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ABSTRACT
We study the complexity of a combinatorial variant of the
Shift Bribery problem in elections. In the standard Shift
Bribery problem, we are given an election where each voter
has a preference order over the candidate set and where
an outside agent, the briber, can pay each voter to rank
the briber’s favorite candidate a given number of positions
higher. The goal is to ensure the victory of the briber’s pre-
ferred candidate. The combinatorial variant of the problem,
introduced in this paper, models settings where it is possible
to affect the position of the preferred candidate in multiple
votes, either positively or negatively, with a single bribery
action. This variant of the problem is particularly inter-
esting in the context of large-scale campaign management
problems (which, from the technical side, are modeled as
bribery problems). We show that, in general, the combina-
torial variant of the problem is highly intractable (NP-hard,
hard in the parameterized sense, and hard to approximate),
but we provide some (approximation) algorithms for natural
restricted cases.
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telligence—Multiagent systems

Keywords
campaign management, preference aggregation, voting,
computational complexity, parameterized complexity, fixed-
parameter tractability, approximation algorithms

∗Supported by the DFG, project PAWS (NI 369/10).
†Supported by the DFG, project PAWS (NI 369/10) and by
AGH University grant 11.11.230.124 (statutory research).
‡Supported by the DFG, RTG MDS (GRK 1408).

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
We study the computational complexity of election cam-

paign management, for the case where campaign actions
(such as airing a TV advertisement, launching a web-based
campaign, or organizing meetings with voters) may have
large-scale effects which affect multiple voters. Further, we
are interested in settings where these actions can have both
positive effects (for example, some voters may choose to
rank the promoted candidate higher because they find ar-
guments presented in a given advertisement appealing) as
well as negative ones (for example, because some other vot-
ers find the advertisement to be too aggressive). Thus, in
our settings, the two major issues faced by a campaign man-
ager are (a) choosing actions that positively affect as many
voters as possible, and (b) balancing the negative effects of
campaigning actions (for example, by concentrating these
negative effects on voters who disregard the promoted can-
didate anyway).

Our research falls within the field of computational so-
cial choice, a subarea of multiagent systems. We use the
standard election model, where we are given a set C of can-
didates and a collection V of voters, each represented by his
or her preference order (that is, a ranking of the candidates
from the most preferred one to the least desired one). That
is, we assume that we know the preferences of all the voters.
While having such perfect knowledge is impossible in prac-
tice, this assumption is a convenient simplification modeling
the information we have from preelection polls.

We consider two voting rules, the Plurality rule (where
we pick the candidate who is ranked first by most vot-
ers) and the Borda rule (where each candidate c gets from
each voter v as many points as there are candidates that v
prefers c to, and we pick the candidate with the most points).
We chose these rules because the Plurality rule is the most
widespread rule in practice and because the Borda rule is
very well-studied in the context of campaign management.

Within computational social choice, the term campaign
management (introduced by Elkind et al. [11, 12]) is an al-
ternative name for the bribery family of problems (intro-
duced by Faliszewski et al. [13]) that focuses on modeling
actions available during election campaigns: as a result of
money spent by a campaign manager, some of the voters
change their votes. In this paper we focus on campaign
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management as modeled by the Shift Bribery problem [5,
11, 12]. In Shift Bribery we have a candidate p whom we
want to win, for each voter v we have a price πv(i) for which
this voter is willing to shift p forward by i positions in his
or her preference order1, and we ask for the lowest cost of
ensuring that p is a winner (see “Related Work” below for
references to other campaign management problems).

Shift Bribery has one major drawback as a model for
campaign management: it is incapable of modeling large-
scale effects of campaign actions. In particular, if one puts
out a TV spot promoting a given candidate, then some vot-
ers will react positively and rank the candidate higher, some
will be oblivious to it, and some will react negatively, by
ranking the candidate lower. Shift Bribery cannot model
such correlated effects. In this paper we introduce and
study the Combinatorial Shift Bribery problem, allow-
ing campaign actions to have effects, positive or negative,
on whole groups of voters.

We are interested in seeing how such a more realistic
model of campaign management affects the complexity of
the problem. Indeed, Shift Bribery is, computationally,
a very well-behaved problem. For example, for the Plu-
rality rule it is solvable in polynomial time and for the
Borda rule it is NP-complete [12], but there is a polynomial-
time 2-approximation algorithm [11, 12] and there are fixed-
parameter tractable (FPT) algorithms, either exact or ca-
pable of finding solutions arbitrarily close to the optimal
ones [5]. We ask to what extent do we retain these good
computational properties when we allow large-scale effects.
The results are surprising both positively and negatively:

1. Combinatorial Shift Bribery becomes both NP-
complete and W[1]-hard even for the Plurality rule,
even for very restrictive choice of parameters, even if
the correlated effects of particular campaign actions
are limited to at most two voters. These hardness re-
sults also imply that good, general approximation al-
gorithms do not exist, and are particularly strong when
we allow negative effects of some campaign actions.

2. In spite of the above, it is still possible to derive rel-
atively good (approximation) algorithms, both for the
Plurality rule and for the Borda rule, provided that we
restrict the effects of the campaign actions to be only
positive and to either only involve few voters each, or
to only involve groups of consecutive voters.

Due to space constraints several proof details are deferred
to a full version of the paper.

Related Work. Our work builds on top of two
main research ideas: first, on studying campaign manag-
ment/bribery problems, and second, on studying combina-
torial variants of election problems.

