
Learning in Multi-agent Systems with Sparse Interactions
by Knowledge Transfer and Game Abstraction

Yujing Hu, Yang Gao
∗

State Key Laboratory for Novel Software
Technology, Collaborative Innovation Center of

Novel Software Technology and Industrialization
Nanjing University, Nanjing, China

huyujing.yujing.hu@gmail.com,
gaoy@nju.edu.cn

Bo An
School of Computer Engineering
Nanyang Technological University

Singapore
boan@ntu.edu.sg

ABSTRACT
In many multi-agent systems, the interactions between agents
are sparse and exploiting interaction sparseness in multi-
agent reinforcement learning (MARL) can improve the learn-
ing performance. Also, agents may have already learnt some
single-agent knowledge (e.g., local value function) before the
multi-agent learning process. In this work, we investigate
how such knowledge can be utilized to learn better policies
in multi-agent systems with sparse interactions. We adopt
game theory-based MARL as the basic learning approach
since it can coordinate agents better. We contribute three
knowledge transfer mechanisms. The first one is value func-
tion transfer, which directly transfers agents’ local value
functions to the learning algorithm. The second one is se-
lective value function transfer, which only transfers the val-
ue functions in states where the environmental dynamics
change slightly. The last mechanism is model transfer-based
game abstraction, which further improves the former two
mechanisms by abstracting the one-shot game in each state
and reducing equilibrium computation. Experimental re-
sults in benchmarks show that with the three knowledge
transfer mechanisms, all of the tested game theory-based
MARL algorithms are drastically improved and also achieve
better asymptotic performance than the state-of-the-art al-
gorithm CQ-learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

Keywords
Multi-agent Reinforcement Learning, Knowledge Transfer,
Multi-agent Systems, Sparse Interactions

∗Corresponding Author

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c⃝ 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Multi-agent reinforcement learning (MARL) has been wide-

ly studied in recent years. It is an important approach
for solving sequential decision problems in which multiple
agents interact with each other and the environment simul-
taneously. A variety of mathematical models are adopted
to represent a multi-agent system (MAS), such as Markov
games [16], and decentralized partially observable Markov
decision process (Dec-POMDP) [1]. In most of these mo-
dels, agents are coupled with each other in the joint state
space and joint action space. However, such coupling is so
tight that it seldom applies in practice since interactions
between agents may not happen in all states and always in-
volve all agents. In fact, in many multi-agent systems, the
interactions between agents are sparse. Imagine that two
intelligent rovers are working together to mine valuable ore
on the Mars surface. The small rover is for ore discovery and
the big one is for transportation. The interaction between
the two rovers occurs only when the small one picks up one
valuable stone and hands it to the big one.

Explicitly exploiting sparse interactions in a MAS can
greatly improve the performance of multi-agent reinforce-
ment learning. Earlier work makes use of coordination gra-
phs to specify the coordination dependencies between agents
in particular states [7, 8, 14]. However, constructing such
graphs requires to specify the interaction areas in advance.
This motivates the more recent work that learns the inter-
action areas during the learning process [4,9,13,17,18]. For
example, CQ-learning [4] and FCQ-learning [9] identify the
coordinating states from statistical information of rewards
and learn an agent-centric representation of the state space.
Based on this representation, agents can determine in each
state whether to learn independently or jointly.

However, it is still possible to further improve the perfor-
mance of MARL in a sparse-interaction MAS. Interesting-
ly, we find that in many tasks, agents have already learnt
(or are able to learn) some kind of single-agent knowledge
(e.g., local value function, local policy) before the multi-
agent learning process and utilizing such knowledge during
learning may be beneficial. Suppose a housewife buys a
robot vacuum cleaner to clean the house. After the robot
works for a few months, she decides to buy another robot
so that her house can be cleaned more quickly. In this sit-
uation, the two robots have no need to learn from scratch

753

in the two-agent cleaning task since the old robot has learnt
some knowledge about the house.
Therefore, in this work, we investigate how such single-

agent knowledge can be utilized in multi-agent reinforcement
leaning to learn better (joint) policies in multi-agent systems
with sparse interactions. The underlying idea is that since
the interactions are sparse, each agent only needs to adapt
to the slightly changed environmental dynamics based on
the knowledge in hand.
We propose to use game theory-based multi-agent rein-

