only
if S(Oy) ` C(r, u) implies S(Ox) ` C(r, u).

Notice that Definition 9 does not rely upon any internal
reasoning or state of the agent. Whether a commitment
holds or not for an agent is solely a property of the agent’s
observations.

Theorem 1 and Theorem 2 show that alignment and com-
pleteness coincide.

Theorem 1: [Alignment] If O is complete with respect to
C(r, u), then O is aligned with respect to C(r, u).

Proof. Let ι be C(r, u)’s identifier. If O is complete with
respect to C(r, u), then by Definition 8, S(Ox) ` ¬C(r, u)⇒
S(Oy) ` ¬C(r, u)∨u∨ removed(ι), that is either (i) S(Ox) `
C(r, u), or (ii) S(Oy) ` ¬C(r, u) ∨ u ∨ removed(ι). If (i),
then O is aligned with respect to C(r, u). If (ii), then (a) if
S(Oy) ` ¬C(r, u), then O is aligned with respect to C(r, u);
(b) if S(Oy) ` ∨u ∨ removed(ι), then by the contraposition
of Lemma 1, S(Oy) ` ¬C(r, u). Therefore, O is aligned with
respect to C(r, u).

Theorem 2: [Completeness] If O is aligned with respect to
C(r, u), then O is complete with respect to C(r, u).

458

Proof. We identify two cases. Case 1: S(Oy) ` C(r, u).
Then, because O is aligned with respect to C(r, u), S(Ox) `
C(r, u). Therefore, by Definition 8, O is complete with re-
spect to C(r, u). Case 2: S(Oy) ` ¬C(r, u). By Definition 8,
O is complete with respect to C(r, u).

4.4 Progress
We proved that all vectors complete with respect to a

commitment are aligned with the respect to a commitment.
But what if a vector incomplete with respect to a commit-
ment is realized by the agents’ interactions? Can the agents
take actions that will guarantee the realization of a vector
that is complete with respect to the commitment? In other
words, can we ensure that the system always progresses to
completion (and, therefore, alignment) with respect to ev-
ery commitment? To establish that a multiagent system will
advance toward alignment, we formalize the elements of a
decentralized enactment of a multiagent system.

An underlying assumption for messaging in decentralized
settings is causality, namely, that each message is sent before
being received [16]. Definition 10 captures causality in a
recursive formulation of realizability, wherein an agent is
always able to send a message (reflecting its autonomy in
saying anything it chooses) and is able to receive a message
only if the message has previously been sent.

Further, showing progress requires the assumption of reli-
ability, namely, that each message that is sent arrives at its
destination, i.e., every sent message is received.

Definition 10 (Realize): A multiagent system A of n agents
{1 . . . i . . . n} realizes an observation vector O = [O1 . . . On]
if and only if one of these conditions holds:
• O = [〈〉 . . . 〈〉], a vector of n empty observation se-

quences;
• O = [O1 . . . Oi; send(j,m) . . . On] and A realizes
〈O1 . . . Oi . . . On〉; or
• O = [O1 . . . Oi; receive(j,m) . . . On] and A realizes

[O1 . . . Oi . . . On] and Oj contains send(i,m).
C&S give action rules that specify the messages an agent

must send based upon its local observations to propagate the
information necessary for alignment. Specifically, debtors
must notify creditors of discharges and creditors must no-
tify debtors of detaches. Their notifications are of four kinds.
One, if a commitment holds and then is discharged (Dis-
charge Posterior); two, if a commitment whose consequent
already holds is created (Discharge Prior); three, if a com-
mitment holds and then is detached (Detach Posterior); and
four, if a commitment whose detach condition already holds
is created (Detach Prior). We give declarative characteriza-
tions analogous to each notification kind, except Discharge
Prior. Discharge Prior does not apply for us because we
adopt the restriction to not send creates for commitments
of identifier ι if some atom with identifier ι already holds.