The study of the computational complexity of bribery in
elections was initiated by Faliszewski et al. [13], and con-
tinued by a number of researchers [14, 18, 21, 22]. Elkind
et al. [11, 12] realized that the formalism of election bribery
problems is useful from the point of view of planning election
campaigns. In particular, they defined the Swap Bribery
problem and its restricted variant, Shift Bribery. In the

1Of course, this price does not necessarily reflect a direct
money transfer to the voter, but rather the cost of convincing
the voter to change his or her mind.

former it is possible, at a given price, to swap any two ad-
jacent candidates in a given vote. In the latter, we are only
allowed to shift the preferred candidate forward. Various
problems, modeling different flavors of campaign manage-
ment, have been studied, including, for example, the possi-
bility to alter the number of approved/ranked candidates [2,
15, 26]. Different (positive) applications of bribery problems
have been revealed. For example, in the Margin of Vic-
tory view of the problem, the goal of the briber is to pre-
vent some candidate from winning; if it is possible to do so
at low cost, then this suggests that the election could have
been tampered with [6, 20, 27].

The most related works are those of Elkind et al. [11, 12],
Bredereck et al. [5], and Dorn and Schlotter [9]. The for-
mer ones study Shift Bribery, which we generalize (with
the work of Bredereck et al. [5] focusing on parameterized
complexity), whereas the work of Dorn and Schlotter [9]
pioneers the use of parameterized complexity analysis for
bribery problems.

Our work is largely inspired by the work of Chen et al. [7],
who introduced and studied a combinatorial variant of voter
control (control is a very well-studied topic in computational
social choice, initiated by Bartholdi et al. [1]). We stress
that by combinatorial election problems, in this case, we do
not mean the large line of work on modeling combinatorial
candidate spaces (see, for example, the papers [3, 8, 22]),
but use the same jargon from the mentioned literature with
the term “Combinatorial” refering to the “combinations” of
voters affected by each bribery action.

2. PRELIMINARIES
Elections. An election E = (C, V ) consists of a set C =
{c1, . . . , cm} of candidates and a collection V = (v1, . . . , vn)
of voters. Each voter is represented through his or her pref-
erence order, that is, a linear ranking of the candidates from
the most preferred one to the least preferred one. For exam-
ple, if C = {c1, c2, c3}, then voter v1 may have preference
order v1 : c1 � c2 � c3 to indicate that he or she likes c1
best, then c2, and then c3. We assume that an arbitrary
(but fixed) canonical order over the set of candidates exists
(for example, one could order the candidates lexicographi-
cally, by their names). If A is some subset of candidates,

then writing
−→
A within a preference order means listing the

candidates from A in this canonical order.
Voting Rules. A voting ruleR is a function that, given an
election E = (C, V ), outputs a set R(E) ⊆ C of (tied) elec-
tion winners. We consider two election rules, the Plurality
rule and the Borda rule. Each of these rules assigns points to
candidates and outputs those with the highest score. Under
the Plurality rule, each candidate receives one point for each
voter ranking him or her first. Under the Borda rule, each
candidate receives i points for each voter that preferring this
candidate to exactly i other ones.

We use the nonunique-winner model. That is, all the can-
didates output by a given voting rule are viewed as equally
successful winners (in practice, of course, one has to use
some sort of a tie-breaking rule to resolve the situation,
but disregarding ties simplifies the analysis; however, an in-
terested reader should consult papers on the effects of tie-
breaking on the complexity of election problems [24, 25]).
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Parameterized Complexity. We assume that the fa-
miliarity with standard notions regarding algorithms and
complexity theory, but briefly review notions regarding pa-
rameterized complexity theory [10, 16, 23].

In parameterized complexity theory, we measure the com-
plexity of a given problem with respect to both the input size
and a particular parameter of the problem. Typical parame-
ters for election problems include the number of candidates,
the number of voters, and the solution size (for example, the
number of campaign actions one can perform). We say that
a parameterized problem is fixed-parameter tractable (is in
FPT) if there is an algorithm that, given an input instance I

with parameter k, solves the problem in time g(k)|I|O(1),
where g is some computable function and |I| is the length
of the encoding of I. There is also a hierarchy of hardness
classes for parameterized problems, of which the two most
important levels are formed by the classes W[1] and W[2].
The most convenient way of defining these classes is through
an appropriate reduction notion and their complete prob-
lems. Specifically, we say that a parameterized problem A
reduces to a parameterized problem B if there are two com-
putable functions, g and g′, with the following properties:
given an instance I of A with parameter k, g(I) outputs in
FPT time an instance I ′ of B with parameter k′ ≤ g′(k),
such that I is a “yes”-instance of A if and only if I ′ is a
“yes”-instance of B. In other words, g is a standard many-
one reduction from A to B, which is allowed to run in FPT
time, but such that the parameter parameter of the output
instance must be upper-bounded by a function of the input
instance’s parameter.

The class W[1] is defined as the class of problems that
parameterically reduce to the Clique problem, and W[2] as
the class of problems that parameterically reduce to the Set
Cover problem, where both problems are parameterized by
the solution size.

Definition 1. In the Clique problem, we are given an
undirected graph G = (V (G), E(G)) and an integer h. We
ask for the existence of a set H of h vertices such that there
is an edge between each pair of vertices from H.

Definition 2. In the Set Cover problem, we are given a
universe set X, a family S of subsets of X, and an integer h.
We ask for the existence of at most h sets from S whose
union gives X.