forcement learning (MARL) [6, 10, 11] as the basic learn-
ing approach, which requires agents to play equilibrium s-
trategies in each state. Compared with the Q-learning-like
coordinating rule in previous algorithms [4, 17, 18], playing
equilibrium strategies is a more better way for coordination
since agents may still have conflicts in some states even if
they are working cooperatively. We then contribute three
knowledge transfer mechanisms to accelerate game theory-
based MARL. The first one is value function transfer (VFT),
which directly uses the agents’ previous local value functions
to initialize the value functions of the MARL algorithm. The
second mechanism, which is called selective value function
transfer (SVFT), conducts value function transfer only in
states where the changes of the agents’ local environmental
dynamics are small. We define similarity between MDPs to
model such changes and propose an approach to evaluate the
similarity value. Our last mechanism, model transfer-based
game abstraction (MTGA), further improves the former two
by reducing equilibrium computation. Like SVFT, MTGA
also evaluates the changes of the agents’ local environmen-
tal dynamics. But the evaluated results are used to abstract
the one-shot game played in each state.
Experimental results on benchmarks show that with the

three knowledge transfer mechanisms, all tested learning al-
gorithms (NashQ [10], CEQ [6], NegoQ [11]) are dramatical-
ly improved (e.g., achieving a jump start, better asymptotic
performance, and higher total reward) and also achieve bet-
ter asymptotic performance than the state-of-the-art algori-
thm CQ-learning [4].

2. BACKGROUND
We review some key concepts in multi-agent reinforcement

learning and related work in this section.

2.1 MDP and Markov Games
We start by reviewing the concept of Markov decision pro-

cess (MDP) as we will use it later. It is the fundamental
model of reinforcement learning (RL).

Definition 1. A Markov Decision Process is a tuple ⟨S,A,
R, T ⟩, where S is the state space, A is the action space of the
agent, R : S×A→ ℜ is the reward function, T : S×A×S →
[0, 1] is the transition function.

The objective of an agent in an MDP is to find an opti-
mal policy which maximizes the expected discounted sum of
rewards for each state s at each time step t:

V ∗(s) = max
π

Eπ

{ ∞∑
k=0

γkrt+k|st = s
}
, (1)

where π : S ×A→ [0, 1] denotes the policy of an agent, Eπ

stands for expectation under policy π, γ ∈ [0, 1) is a discount
factor, k is a future time step, and rt+k is the immediate
reward at the time step (t+k). This goal can be formulated
equivalently by

Q∗(s, a) = max
π

Eπ

{ ∞∑
k=0

γkrt+k|st = s, at = a
}
, (2)

where Q∗(s, a) stands for the optimal value of the state-
action pair (s, a). An optimal policy can be found by com-
puting the optimal state-value function V ∗ or the optimal
action-value function Q∗. One classic RL algorithm is Q-
learning [24], which iteratively approximates Q∗ by a simple
updating rule:

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)], (3)

where Q is the state-action value function, α ∈ [0, 1] is the
learning rate, (s, a) is the state-action pair visited currently,
r is the immediate reward given by the environment, and s′

is the next state.
Markov game is widely adopted as the model of multi-

agent reinforcement learning (MARL) [6, 10, 16]. It can be
treated as an extension of MDP to the multi-agent domain.

Definition 2. An n-agent (n ≥ 2) Markov game is a tuple
⟨N,S, {Ai}ni=1, {Ri}ni=1, T ⟩, where N is the set of agents,
S is the state space, Ai is the action space of agent i(i =
1, . . . , n). Let A = A1 × · · · ×An be the joint action space.
Ri : S × A → ℜ is the reward function of agent i and T :
S ×A× S → [0, 1] is the transition function.

In a Markov game, the accumulative discounted reward
of each agent is determined by the joint policy of all agents.
Denote the policy of agent i by πi : S × Ai → [0, 1] and
the joint policy of all agents by π = (π1, ..., πn). The state-
action value function of an agent i under a joint policy π
can be defined as

Qπ
i (s,

→
a) = Eπ

{ ∞∑
k=0

γkrt+k
i |st = s,

→
a

t
=

→
a
}
, (4)

where
→
a∈ A denotes a joint action and rt+k

i is the reward
received by agent i at time step (t + k). However, since
Qπ

i now depends on the actions of all agents, the concept of
optimal policy should be replaced with equilibrium policy.
To this end, several game theory-based MARL algorithms
are proposed [6, 10, 11], which combines equilibrium solu-
tion concepts in game theory with multi-agent reinforcement
learning. The key idea of these algorithms is to construct a
one-shot game in each state, let agents play an equilibrium
strategy, and update the value functions according to the
computed equilibrium.

2.2 MAS with Sparse Interactions
According to Definition 2, it can be found that both the

reward and transition functions are defined on the whole
joint state space and joint action space, which means that
in every joint state, all agents are coupled with each other.
However, such coupling is so tight that it seldom applies
in practice. In many multi-agent systems, the interactions
between agents are limited in particular areas.