Definition 11 characterizes the messages that a debtor
should send to the creditors of commitments that are dis-
charged upon the debtor making an observation, say n+ 1.
We refer to this set of messages as the discharge notification
set for observation n + 1. The only caveat is that we must
be careful to send notification only for every strongest com-
mitment (because for any commitment that holds there are
arbitrarily many weaker commitments that hold).

Below, to save space, we assume that the transaction iden-
tifier of the commitments involved is ι.

Definition 11: DI (z, n), the discharge notification set of z at
observation n+1 is {Declare(z, y, u′) : S(On

x) ` C(z, y, r, u)
and S(On

z) ` ¬C(z, y, s, v) such that C(z, y, s, v) � C(z, y, r,
u), and S(On+1

z) ` u′ such that u′ ` u}.
Definition 12 characterizes the messages a creditor should

send to its debtors upon making an observation that de-
taches currently holding commitments (again, strongest).

Definition 12: DEPO(z, n), the detach posterior notification
set of z at n+1 is {Declare(z, x, s) : S(On

z) ` C(x, z, (r∧s)∨
t, u)∧¬C(x, z, w, v)∧¬s such that C(x, z, w, v) � C(x, z, (r∧
s) ∨ t, u) and S(On+1

z) ` s ∧ ¬u ∧ ¬removed(ι)}.
Definition 13 characterizes the messages that a creditor

should send to the debtor of a commitment upon receiving
the create of a commitment that would be at least partially
detached because parts of the antecedent already hold.

Definition 13: DEPR(z, n), the detach prior notification set
of z at n+ 1 is {Declare(z, x, s) : S(On

z) ` s ∧ ¬C(x, z, (r ∧
s) ∨ t, u) ∧ ¬u ∧ ¬removed(ι) and n+ 1 is z′s observation
receive(x,Create(x, z, (r ∧ s) ∨ t, u)) such that s 6≡ >(ι)}.

Definition 14 characterizes the set of all messages that an
agent must send upon making an observation.

Definition 14: NS(z, n), the notification set of agent z at
observation n is DI (z, n) ∪DEPO(z, n) ∪DEPR(z, n).

Definition 15 captures the state of an agent that has sent
messages in the notification set for an observation.

Definition 15: Agent z is notification-done for n at k iffOn
z v

Ok
z and for each message m ∈ NS(z, n), Ok

z \ On
z contains

send(z,m).
Messages sent from the notification set may themselves

generate notifications. Definition 16 characterizes the idea
of a closure of notifications.

Definition 16: Agent z is notification-closed if and only if
for any n there exists a k such that z is notification-done for
each j (n 6 j 6 k) at k.

Lemma 2 expresses an important property: If an agent
merely sends the messages in the notification set for an
observation n, without any other intervening observations,
then the resulting sequence is guaranteed to be notification-
closed. This enables us to treat the sending of notifications
as atomic with the observation that made them necessary.

Lemma 2: Let k be the smallest number such that z is
notification-done for n at k. Then, z is notification-closed.

Definition 17: A system A of n agents {1 . . . i . . . n} accept-
ably realizes an observation vector O = [O1 . . . On] iff

• A realizes O = [O1 . . . Oi . . . On], and
• each i is notification-closed.

Informally, Theorem 3 states that if the system acceptably
realizes an observation vector that is incomplete with respect
to a commitment, then the system will acceptably realize
an observation vector that is complete with respect to the
commitment. Theorem 3 guarantees completeness only with
respect to strongest commitments. In other words, if the
vector is complete with respect to, say, C(r, u ∧ v), then we
do not care that it may be incomplete with respect to C(r, u)
(which it may well be, as illustrated earlier).

Theorem 3: [Progress] If a system A acceptably realizes an
observation vectorO that is incomplete with respect to C(r, u)
and C(r, u) is a strongest incomplete commitment, then ei-
ther A acceptably realizes an observation vector O′ such
that O < O′ and O′ is complete with respect to C(r, u) or
(∃i ∈ A,C(s, v) : C(s, v) � C(r, u) and S(oi) ` C(s, v)).