A parameterized problem is contained in the class XP if
there is an algorithm that, given an instance I for it with
parameter k, solves it in time |I|g(k), where g is some com-
putable function. It holds that FPT ⊆W[1] ⊆W[2] ⊆ XP.

3. THE PROBLEM
In this section, we define our Combinatorial Shift

Bribery problem (CSB) in its full generality and describe
why and how we simplify it for the remainder of our study.

The Definition. Let R be some voting rule. The def-
inition of R-CSB is somewhat involved therefore we first
define some necessary components. We are given an elec-
tion E = (C, V ) and a preferred candidate p. The goal is to
ensure that p is an R-winner of the election. To this end,
we have a number of possible actions to choose from.

Let m := |C| be the number of candidates in E and
let n := |V | be the number of voters. A shift action f

is an n-dimensional vector of (possibly negative) integers,

f = (f (1), . . . , f (n)). In R-CSB we are given a family
F = (f1, . . . , fζ) of shift actions. Each particular shift ac-
tion models a possible campaigning action, such as airing
a TV spot or organizing a meeting with the voters. The
components of a given shift action measure the effect of the
corresponding campaigning action on the particular voters.
Further, each shift action fj (1 ≤ j ≤ ζ) comes with a
nonnegative integer cost w(fj) for applying this shift ac-
tion. For a given subset F ′ ⊆ F of available shift ac-
tions, we define the effect of F ′ on voter vi (1 ≤ i ≤ n)

as E(i)(F ′) =
∑
fj∈F ′ f

(i)
j .

Each voter vi (1 ≤ i ≤ n) has his or her individual thresh-
old function πi : Z → Z describing how shift actions affect
this voter. We require that πi(0) = 0 and that πi is nonde-
creasing. Let F ′ be a collection of shift actions. After apply-
ing the shift actions from F ′, each voter vi (1 ≤ i ≤ n) shifts
the preferred candidate p by t > 0 positions forward exactly
if (a) E(i)(F ′) > 0, and (b) πi(t) ≤ E(i)(F ′) < πi(t+1). The

shift is by t > 0 positions back if (a) E(i)(F ′) < 0, and (b)

πi(−t) ≥ E(i)(F ′) > πi(−t− 1).
Finally, we are given a nonnegative integer B, the budget.

We ask for the existence of a collection F ′ ⊆ F of available
shift actions with total cost

∑
fj∈F ′ w(fj) at most B and

such that after applying them, p is an R-winner of the given
election. If this is the case, then we say that F ′ is successful.

Example 1. Consider an election with C = {a, b, c, p},
where p is the preferred candidate, and with three voters,
v1 : c � b � p � a, v2 : b � a � c � p, and v3 : p � a � b � c.
We are using the Borda rule. Candidates a, b, c, and p
have, respectively, 4, 6, 4, and 4 points. There are three
available shift actions: f1 = (2, 4, 0), f2 = (6, 0,−3), and
f3 = (0, 2, 0). The threshold functions are such that:
(1) π1(−1) = −4, π1(0) = 0, π1(1) = 6, π1(2) = 100,
(2) π2(0) = 0, π2(1) = 2, π2(2) = π2(3) = 100, and
(3) π3(−3) = π3(−2)− 100, π3(−1) = −3, π3(0) = 0. Each
shift action has the same cost, w(f1) = w(f2) = w(f3) = 1.

It is easy to see that applying any single shift action
does not ensure p’s victory. However, applying shift ac-
tions F ′ = {f2, f3} results in p being a winner. The total
effect of these two shift actions is (6, 2,−3). According to
the threshold functions, this means that p is shifted forward
by one position in v1 and v2, and is shifted backwards by one
position in v3. After these shifts, the modified election has
the following votes: v′1 : c � p � b � a, v′2 : b � a � p � c,
and v′3 : a � p � b � c. Therefore, candidate c has 3 points,
while all other candidates have 5 points each; a, b, and p are
tied winners. Therefore, F ′ is successful.

Formally, given a voting rule R, we define the R-CSB
problem as follows:

R-Combinatorial Shift Bribery (R-CSB)
Input: An election E = (C, V ), where C =
{c1, . . . , cm} is the set of candidates and V =
(v1, . . . , vn) is the collection of voters, a set
F = {f1, . . . , fζ} of shift actions with costs
w(f1), . . . , w(fζ), threshold functions π1, . . . , πn,
and a nonnegative integral budget B. One of the
candidates is designated as the preferred candi-
date p.
Question: Is there a subset F ′ ⊆ F of shift ac-
tions with total cost at most B such that, after
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we apply the shift actions from F ′, candidate p
is an R-winner of the resulting election?

While this definition is quite complicated, it captures some
important features of campaigning. For example, the use of
threshold functions allows us to model voters who are unwill-
ing to change the position of the preferred candidate beyond
a certain range, irrespective of the strength of the campaign.
The fact that different shift actions have different costs mod-
els the fact that particular actions (for example, airing TV
spots or organizing meetings) may come at different costs.

Relation to Standard Shift Bribery. It is now necessary
to comment on the relation between our Combinatorial
Shift Bribery problem and its noncombinatorial variant,
Shift Bribery [11, 12]. If we restrict our shift actions such
that each shift action has a positive entry for exactly one
voter, then—in effect—we obtain Shift Bribery for the
case of convex price functions [5]. This is a very general
variant of the Shift Bribery problem (but nonetheless not
the most general one) for which, for example, all the known
NP-hardness results hold. We decided not to complicate our
definition further, to obtain a full generalization. As we will
see below, doing so would obfuscate the problem without
visible gain.