Melo and Veloso [17] present a simple example of the so-
called multi-agent systems with sparse interactions. Figure
1 shows a map in which four robots should find a way to their
goals. In most areas, the robots can walk freely. However,
for each of the narrow doorways (the shaded grids), only
one robot can pass through it at one time, which means
that the robots should coordinate around the doorway. In
this system, the interactions between agents do not occur in
all states and do not involve all agents all the time.

754

Robot 4

Goal 2

Robot 3

Goal 1

Goal 3

Robot 1

Goal 4

Robot 2

Doorway

Figure 1: A simple example of multi-agent systems
with sparse interactions

2.3 Related Work
Several ways have been investigated to exploit the spar-

sity of interactions in a multi-agent system. Earlier work
adopts coordination graphs (CG) to represent the interac-
tions between agents [7, 8, 13, 14]. For example, based on
the coordination graphs constructed beforehand, Kok and
Vlassis [14] represent the global value function by a set of
local value rules. Each agent only needs to update the val-
ue rules in which it is involved. Later, they propose another
approach that learns the coordination graphs from experien-
ce [13]. However, the CG-based approaches are limited to
cooperative tasks where the agents have common interests.
More recently, Melo and Veloso [17] introduced a two-

layer extension of Q-learning for exploiting the potential
sparse interactions in a Markov game. In this algorithm,
each agent should learn in each state whether to act inde-
pendently or execute the additional action COORDINATE

with other agents. De Hauwere et. al propose a similar al-
gorithm CQ-learning [4], which identifies the coordinating
states from statistical information of the rewards. Later,
CQ-learning was extended to FCQ-learning [9] with an en-
hanced mechanism for detecting the coordinating states.
As illustrated by the example of robot vacuum cleaners

in Section 1, in some multi-agent systems, agents may have
learnt single-agent knowledge before the multi-agent learn-
ing process. In this next section, we discuss how such know-
ledge can be utilized to improve the performance of multi-
agent reinforcement learning. A few approaches for know-
ledge transfer in multi-agent systems have been proposed,
such as parallel transfer [20], equilibrium transfer [12], and
training a classifier to generalize knowledge [23]. In this
work, we mainly focus on knowledge transfer in multi-agent
systems with sparse interactions and investigate what kind
of knowledge and how the knowledge can be utilized.

3. KNOWLEDGE TRANSFER
Most previous algorithms simply use a Q-learning-like rule

to coordinate agents [4, 17, 18]. Instead, we adopt game
theory-based MARL [6,10,11] as the basic learning approach.
The reason is that the equilibrium solution concepts adopt-
ed in game theory-based MARL can essentially deal with
the potential conflicts between agents (e.g., the doorways in
Figure 1) while the Q-learning-like rule cannot.
In general, game theory-based MARL can be generalized

as the high-level framework in Algorithm 1. In each state s,

a joint action
→
a is chosen according to the equilibrium com-

puted by the process Ω (line 5). Here Ω(Q1(s), . . . , Qn(s))
represents computing an equilibrium according to the state-

action values of each agent in s. After taking the joint action
→
a , each agent i receives a reward ri and the next state s′

is observed (line 7). The value function Qi of each agent i
then is updated according to the rule

Qi(s,
→
a)← (1− α)Qi(s,

→
a) + α(ri + γΦi(s

′)), (5)

where Φi(s
′) is the expected value of the equilibrium in state

s′ for agent i.

Algorithm 1: The general framework of game theory-
based MARL
Input: Learning rate α, discount factor γ, exploration factor ϵ

1 Initialization. ∀s ∈ S, ∀i ∈ N, ∀ →
a ,Qi(s,

→
a)← 0;

2 foreach episode do
3 Initialize state s;
4 repeat

5
→
a← Ω(Q1(s), . . . , Qn(s)) with ϵ-greedy policy;

/* Ω is for computing an equilibrium */
6 foreach agent i ∈ N do

7 Receive the experience (s,
→
a , ri, s

′);

8 Qi(s,
→
a)← (1− α)Qi(s,

→
a) + α(ri + γΦi(s

′));

/* Φi is the expected value of the

equilibrium in state s′ for agent i */

9 s← s′;

10 until s is a terminal state;

Let M = ⟨N,S, {Ai}ni=1, {Ri}ni=1, T ⟩ be a Markov game.
Like the previous work [4,17], we also assume that each agent
i ∈ N can perceive its local state and the state space S can
be factored as S = ×n

i=1Si. As stated in previous sections,
before learning in the Markov game M , each agent i may
have already learnt some kind of “single-agent knowledge”
with respect to its local states in Si and local actions in
Ai, such as a local value function, a local acting policy, and
empirical models of the local reward function and transition
function. Since the agents can act independently in most
of the (joint) states, reusing such single-agent knowledge
may accelerate the multi-agent learning process. Inspired
by transfer learning [21], in the following, we propose three
knowledge transfer mechanisms for reusing different types of
single-agent knowledge.