459

Proof. We sketch out a proof here. The proof is by induction
on the length of the commitment expression, which is defined
as the number of atoms in the expression. Let C(p, q) be a
minimum length commitment (that is, of length two). By
Definition 8, O0 is acceptably realizable and complete with
respect to C(p, q). Consider any complete vector Oc. Let
Oi be a smallest acceptable extension of Oc that is incom-
plete with respect to C(p, q). This means that the follow-
ing condition holds by Definition 8: S(Oi

x) ` ¬C(p, q) and
S(Oi

y) ` C(p, q) ∧ ¬q ∧ ¬removed(ι). There are two primary

cases to consider. (1) S(Oi−1
x) ` C(p, q), meaning that what

made Oi incomplete was that x stopped inferring C(p, q).
In this case, either a Cancel or a discharge notification is
on the way to y, which when y receives them will make the
resulting vector complete. (2) S(Oi−1

y) ` ¬C(p, q), meaning

that what made Oi incomplete was that y began inferring
C(p, q). If it is because of a stronger create, we are done (by
theorem statement). If it is by a detach, then acceptability
means that a notification is on the way to x, which when it
arrives will produce a complete vector.

Assume that the theorem holds for all commitments of
length k. Then we must prove that it holds for commitments
of length k+1. By inspection, we see that there two relevant
cases. These correspond to B4 and B5, respectively.

Consider B4 first. Let C(r, u) and C(s, u) be each of length
k and C(r ∨ s, u) of length k + 1. We know that O0 is
complete with respect to C(r ∨ s, u). Let Oc be any vector
complete with respect to C(r ∨ s, u). As before, let Oi be
the smallest incomplete acceptably realized extension with
respect to C(r, u ∧ v). Then, we want to prove that the
system acceptably realizes a complete extension of Oi. From
the inductive hypothesis, we know there there will be an
extension Oj of Oi that will be complete with respect to
both C(r, u) and C(s, v). This means that S(Oj

x) ` ¬C(r, u)
and S(Oj

y) ` C(r, u)∧¬u∧¬removed(ι) and S(Oj
x) ` ¬C(s, u)

and S(Oj
y) ` C(s, u)∧¬u∧¬removed(ι). From these we infer

that, S(Oj
x) ` ¬C(r ∨ s, u) and S(Oj

y) ` C(r ∨ s, u) ∧ ¬u ∧
¬removed(ι). In other words, Oj is complete with respect to
C(r ∨ s, u).

Reasoning about the other case with B5 is analogous.

4.5 Revisiting the Motivating Scenarios
It is worth revisiting the enactments in Fig. 1 to see what

their outcomes would be under our approach, specifically,
when the commitments and operations on commitments are
expressed in our syntax and include identifiers. Assume they
involve the same transaction identifier.

Consider Fig. 1(A). Then, the second create is ineffective
because of the earlier release; Bob and Alice are aligned
(with respect to all commitments). Consider Fig. 1(B).
Bob’s observation of the second create is a noop because
of the earlier release; Bob and Alice are aligned.

Consider Fig. 1(C). Bob’s observation of the cancel re-
moves cUA; therefore, no commitment holds for either Bob
or Alice; so they are aligned. Reasoning for Fig. 1(D) is
analogous to (B).

Instead, consider the case that follows Fig. 1(A), but where
the first create and release involve the same identifier and
the second create involves a distinct identifier. Then, the
second create makes a commitment with its identifier hold.
Hence, Bob and Alice are still aligned.

5. DISCUSSION
We develop a novel treatment of alignment that addresses

important shortcomings in C&S via a more general and sim-
pler treatment than C&S. Our approach supports multiple
transactions and does not require FIFO delivery. Compared
to C&S, we require fewer kinds of notifications, fewer kinds
of statives, and fewer reasoning postulates. We avoid C&S’s
Principle of Priority and the associated action rules, which
make C&S’s approach unnecessarily complex. Although we
adopt the broad intuitions of C&S, our formal development
is almost entirely novel, including the formal language (Ta-
ble 3) and the definition of alignment (Definition 9).