Hardness Result. The problem as defined above is so
general that it allows for the following, sweeping, hardness
result.2

Theorem 1. Both Plurality-CSB and Borda-CSB are
(weakly) NP-hard even for five voters and two candidates.

Proof (Construction only). We reduce from the fol-
lowing (weakly NP-hard) variant of the Subset Sum prob-
lem. We are given a set A := {a1, . . . , an} of integers and
we ask for the existence of a nonempty set A′, A′ ⊆ A, such
that

∑
ai∈A′ ai = 0.

Note that for elections with two candidates Plurality and
Borda coincide. Given an instance A = {a1, . . . , an} of
our variant of Subset Sum, we construct an instance of
Plurality-CSB with two candidates (indeed, since Borda
and Plurality coincide for elections with two candidates, our
hardness result transfers to Borda-CSB).

We take two candidates d and p, two voters, v1 and v2,
preferring p, and three voters, v3, v4, and v5, preferring d.
For each element ai ∈ A we create one shift action fi with
effect ai on v1, effect −ai on v2, effect 1 on v3, and no
effect on the other two voters. Each shift action has the
same unit cost. The voter threshold functions are as follows.
Candidate p is shifted to the last position for v1 and v2 if
the effect on these voters is negative (that is, π1(−1) =
π2(−1) = −1). Candidate p is shifted to the top position
for the third voter if the effect is positive (that is, π3(1) = 1).
We set the cost of each shift action to be one and we set our
budget to be n.

Effectively, Theorem 1 shows that studying large-scale ef-
fects of campaign actions through the full-fledged R-CSB
problem leads to a hopelessly intractable problem as we ob-
tain hardness even for elections with both a fixed number of
candidates and a fixed number of voters.
2Note, however, that we prove weak NP-hardness. That
is, our result may not hold if we assume that all occurring
numbers are encoded in unary. On the contrary, all other
hardness proofs in this paper give strong hardness results
and are independent of such number encoding issues.

Restriction of CSB. Throughout the rest of the paper,
we assume the individual threshold functions to be iden-
tity functions (that is, for each voter i and each integer t,
it holds that πi(t) = t) and we assume each shift action to
have the same unit cost. Note that the instances built in the
proof of Theorem 1 satisfy these restrictions and, so, con-
sidering harder instances is beyond point. Notably, however
we will consider restricted types of shift actions as well (see
Section 4).

Our restrictions on the costs and on the threshold func-
tions require discussion. First, identity threshold functions
mean that we model societies that are prone to propaganda.
Second, assuming that every shift action has the same unit
cost models settings where the costs of particular campaign
actions are similar enough that small differences between
them are irrelevant; the actual number of actions we choose
to perform is a sufficiently good approximation of the real
cost. This is true, for example, for the case of organizing
meetings with voters, which often have comparable prices.
It is also likely to be the case when shift actions model ac-
tions such as airing TV spots: each spot has a similar cost to
produce/broadcast. The greatest disadvantage of assuming
unit costs is that we no longer can model mixed campaigns
that use actions of several different types (meetings with
voters, TV spots, web campaigns, etc.).

Considered Parameters. We consider the influence of
the following parameters on the computational complex-
ity of our CSB problems: (1) the number n of vot-
ers, (2) the number m of candidates, (3) the budget B,
(4) the maximum effect Γ of a single shift action (that

is, Γ := maxf∈F max1≤i≤n f
(i) where f (i) denotes the ith

position of the vector f), and (5) the maximum num-
ber Λ of voters affected by a single shift action (that is,

Λ := maxf∈F |{i : f (i) 6= 0}|).

4. RESULTS
It turns out that even with the above restrictions in place,

Combinatorial Shift Bribery is computationally hard
in many settings. Thus, what we present here is our quest
for understanding the border between tractability and in-
tractability of CSB. To this end, we employ the following
techniques and ideas: (1) we seek both regular complexity
results (NP-hardness results) and parameterized complex-
ity results (FPT algorithms, W[1] and W[2]-hardness results,
XP algorithms) (2) we consider structural restrictions on the
sets of shift actions available, and (3) we seek approximation
algorithms and inapproximability results.

We consider the following families of shift actions:

Unrestricted Shift Actions. Here we put no restrictions on
the allowed shift actions; this models the most general (and,
naturally, the least tractable) setting.

Bounded-Effect Shift Actions. Here we consider a pa-
rameter Γ, and require that for each shift action f =
(f (1), . . . , f (n)), it holds that for each j (1 ≤ j ≤ n), we

have |f (j)| ≤ Γ. This is still a very general setting, where
we assume that each campaigning action has only a limited
impact on each voter.

Unit-Effect Shift Actions. This is a class of bounded-effect
shift actions for Γ = 1. For each given voter, applying a
given shift action can either leave the preferred candidate p
unaffected or it can shift p one position up or down.
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Interval Shift Actions. This a subclass of unit-effect shift ac-
tions that never affect voters negatively, and where for each
shift action there is an interval of voters that are affected
positively (the interval is with respect to the order of the
voters in the input collection V ). This class of shift actions
models campaigns associated with a time window where cer-
tain voters can be reached or campaigns that are local to
given neighborhoods3 (for example, that include putting up
multiple posters, organizing meetings, etc.).