3.1 Value Function Transfer
The most important knowledge learnt by a reinforcement

learning algorithm is the value function, which is also used
widely as the transferred knowledge in transfer learning [15,
22]. Our first knowledge transfer mechanism is value func-
tion transfer (VFT), which directly uses each agent’s lo-
cal value function learnt previously to initialize its value
function of joint state-action pairs in the MARL algorithm.
The underlying idea is that since the interactions between
agents are sparse, the multi-agent system can be treated as
an approximation of multiple independent MDPs, each of
which corresponds to one agent. In most joint states, the
agents can act as they do in the single-agent case accord-
ing to the transferred value functions. In the states where
interaction occurs, the MARL algorithm is able to learn a
coordinating policy for them. The corresponding algorithm
is shown in Algorithm 2.

After the initialization of the value function Q by each
agent i’s local value function qi, Algorithm 2 follows the
same process of game theory-based MARL in Algorithm 1.
Essentially, the transferred local value functions provide a

755

Algorithm 2: Value function transfer

Input: Learning rate α, discount factor γ, exploration factor ϵ,
local value function qi for each agent i

1 Initialize the state-action value function Q as follows;
2 foreach agent i ∈ N do
3 foreach state s ∈ S do

4 foreach joint action
→
a∈ A do

5 si ← agent i’s local state in s;

6 ai ← agent i’s action in
→
a ;

7 Qi(s,
→
a)← qi(si, ai);

8 The following is the same as in Algorithm 1;

relatively better initial acting policy, based on which the
MARL algorithm can learn an optimal policy (or rather
equilibrium policy) more quickly.

3.2 Selective Value Function Transfer
The first knowledge transfer mechanism VFT directly us-

es the agents’ local value functions to initialize the values
of all joint state-action pairs. Although such initialization
can lead the agents to choose better actions in most sta-
tes, however, it may cause a big penalty for the agents in
some particular states. For example, in Figure 1, suppose
that Robot 2 is in the grid right above the leftmost doorway
and Robot 3 is in the grid right under this doorway. In the
single-agent case, the best action for both the two robots
is to go through the doorway, which makes them closer to
their goals. But in the situation described above, if they still
perform the same action, collision will occur and neither of
them can successfully pass the doorway.
To avoid the “unchecked” initialization in VFT, in this

subsection, we propose our second knowledge transfer me-
chanism, which is called selective value function trans-
fer (SVFT). The key idea of SVFT is that for each agent
i, knowledge is transferred only in states where the local
environmental dynamics perceived by agent i are similar to
those in the single-agent case. Here, the local environmental
dynamics of agent i refer to its reward and transition mo-
dels with respect to its local state space Si and action space
Ai. In the following, we first propose a method for evaluat-
ing the changes of the agents’ local environmental dynamics
and then introduce the details of SVFT.

3.2.1 Evaluating The Changes of Local Environmen-
tal Dynamics

For a given Markov gameM = ⟨N,S, {Ai}ni=1, {Ri}ni=1, T ⟩,
we can construct each agent’s empirical local environment
model by conducting Monte Carlo trials with a random po-
licy. For each agent i, let Mi = ⟨Si, Ai, R

l
i, T

l
i ⟩ be its em-

pirical local environment model constructed in the Markov
game M and let M̂i = ⟨Si, Ai, R̂

l
i, T̂

l
i ⟩ be the MDP model of

its previous single-agent task. So the actual problem is to
evaluate how the two MDPs are similar in each state in the
local state space Si.
Note that a similar problem has been investigated in CQ-

learning [4] and FCQ-learning [9]. In CQ-learning, a local
state si of agent i is considered as unchanged if no difference
between the sampled immediate rewards and the expected
rewards in si is detected. However, the changes of immediate
rewards cannot reflect all information about how the envi-
ronmental dynamics change. FCQ-learning [9] takes future
rewards into consideration and uses a Kolmogorov-Smirnov

test (KS-test) to evaluate the changes in Q-values. As re-
ported by the authors, the KS-test cannot identify addition-
al changes caused by small fluctuations in the Q-values.