Several works express protocols and commitments in first-
order languages, e.g., the event calculus [4, 26]. However, a
systematic treatment of information in protocols and com-
mitments has a more recent history [7, 18, 19, 23]. Impor-
tant questions here concern the identification of instances—
of events, commitment, and protocol enactments. This pa-
per is in the same vein and contributes to the proper treat-
ment of commitments despite decentralization.

Some works [9, 10, 11, 17, 20] propose a purely syntactic
notion of commitment identifiers. These approaches place
an identifier in an explicit slot in a commitment expres-
sion but do not associate the identifier with the content
(antecedent and consequent) of the commitment. Further,
because these are syntactic approaches, they give unique
identifiers to commitments. As C&S explain, this is prob-
lematic for reasoning over commitments. For example, from
a commitment for p∧q, one would not be able to infer a com-
mitment for p (what would its identifier be?); nor would one
be able to infer a commitment for p ∧ q from commitments
for p and q. C&S proposed the semantic solution that com-
mitments be identified based upon identifiers in the content.
We adopt their core intuition though with enhancements to
be able to accommodate distinct transactions.

Winikoff [25] notes problems with interoperability among
agents enacting commitment protocols but does not provide
a general solution. Kafalı et al. [15] consider it an overhead
to send notifications for detaches and discharges. In a dis-
tributed system, where parties have incomplete information
about relevant events, we consider notifications as essential
for correct reasoning and a pragmatic way to ensure align-
ment. However, there may be opportunities for reducing the
cost of notifications, for example, via piggybacking.

We foresee four important directions. One, implement
our approach in an agent-oriented programming platform,
such as JaCaMo [3]. Two, develop a general theory of
commitment-based transactions. A fuller treatment of trans-
actions that covers nested and multiparty cases would re-
quire a richer modeling of information in commitments. Ap-
proaches such as Cupid [7] could potentially be applied for
this purpose. Three, develop a methodology and tool sup-
port for specifying commitment-based transactions. Protos
[5] is a methodology for deriving commitment-based spec-
ifications from stakeholder requirements; it could be ex-
tended to commitment-based transactions. Four, develop
a approach for alignment that applies to all kinds of social
expectations, including norms that capture security require-
ments [24].

Acknowledgments
Thanks to the anonymous reviewers for comments.

460

6. REFERENCES
[1] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai,

V. Patti, and M. P. Singh. Choice, interoperability,
and conformance in interaction protocols and service
choreographies. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent
Systems, pages 843–850, Budapest, 2009. IFAAMAS.

[2] M. Baldoni, C. Baroglio, E. Marengo, and V. Patti.
Constitutive and regulative specifications of
commitment protocols: A decoupled approach. ACM
Transactions on Intelligent Systems and Technologies,
4(2):22:1–22:25, 2013.

[3] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and
A. Santi. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming,
78(6):747–761, June 2013.

[4] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Representing and monitoring social commitments
using the event calculus. Autonomous Agents and
Multi-Agent Systems, 27(1):85–130, 2013.

[5] A. K. Chopra, F. Dalpiaz, F. B. Aydemir, P. Giorgini,
J. Mylopoulos, and M. P. Singh. Protos: Foundations
for engineering innovative sociotechnical systems. In
Proceedings of the 18th IEEE International
Requirements Engineering Conference (RE), pages
53–62, 2014. IEEE Computer Society.

[6] A. K. Chopra and M. P. Singh. Multiagent
commitment alignment. In Proceedings of the Eighth
International Conference on Autonomous Agents and
Multiagent Systems, pages 937–944. IFAAMAS, 2009.

[7] A. K. Chopra and M. P. Singh. Cupid: Commitments
in relational algebra. In Proceedings of the 23rd
Conference on Artificial Intelligence (AAAI), pages
1–8, Austin, Texas, Jan. 2015. AAAI Press.