Unit-Effect on Two Voters Shift Actions. This is a subclass
of unit-effect shift actions that affect two voters at most.
We focus on shift actions that affect both voters positively,
denoted as (+1,+1)-shift actions, and that affect one voter
positively and one voter negatively, denoted as (+1,−1)-
shift actions. The reason for studying these families is not
because they model particularly natural types of election
campaigns, but rather to establish the limits of tractability
for our problem. For example, we consider (+1,−1)-shift
actions to understand how intractable are shift actions that
have negative effects; (+1,−1)-shift actions are the simplest
shift actions of this type that may be useful in the campaign
(one would never deliberately use (−1,−1)-shift actions).

Figure 1 presents graphically the difference between inter-
val shift actions and unit-effect on two voters shift actions.

The remainder of this section has the following structure.
First, in Section 4.1, we show relations of Plurality-CSB
to the problem of combinatorial control by adding voters,
establishing quite general hardness results (applied already
to unit-effect shift actions). Then, in Section 4.2, we present
a series of strong hardness results covering all our classes
of shift actions for very restrictive sets of parameters (for
example, many of our results apply already to the case of
two candidates). Then, in Sections 4.3 and 4.4, we present
some ways of dealing with our hardness results. Table 1
gives an overview of our main results.

4.1 Connection to Combinatorial Control
The study of combinatorial variants of problems model-

ing ways of affecting election results was initiated by Chen
et al. [7], who considered combinatorial control by adding
voters (Comb-CCAV) for the Plurality rule and the Con-
dorcet rule. It turns out that for the Plurality rule we
can reduce the problem of (Combinatorial) CCAV to
that of (Combinatorial) Shift Bribery. For the non-
combinatorial variants of these problems this does not give
much since both are easily seen to be polynomial-time
solvable. However, there are strong hardness results for
Plurality-Comb-CCAV which we can transfer to the case of
Plurality-CSB. Formally, Plurality-Combinatorial-CCAV
is defined as follows [7].

Definition 3. An instance of Plurality-Comb-CCAV con-
sists of a set C of candidates with a preferred candidate
p ∈ C, a collection V of registered voters, a collection W of
unregistered voters, a bundling function κ : W → 2W (for

3In the neighborhood scenario, we take the simplified view
that a society of the voters lives on a line. Of course, it
would be more natural to take two-dimensional neighbor-
hoods into account. We view this as an interesting direction
for future research, but for the time being we consider as
simple settings as possible. In the time window scenario, a
natural ordering of the voters is the point of time when they
cast their votes or can be affected by the campaign.

1

1

1

1

$1

(+1,−1)

1

1

1

1

$1

(+1,+1)

1

z

$1

1z

Figure 1: Restrictions on the shift actions. We visualize
(from left to right) a shift action“(+1,−1)”with effect of +1
on one voter and effect of −1 on another voter, a shift action
“(+1,+1)” with effect of +1 on two voters, and a shift action
with effect of +1 on an interval of size z “1z”. The intended
interpretation is that voters are listed vertically, from top to
bottom.

each w ∈ W , it holds that w ∈ κ(w)), and a nonnegative
integer k. Each voter has a preference order over C. We
ask for the existence of a collection W ′ ⊆ W of at most
k voters such that p is a winner of the modifed election
(C, V ∪

⋃
w′∈W ′ κ(w′)).

Intuitively, for each unregistered voter w ∈W , we have his
or her bundle, κ(w) (given explicitly in the input), such that
when we add w to the election (for example, by somehow
convincing him or her to vote), all the voters in his or her
bundle also join the election (for example, people choose to
vote under an influence of a friend).

Theorem 2. Plurality-Comb-CCAV is polynomial-time
many-one reducible to Plurality-CSB. For an instance of
Plurality-Comb-CCAV with m candidates, the reduction
outputs an instance with m+ 1 candidates.

The idea of the proof is as follows. We create an election
with both the registered and unregistered voters present.
For the unregistered voters that rank p first, we put a new
candidate d on top, such that shifting p forward has the
effect of “adding” this voter. For the unregistered voters
that rank some candidate other than p first, we shift p to
the top, such that shifting p back (with a negative effect
of a shift action) has the effect of “adding” this voter (we
also need some additional voters to maintain the same score
differences as in the original control instance). Using this
reduction and the results of Chen et al. [7], we obtain the
following.

Corollary 3. Plurality-CSB is W [2]-hard with respect
to parameter B even if m = 3, it is W [1]-hard with respect
to parameter B even for shift actions with unit effect on up
to 6 voters, and it is NP-hard even for shift actions with unit
effects on up to 4 voters.

4.2 Hardness Results
The results from the previous section show that we are

bound to hit hard instances for Combinatorial Shift
Bribery even in very restricted settings. Now, we explore
how restrictive these hard settings are.