In an MDP, the states are not independent, but are relat-
ed to each other through the state transitions. Therefore,
the “relationship” between the states and how it changes are
the key to accurately evaluating the changes of the environ-
mental dynamics. We adopt the concept of state distance
proposed by Ferns et. al [5] to model the relationship be-
tween the states in an MDP.

Definition 3. Let Mi = ⟨Si, Ai, R
l
i, T

l
i ⟩ be an MDP of

agent i. For any two states si, s
′
i ∈ Si, the state distance

dMi(si, s
′
i) between si and s′i is defined as

dMi(si, s
′
i) = max

ai∈Ai

{
|Rl

i(si, ai)−Rl
i(s

′
i, ai)| +

γT K
(dMi

)(T
l
i (si, ai), T

l
i (s

′
i, ai))

}
,

(6)

where γ is the discount factor, and T K
(dMi

)(T
l
i (si, ai), T

l
i (s

′
i, ai))

is the Kantorovich distance between the probabilistic distri-
butions T l

i (si, ai) and T l
i (s

′
i, ai).

In short, the state distance dMi(si, s
′
i) between si and s′i

is their maximal weighted sum of the reward difference and
the Kantorovich distance1 between the state transition prob-
abilities. All information about the environmental dynamics
along the path between the two states is summarized into
this distance value.

Recall that our goal is to evaluate the similarity between
two MDPs in each state. Based on the state distance defined
above, we define this concept as follows.

Definition 4. Given two MDPs Mi = ⟨Si, Ai, R
l
i, T

l
i ⟩ and

M̂i = ⟨Si, Ai, R̂
l
i, T̂

l
i ⟩, for any state si ∈ Si, the similarity

between Mi and M̂i in si is defined as

DMi,M̂i
(si) =

√ ∑
s′i∈Si

(
dMi(si, s

′
i)− dM̂i

(si, s′i)
)2
, (7)

where dMi(si, s
′
i) and dM̂i

(si, s
′
i) are the state distances be-

tween si and s′i in Mi and M̂i, respectively.

From Eq. 7, it can be found that the changes of the dis-
tances between the state si and the other states all con-
tribute as a part of the similarity value DMi,M̂i

(si). That

is to say, DMi,M̂i
(si) reflects how the relationship between

states changes as we required. Algorithm 3 summarizes the
process of computing the similarities between two MDPs.
Compared with the KS-test on Q-values in FCQ-learning [9],
the MDP similarities quantify the changes of local environ-
mental dynamics and thus are more flexible. Furthermore,
the computing process in Algorithm 3 only runs once.

3.2.2 The SVFT Algorithm
There are mainly three steps in our second knowledge

transfer mechanism selective value function transfer
(SVFT). Firstly, we construct for each agent i an empiri-
cal MDP model Mi by Monte Carlo sampling in the Markov
game. Secondly, for each agent i, the similarities betweenMi

1The Kantorovich metric was originally used in mass trans-
portation theory to find the best total flow for a given net-
work. It exactly captures the property of state transitions
in an MDP.

756

Algorithm 3: Computing the similarities between two
MDPs

Input: Two MDP models Mi = ⟨Si, Ai, R
l
i, T

l
i ⟩ and

M̂i = ⟨Si, Ai, R̂
l
i, T̂

l
i ⟩

Output: The set of similarity values D
1 foreach state si ∈ Si do
2 D(si)← 0;

3 foreach state s′i ∈ Si do
4 Compute the state distance dMi

(si, s
′
i) and dM̂i

(si, s
′
i)

according to Eq. 6;

5 D(si)← D(si) + (dMi
(si, s

′
i)− dM̂i

(si, s
′
i))

2;

6 D(si)←
√
D(si);

and the MDP in its previous single-agent task M̂i are com-
puted. Note that in many single-agent RL algorithms [2,19],
the environment model is also learnt. Lastly, based on the
similarities computed in the second step, the local value
function of each agent is transferred only in the local states
where the similarity is small. The corresponding algorithm
is shown in Algorithm 4.