[8] S. Cranefield and M. Winikoff. Verifying social
expectations by model checking truncated paths. In
Coordination, Organizations, Institutions and Norms
in Agent Systems IV, volume 5428 of LNCS, pages
204–219. Springer, 2009.

[9] M. El-Menshawy, J. Bentahar, and R. Dssouli. A new
semantics of social commitments using branching
space-time logic. In International Joint Conferences
on Web Intelligence and Intelligent Agent
Technologies, pages 492–496, 2009.

[10] R. A. Flores, P. Pasquier, and B. Chaib-draa.
Conversational semantics sustained by commitments.
Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS), 14(2):165–186, Apr. 2007.

[11] N. Fornara and M. Colombetti. Operational
specification of a commitment-based agent
communication language. In Proceedings of the 1st
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 535–542.
ACM Press, July 2002.

[12] N. Fornara and M. Colombetti. A commitment-based
approach to agent communication. Applied Artificial
Intelligence, 18(9-10):853–866, 2004.

[13] A. Günay, M. Winikoff, and P. Yolum. Generating and
ranking commitment protocols. In Proceedings of the
12th International Conference on Autonomous Agents
and Multiagent Systems, pages 1323–1324. 2013.

[14] A. J. I. Jones and M. J. Sergot. A formal
characterisation of institutionalised power. Logic
Journal of the IGPL, 4(3):427–443, June 1996.

[15] Ö. Kafalı, F. Chesani, and P. Torroni. What happened
to my commitment? Exception diagnosis among
misalignment and misbehavior. In Proceedings of the
11th International Workshop on Computational Logic
in Multi-Agent Systems, volume 6245 of LNCS, pages
82–98. Springer, 2010.

[16] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[17] A. U. Mallya, P. Yolum, and M. P. Singh. Resolving
commitments among autonomous agents. In
F. Dignum, editor, Advances in Agent
Communication, International Workshop on Agent
Communication Languages, ACL 2003, volume 2922
of LNCS, pages 166–182. Springer, 2004.

[18] F. Meneguzzi, P. R. Telang, and M. P. Singh. A
first-order formalization of commitments and goals for
planning. In Proceedings of the 23rd Conference on
Artificial Intelligence (AAAI), pages 697–703,
Bellevue, Washington, July 2013. AAAI Press.

[19] M. Montali, D. Calvanese, and G. D. Giacomo.
Verification of data-aware commitment-based
multiagent system. In Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems, pages 157–164, Paris, May 2014.

[20] M. Rovatsos. Dynamic semantics for agent
communication languages. In Proceedings of the 6th
International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 100–107,
Honolulu, May 2007. IFAAMAS.

[21] M. P. Singh. An ontology for commitments in
multiagent systems: Toward a unification of normative
concepts. Artificial Intelligence and Law, 7(1):97–113,
Mar. 1999.

[22] M. P. Singh. Semantical considerations on dialectical
and practical commitments. In Proceedings of the 23rd
Conference on Artificial Intelligence, pages 176–181,
2008.

[23] M. P. Singh. Information-driven interaction-oriented
programming: BSPL, the blindingly simple protocol
language. In Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent
Systems, pages 491–498, 2011.

[24] M. P. Singh. Cybersecurity as an application domain
for multiagent systems. In Proceedings of the 14th
International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 1–4, Istanbul,
May 2015. IFAAMAS. Blue Sky Ideas Track.

[25] M. Winikoff, W. Liu, and J. Harland. Enhancing
commitment machines. In Proceedings of the 2nd
International Workshop on Declarative Agent
Languages and Technologies (DALT), volume 3476 of
LNAI, pages 198–220, Berlin, 2005. Springer-Verlag.

[26] P. Yolum and M. P. Singh. Flexible protocol
specification and execution: Applying event calculus
planning using commitments. In Proceedings of the 1st
International Joint Conference on Autonomous Agents
and MultiAgent Systems, pages 527–534. 2002.

461