We start by considering unit-effect shift actions. If
the allowed effects are positive only, then we obtain NP-
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Table 1: Overview of our results. We show exact algorithms and approximation algorithms for Plurality-CSB and Borda-CSB,
for different restrictions on the shift actions (see Figure 1). Note that all of the variants are XP for parameter B. Recall that
n denotes the number of voters and m denotes the number of candidates.

shift actions rule exact complexity approximability

regular Shift Bribery Plurality polynomial-time solvable ([12]) —

(convex prices)
Borda NP-complete but in FPT for B [5, 12]

2-approximable in poly. time [11, 12]
FPT-approximation scheme for n [5]

unit effect Both
W[2]-h for B even if m = 2 (Thm. 4) inapproximable even in

XP for n (Prop. 10) FPT-time for B and m = 2 (Thm. 5)

(+1,−1)

Plurality FPT for n (Thm. 11) —

Borda W[1]-hard for n (Thm. 8) —

Both
NP-h even if m = 2 (Thm. 6) inapproximable

W[1]-h for B and m combined (Thm. 7) even if m = 2 (Thm. 6)

(+1,+1)
Plurality FPT for n (Thm 11) —

Both W[1]-h for B and m combined (Thm. 7)
2-approximable

in poly. time (Thm. 12)

1z-intervals
Plurality FPT for n (Thm. 11) z-approximable in poly. time (Thm. 12)

Borda — 2z-approximable in poly. time (Thm. 12)

Both W[1]-h for B (Thm. 9) 2-approximable in mz time (Thm. 14)

hardness/W[2]-hardness for parameterization by the bud-
get B. If we allow also negative unit-effects, we even go
beyond any hope for an approximation algorithm, even if the
approximation algorithm was allowed to run in FPT time for
parameter B. Quite strikingly, these results hold even if we
only have two candidates.

Theorem 4. Plurality-CSB and Borda-CSB are both
NP-hard and W[2]-hard for the parameter B, even for two
candidates and even if each shift action has effects of either
+1 or 0 on each voter.

Theorem 5. Unless W[2] = FPT, both Plurality-CSB
and Borda-CSB are inapproximable even in FPT-time for
the parameter B, even for two candidates and even for unit-
effect shift actions.

Proof. Let (S, X, h) be a Set Cover instance. We con-
struct an instance of Plurality-CSB with two candidates.
Since Borda and Plurality coincide for elections with two
candidates, our hardness result transfers to Borda-CSB.

For each element xi ∈ X, create |S| element vot-

ers v1
i , . . . , v

|S|
i , each with preference order d � p, and for

each set Sj ∈ S create a set voter v0
j with preference order

p � d. Create |S| · |X|+ |S| − 2h dummy voters, each with
preference order d � p. The set F of shift actions contains,
for each set Sj , a shift action fj having an effect of 1 on
each element voter corresponding to an element of the set
and an effect of −1 on the set voter corresponding to the
set. Finally, set B := h. This completes the construction.

Next, we show that there is a set cover of size h if and
only if there is a successful set of shift actions of size h.

For the“only if”part, assume that there is a set cover S ′ of
size at most h. Then, F ′ = {fj | Sj ∈ S ′} is a successful set
of shift actions: since S ′ is a set cover, p will be the preferred
candidate for all |S|·|X| element voters and |S|−h set voters
(corresponding to the sets not from the set cover) and d will
be the preferred candidate for all |S| · |X|+ |S|− 2h dummy

voters and for h set voters (corresponding to the sets from
the set cover). Hence, d and p tie as winners.

For the “if” part, assume that there is a successful set of
shift actions F ′ ⊆ F of size at most h. Then, p must be
the preferred candidate for all element voters in the bribed
election: if there is an element voter with d � p, then there
are |S| − 1 further element voters with d � p (namely those
being identical with respect to the effect of the shift actions).
However, there will be in total at most |S|(|X| − 1) element
voters and |S| set voters preferring p, but at least |S| · |X|+
|S| − 2h dummy voters and |S| element voters preferring d.
It follows that S ′ := {Sj | fj ∈ F ′} must be a set cover in
order to make p win the election, and the size of the set S′

is at most h due to the budget being h.
Finally, we show that Plurality-CSB is inapproximable

even in FPT time when parameterized by the budget. As-
sume, towards a contradiction, that a set of shift ac-
tions F ′ ⊆ F with |F ′| > B exists. Then, in the bribed
election, at least |S| · |X|+ |S| − 2h dummy voters and also
|F ′| ≥ h+1 set voters prefer d, but at most |S| · |X| element
voters and at most |S| − (h + 1) set voters prefer p. Thus,
d is the unique winner. Hence, any successful bribery action
must be optimal and any FPT-algorithm for Plurality-CSB
(parameterized by the budget) would solve the W[2]-hard
problem Set Cover (parameterized by the solution size) in
FPT time; a contradiction to FPT 6= W[2].

In the above theorems we do not limit the number of vot-
ers affected by each shift action. Even if we consider only
(+1,−1)-shift actions, then the problem remains NP-hard
and hard to approximate even for two candidates.

Theorem 6. Unless P = NP, both Plurality-CSB and
Borda-CSB neither can be solved exactly nor can be approx-
imated in polynomial time even for two candidates and even
if we only have (+1,−1)-shift actions.
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Note that, compared to Theorem 5, Theorem 6 does not
yield W[2]-hardness for the parameter budget B; our proof
uses a reduction from Set Cover in which the value of
the budget is the size of the universe set X. If we insist
on parameterized hardness for unit effects on two voters,
then we have to accept larger sets of candidates. However,
this increase is not too large: we show W[1]-hardness of
CSB jointly parameterized by the budget and the number
of candidates.

Theorem 7. Both Plurality-CSB and Borda-CSB are
W[1]-hard for the combined parameter (m,B), even if we ei-
ther only have (+1,−1)-shift actions or only have (+1,+1)-
shift actions.

Proof. We give a parameterized reduction from the
W[1]-hard Clique problem, parameterized by the solu-
tion size, to Plurality-CSB, parameterized by (m,B), with
(+1,+1)-shift actions (we omit the other cases due to space
constraints).