Algorithm 4: Selective value function transfer

Input: Learning rate α, discount factor γ, exploration factor ϵ,
local value function qi and local MDP model M̂i for
each agent i, a threshold value τ , an integer L for Monte
Carlo sampling

1 for episode = 1, . . . , L do
2 Perform Monte Carlo sampling with a random policy,

recording the rewards and state transitions;

3 foreach agent i ∈ N do
4 Mi ← the empirical MDP model of agent i;

5 Di ← the set of similarities between Mi and M̂i, computed
by Algorithm 3;

6 Transfer the local value functions as follows;
7 foreach agent i ∈ N do
8 foreach state s ∈ S do

9 foreach joint action
→
a∈ A do

10 si ← agent i’s local state in s;

11 ai ← agent i’s action in
→
a ;

12 if Di(si) ≤ τ then

13 Qi(s,
→
a)← qi(si, ai);

14 The following is the same as in Algorithm 1;

Compared with value function transfer (VFT) in Algori-
thm 2, the agents’ previous MDP models are also required
as knowledge in SVFT. The parameter τ is a threshold value
for controlling the value function transfer process. For each
agent i, value function transfer can be conducted in its lo-
cal state si only if the similarity between Mi and M̂i in si is
smaller than τ (lines 12−13). Note that a smaller similarity
value means “more similar” between two MDPs.

3.3 Model Transfer-Based Game Abstraction
The former two knowledge transfer mechanisms only mod-

ify the initialization of value functions in game theory-based
MARL. However, the learning process of game theory-based
MARL can be also improved by knowledge transfer. Recall
that a game theory-based MARL algorithm needs to com-
pute an equilibrium in each visited state, which is highly
computationally expensive (e.g., computing a Nash equili-
brium is a PPAD-hard problem [3]). In multi-agent systems
with sparse interactions, equilibrium computation can be
significantly reduced since in many states, there is no game

between the agents or the game does not involve all the
agents. To this end, we propose our third knowledge trans-
fer mechanism, model transfer-based game abstraction
(MTGA) in this subsection.

The basic idea of MTGA is to abstract the one-shot game
in each state into a smaller one. That is, to remove the
agents which do not have to join in the game. With few-
er number of agents, an equilibrium can be computed with
much less computational cost. In the context of game theory-
based MARL, the definition of one-shot game is as follows.

Definition 5. Given a Markov game M = ⟨N,S, {Ai}ni=1,
{Ri}ni=1, T ⟩, the one-shot game corresponding to a state s ∈
S is a tuple G(s) = ⟨N, {Ai}ni=1, {Qi(s)}ni=1⟩. Let A be the
joint action space. For each agent i, Qi(s) : A → ℜ is a set
containing all its state-action values in state s.

Obviously, if an agent i is independent to other agents in
a state s, it can be removed from the corresponding one-
shot game G(s). More accurately, if the local environmental
dynamics of agent i in state s are very similar to those in
its previous single-agent task, then it can be removed from
the game. Thus, the method for evaluating the similarities
between two MDPs can be also utilized to control the game
abstracting process. Based on the concept of MDP similarity
in Definition 4, we define an abstracted game as follows.

Definition 6. Given a Markov game M = ⟨N,S, {Ai}ni=1,
{Ri}ni=1, T ⟩, Let G(s) = ⟨N, {Ai}ni=1, {Qi(s)}ni=1⟩ be the
one-shot game in any state s ∈ S. Define a subset of N
by X = {i ∈ N |Di(si) > τ}, where si is the local state
of agent i in state s, Di(si) is the MDP similarity defined
in Definition 4, and τ is a threshold value. The abstract-
ed game of G(s) derived from X is defined as GX(s) =
⟨X, {Ai}i∈X , {Qi(s)}i∈X⟩.

In this definition, the set X contains all agents that are
considered to be related in the state s. If |X| < |N |, then
the abstracted game GX(s) has a smaller size than G(s).

By applying game abstraction in each state, the way of
learning in game theory-based MARL can be changed: (1)
for agents involved in the abstracted game, an equilibrium
is computed for them and learning can be conducted on-
ly in their reduced joint state-action space, (2) and for the
agents which are not in the abstracted game (i.e., indepen-
dent agents), learning is conducted only in their local state-
action space. Based on this idea, we propose the model
transfer-based game abstraction (MTGA) in Algorithm 5.

Like the SVFT mechanism in Algorithm 4, MTGA al-
so needs the agents’ previous MDP models for computing
the MDP similarities. The difference is that MTGA does
not transfer value functions and learns in a totally different
way. Also, each agent is not required to observe all joint sta-
tes and joint actions of the Markov game. In MTGA, each
agent i maintains two value functions Qi and qi, which are
used for joint learning and independent learning, respective-
ly. The state-action space of Qi is empty initially (line 1)
and can be extended dynamically (lines 8− 12). According
to the abstracted game GX(s) in each state s, joint learning
and independent learning are conducted for the agents in-
volved in GX(s) and independent agents, respectively (lines
20− 24). Note that the term Φi(s

′) (at lines 21 and 24) has
different meanings in different situations. If agent i is inde-
pendent in state s′, then Φi(s

′) = maxa′
i
qi(s

′
i, a

′
i), where s′i

is the local state of agent i in state s′. Otherwise, it repre-

757

Algorithm 5: Model transfer-based game abstraction

Input: Learning rate α, discount factor γ, exploration factor ϵ,
local MDP model M̂i for each agent i, a threshold value
τ , an integer L for Monte Carlo sampling

1 Initialize the joint state-action value function, ∀i ∈ N,Qi ← ∅;
2 Initialize the local state-action value function, ∀i ∈ N , ∀si ∈ Si,
∀ai ∈ Ai, qi(si, ai)← 0;

3 foreach episode do
4 Initialize state s;
5 repeat
6 X ← {i ∈ N |Di(si) > τ};
7 sg ← the joint state of the agents in X;
8 foreach agent i ∈ X do
9 if sg is not in the state space of Qi then

10 foreach joint action ag of the agents in X do
11 Extend Qi to include (sg, ag);
12 Qi(sg, ag)← 0;

13 GX(s)← ⟨X, {Ai}i∈X , {Qi(s)}i∈X⟩;
14 foreach agent i /∈ X do
15 ai ← argmaxa′

i
qi(si, a

′
i);

16 foreach agent i ∈ X do
17 ai ← the action sampled by the equilibrium of

GX(s) for agent i;

18
→
a← (a1, ..., an);

19 Receive the experience (s,
→
a , ri, s

′) for each agent i;
20 foreach agent i /∈ X do
21 qi(si, ai)← (1− α)qi(si, ai) + α(ri + γΦi(s

′));

22 foreach agent i ∈ X do
23 ag ← the joint action taken by the agents in X;

24 Qi(sg, ag)← (1− α)Qi(sg, ag) + α(ri + γΦi(s
′));

25 s← s′;

26 until s is a terminal state;

sents the expected value of the equilibrium computed in the
abstracted game of state s′.

4. EXPERIMENTS
In this section, the proposed knowledge transfer mecha-

nisms, value function transfer (VFT), selective value func-
tion transfer (SVFT), and model transfer-based game ab-
straction (MTGA), are evaluated in the multi-agent grid
world games presented by Melo and Veloso [17, 18], which
are shown in Figure 2. The game NTU has 4 agents and
the game NJU has 3 agents. All the other games have 2
agents. In all the games, agents are required to reach their
goals within a few steps and avoid collisions. In the 2-agent
games, the initial locations of the agents are denoted by cross
symbols and each of their goals is the initial location of the
other. In NTU and NJU, the initial location of each agent i
is denoted by the number i and its goal is denoted by Gi. In
each grid of a game, an agent can choose to move in one of
the four directions (UP, DOWN, LEFT, RIGHT). The shaded
grids are areas where any two agents pass simultaneously
will cause collision. In other grids, agents can walk freely.
We adopt Nash Q-learning (NashQ) [10], correlated Q-

learning (CEQ) [6], and negotiation-based Q-learning (Ne-
goQ) [11] as the basic learning algorithms and implement
the three knowledge transfer mechanisms on each of them.
For CEQ, we implement the utilitarian version (uCEQ) pro-
posed in literature [6]. Taking NashQ for example, the
corresponding algorithms with the three knowledge trans-
fer mechanisms are denoted by NashQ-VFT, NashQ-SVFT,
and NashQ-MTGA, respectively. For comparison, we also
implement CQ-learning [4], which is the state of the art.

(a) CMU

(b) ISR (c) CIT

4

3

1

2

(d) NTU

(e) MIT (f) PENTAGON

(g) SUNY

3

1

2

(h) NJU

Figure 2: The multi-agent grid world games used in
experiments

All the tested algorithms are run for 2000 iterations with
an initial learning rate of 1.0 and a discount factor of 0.9.
The learning rate has a decay of 0.99958 by each step. Ex-
ploration is executed by a fixed ϵ-policy with an exploration
factor of 0.01. For algorithms with the SVFT and MG-
TA mechanisms, the parameter L is 100 and the threshold
value τ for controlling value function transfer (or game ab-
straction) is 1

5
of the maximal value of the computed MDP

similarities. As the games in Figure 2 have different sizes,
the reward for an agent to reach its goal is set to +200 in
the 2-agent games and +20 in the games NTU and NJU.
The rewards for collisions and going into the wall are −10 in
all games. In other cases, agents receive −1 for not reaching
the goal. State transitions are made stochastic by assigning
a 0.2 probability of failure to the agents’ actions. In each
of the 2000 learning iterations, the average reward per step
(ARPS) achieved by each agent in the game is recorded.