Let (G, h) be an instance of Clique with V (G) =
{u1, . . . , un′} and E(G) = {e1, . . . , em′}. We create an in-
stance of Plurality-CSB as follows. The set of candidates
is {p} ∪ D, where D = {d1, . . . , dh−1}. For each vertex
ui ∈ V (G), we create a vertex voter vi with preference order
−→
D � p. Moreover, we create h dummy voters with prefer-

ence order
−→
D � p each, and n′−h dummy voter with prefer-

ence order p �
−→
D each. For each edge {ui, uj} ∈ E(G), we

create a shift action f{ui,uj} with effect 1 on the vertex vot-
ers vi and vj and effect 0 on all other voters. Finally, we set
the budget to B :=

(
h
2

)
. This completes the construction.

We assume that d1 is ranked first in the order
−→
D . Observe

that we have n′ vertex voters and h dummy voters that rank
d1 first. We also have n′−h dummy voters that rank p first.
Hence, to make p win the election, one needs h additional
voters to rank p first (and, in effect, not rank d1 first).

It remains to show that (G, h) contains a clique of size
at most h if and only if our constructed instance contains a
successful set of shift actions F ′ of size at most h.

For the “only if” part, let H ⊆ V (G) be a set of h vertices
forming a clique and E′ ⊆ E(G) be the set of edges be-
tween vertices from H. Then, observe that F ′ = {f{ui,uj} |
{ui, uj} ∈ E′} is a successful set of shift actions: for each
vertex voter vi with ui ∈ H, candidate p is shifted h − 1
positions forward. This means that h vertex voters rank p
first and p ties as a winner of the election.

For the “if” part, let F ′ be a successful set of shift actions.
To make p a winner of the election, p must be shifted to
the top position in at least h vertex voters (dummy voters
cannot be affected). That is, in total p must be shifted
h · (h − 1) positions forward. Since F ′ is of size at most
B =

(
h
2

)
= h ·(h−1)/2 and each shift action affects only two

vertex voters, F ′ must be of size exactly
(
h
2

)
affecting exactly

h vertex voters. By construction, this implies that there are(
h
2

)
edges in G incident to exactly h different vertices which

is only possible if these h vertices form a clique.

It is quite natural to consider CSB also from a different
perspective. Instead of asking what happens for a small
number of candidates, we might ask about the complexity
of CSB for a small number of voters (see, for example, the
work of Brandt et al. [4] for some motivation as to why
looking at elections with few voters is interesting). In this

case we obtain hardness for Borda only; we will show later
that Plurality-CSB is in FPT for this parameter.

Theorem 8. Borda-CSB is W[1]-hard with respect to the
number n of voters, even for (+1,−1)-shift actions.

Finally, we consider interval shift actions. In the above
theorems we allowed shift actions to have non-zero effects
on two voters each, but these two voters could have been
chosen arbitrarily. Now we show a hardness result for the
case where we can positively affect multiple voters, but these
voters have to form a consecutive interval in the election.

Theorem 9. Both Plurality-CSB and Borda-CSB are
NP-hard even if each shift action has effect 1 on a consec-
utive interval interval of z voters and effect 0 on all other
voters.

A brief summary of the results from this section is that R-
CSB is highly intractable. Theorems 4, 5, and 6 show that
it is computationally hard (in terms of NP-hardness, W[2]-
hardness, and inapproximability even by FPT algorithms)
both for Plurality and Borda even for various very restricted
forms of unit-effect shift actions, even for two candidates.
This means that, in essence, the problem is hard for all
natural voting rules, because for two candidates all natural
voting rules boil down to the Plurality rule.

Further, Theorems 7 and 9 show that our problems are
W[1]-hard even if we take the number of candidates and the
budget as a joint parameter, even for extremely restricted
shift actions. The problem remains hard (for the case of
Borda) when parameterized by the number of voters (The-
orem 8). On the contrary, for the case of Plurality, for this
parameter we will show tractability.

4.3 Exact Algorithms
In spite of the pessimism looming from the previous sec-

tion, we now show two exact FPT and XP algorithms for
R-CSB; in Section 4.4 we present some efficient approxima-
tion algorithms.

We show an XP algorithm for the case of bounded-effect
shift actions (which include all unit-effect shift actions) for
our problem, when parameterized by the number of voters.

Proposition 10. If the maximum effect is upper-
bounded by a constant, then both Plurality-CSB and Borda-
CSB are in XP for the parameter budget B.

Proposition 10 holds even if each shift action comes at an
individual cost and if each voter has an individual threshold
function. By expressing our problem as an integer linear
program (ILP) and by using a famous result of Lenstra [19],
we can strengthen the XP-membership to FPT-membership,
for the case of Plurality.

Theorem 11. For bounded-effect shift actions, Plurality-
CSB is in FPT for the parameter number n of voters.

Proof. Given an instance I of Plurality-CSB with n vot-
ers, our algorithm proceeds as follows. First, we guess a
subset of the voters for whom we will guarantee that p is
ranked first (there are 2n guesses to try). For each guessed
set of voters, we test whether p would be a winner of the
election if p was shifted to the top position by the guessed
voters and was not ranked first by the remaining voters. For

73



each set of guessed subset V ′ of voters for which this test is
positive, we check whether it is possible to ensure (by ap-
plying shift actions whose cost does not exceed the budget)
that the voters from V ′ rank p first. We do so as follows.

Let Γ be the value bounding, component-wise, the effect
of each shift action. Observe that there are at most (2Γ+1)n

types of different shift actions. For each shift action type z,
we introduce a variable xz denoting the number of times a
shift action of type z is present in the solution. For each
voter vi, denote by svi(p) the position of p in the original
preference order of vi. For each voter vi ∈ V ′, we add the
following constraint:∑

γ∈[−Γ,Γ]

(
γ
∑
{z:fz has an effect of γ on vi} xz

)
≥ svi(p).

This ensures that p is indeed shifted to the top position in
vi’s preference list. We add another constraint:

∑
xz ≤ B,

ensuring that the solution respects the budget. Finally, for
each shift action type z we add a constraint ensuring that
we use at most as many shift actions of type z as there are
available in the input. This finishes the description of the
ILP. By a result of Lenstra [19], we can solve this ILP in FPT
time, because we have at most (2Γ + 1)n integer variables.

Correctness follows from the fact that, for any “yes”-
instance, there must be at least one good guess of V ′; for
this V ′, the ILP will compute a correct answer.

Theorem 11 is the reason why Theorem 8 applies to Borda
only.

4.4 Approximation Algorithms
We now explore the possibility of finding approximate so-

lutions for Combinatorial Shift Bribery. Theorems 5
and 6 show that we cannot hope for approximate results
when shift actions have negative effects. Thus, in this sec-
tion, we focus on unit-effect shift-actions with positive effects
only. We can make good use of the approximation algo-
rithms for the non-combinatorial variant of Shift Bribery.

Theorem 12. If each shift action has effects of ei-
ther 0 or 1 on each voter, then Plurality-CSB can be Λ-
approximated in polynomial-time and Borda-CSB can be 2Λ-
approximated in polynomial time, where Λ denotes the max-
imum number of voters affected by a shift action.

Proof. We consider the case of Borda-CSB first. The
idea is to translate the instance into a regular Borda-Shift
Bribery instance with convex price functions and apply
the known 2-approximation algorithm [11, 12] and “greedily
reconstruct” the corresponding solution with combinatorial
shift actions.

Let λ(i) denote the number of shift actions affecting
voter i. We copy the election from our Borda-CSB instance
and set the price function for each voter i such that, for
j ≤ λ(i), shifting p by j positions costs j and for j > λ(i)
shifting p by j positions costs Bj (note that the exponen-
tial function Bj ensures that the price functions are convex
and that one cannot shift p by more than λ(i) positions).
Then, we apply the 2-approximation algorithm whose solu-
tion yields, for each voter i, the number s(i) of positions p is
shifted in the preference list of voter i. The cost of this solu-
tion is

∑
1≤i≤n s(i). To obtain a solution F ′ for the Borda-

CSB instance we greedily select shift actions until p was
shifted at least s(i) positions for each voter i. Observe that
|F ′| ≤

∑
1≤i≤n s(i). Now, assume towards a contradiction

that there is a successful set of shift actions F ′′ smaller than
|F ′|/2Λ. Then, in this solution p was shifted less than |F ′|/2
positions in total, because each shift action affects at most
Λ voters. However, then there would also be a solution for
the regular Shift Bribery instance with costs smaller than∑

1≤i≤n s(i)/2; a contradiction to the fact that we applied
a 2-approximation.

The case of Plurality-CSB follows analogously, but we
use an exact polynomial-time algorithm for Plurality-Shift
Bribery instead of the 2-approximate one.

We can achieve better approximation guarantees for
Borda, when further restricting the allowed shift actions.
The next result follows by finding (in polynomial-time) a
b-matching [17] in a naturally constructed multigraph, fol-
lowed by using a general framework for 2-approximation al-
gorithms for Shift Bribery [11].

Theorem 13. Borda-CSB is 2-approximable in polyno-
mial time for (+1,+1)-shift actions.

The above result is mostly of theoretical value: it shows
that indeed we can retain high-quality polynomial-time
approximation algorithms when some combinatorial shift-
action effects are allowed. However, from a practical point
of view, it is more interesting to see what we can achieve
for, say, interval shift actions. Using the ideas of Elkind and
Faliszewski [11] and a natural generalization of the maxi-
mum interval cover algorithm of Gabow [17], we obtain a
2-approximation algorithm for CSB with interval shift ac-
tions. Unfortunately, the algorithm requires XP time, pa-
rameterized by the longest interval’s length.

Theorem 14. Both Plurality-CSB and Borda-CSB can
be 2-approximated in XP-time for interval shift actions, pro-
vided that we take z, the upper bound on the number of voters
affected by each shift action, as the parameter.

We see that it is still possible to achieve some approxima-
tion algorithms for our problems. However, the settings in
which our algorithms are efficient are quite restrictive. This
means that in practice one should seek good heuristics and
use our algorithms only to guide the initial search.

5. CONCLUSIONS
We have defined and studied the computational complex-

ity of a combinatorial variant of the Shift Bribery prob-
lem [5, 11, 12]. Our research was motivated by the desire
to understand the computational difficulty imposed by cor-
related, large-scale effects of campaign actions. In this re-
spect, our work was motivated by the combinatorial study
of election control [7]. We have found that our problem,
Combinatorial Shift Bribery, is highly worst-case in-
tractable in multiple ways. Nonetheless, we found some ini-
tial positive results. Our results suggest studying further
restrictions of the problem: for example, parameterization
by the number of available shift actions gives immediate
FPT results, so maybe there are other natural parameteri-
zations that lead to more positive results? It would be also
interesting to consider domain restrictions regarding voters’
preferences (single-crossing seems particularly natural in the
context of interval shift actions).
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