Due to space limitation, we only show part of the experi-
mental results. For the 2-agent games, we show the results
of the two most complicated games CMU and SUNY in Fig-
ures 3 and 4. For the 3-agent game NJU and the 4-agent
game NTU, we only show the learning curves of CQ-learning,
NegoQ, and all variants of NegoQ with knowledge transfer
mechanisms in Figures 5 and 6, respectively. The results are
averaged over 50 runs.

The learning curves belonging to the same algorithm are
plotted in the same color. We first examine the results in
the 2-agent games. It can be found that the three knowledge
transfer mechanisms significantly improve the performance
of all the tested game theory-based MARL algorithms. For
example, in CMU, the ARPS achieved by all the basic learn-
ing algorithms are below 0 during the learning process. But

758

0 5 10 15 20
−5

0

5

episodes(x100)

a
v
e
ra

g
e
 r

e
w

a
rd

uCEQ

uCEQ−VFT

uCEQ−SVFT

uCEQ−MTGA

CQ−learning

(a) uCEQ

0 5 10 15 20
−5

0

5

episodes(x100)

a
v
e
ra

g
e
 r

e
w

a
rd

NashQ

NashQ−VFT

NashQ−SVFT

NashQ−MTGA

CQ−learning

(b) NashQ

0 5 10 15 20
−5

0

5

episodes(x100)

a
v
e
ra

g
e
 r

e
w

a
rd

NegoQ

NegoQ−VFT

NegoQ−SVFT

NegoQ−MTGA

CQ−learning

(c) NegoQ

Figure 3: The learning curves of each tested algorithm in CMU.

0 5 10 15 20
−5

0

5

10

15

episodes(x100)

a
v
e
ra

g
e
 r

e
w

a
rd

uCEQ

uCEQ−VFT

uCEQ−SVFT

uCEQ−MTGA

CQ−learning

(a) uCEQ

0 5 10 15 20
−5

0

5

10

15

episodes(x100)
a
v
e
ra

g
e
 r

e
w

a
rd

NashQ

NashQ−VFT

NashQ−SVFT

NashQ−MTGA

CQ−learning

(b) NashQ

0 5 10 15 20
−5

0

5

10

15

episodes(x100)

a
v
e
ra

g
e
 r

e
w

a
rd

NegoQ

NegoQ−VFT

NegoQ−SVFT

NegoQ−MTGA

CQ−learning

(c) NegoQ

Figure 4: The learning curves of each tested algorithm in SUNY.

with the knowledge transfer mechanisms, all of them can
finally achieve an ARPS around 3.2 to 4.2. Some criteria
of transfer learning [21] are satisfied, such as a jump start,
better asymptotic performance, and higher total rewards.
The ARPS achieved by the state-of-the-art algorithm CQ-
learning finally reaches about 3.0, showing that our algori-
thms perform better.
By comparing the three knowledge transfer mechanisms,

it can be found that the two value function transfer mech-
anisms generally perform better than MTGA on the aspect
of ARPS. This is reasonable since with VFT and SVFT, the
learning algorithms are learning based on a near-optimal ini-
tial policy while with MTGA, they still have to learn from
scratch. SVFT performs slightly better than VFT as it does
not transfer knowledge in states where doing so may cause
a big loss. However, VFT and SVFT should compute an
equilibrium in each state and requires observability of joint
states and actions. In contrast, MTGA significantly reduces
equilibrium computation and agents only need to learn in
its local state-action space in most states.
Although NJU and NTU are small, learning in the two

games are more challenging than in the 2-agent games since
their joint state-action spaces are much larger. There are
about 1.3× 105 and 8× 106 joint state-action pairs in NJU
and NTU, respectively. For better exhibiting the results,
each subfigure in Figures 5 and 6 only plots the learning
curves of one learning algorithm. In NJU, the basic learning
algorithm NegoQ cannot converge within the 2000 iterations
as all its curves still rise at the end. With the two value func-
tion transfer mechanisms (VFT and SVFT), the learning
curves of the agents 1, 2, and 3 finally converge to 2.3, 1.8,
and 1.8, which are very close to the optimal ARPS values2

2.5, 2.0, and 2.0. NegoQ-MTGA also performs much better
than NegoQ in NJU, with its three learning curves converg-
ing to 2.2, 1.55, and 1.75. The final ARPS values achieved
by the state-of-the-art algorithm CQ-learning for the three
agents are 1.85, 1.75, and 1.5, which indicates that all three
variants of NegoQ (NegoQ-VFT, NegoQ-SVFT, and NegoQ-

2The optimal ARPS values are obtained by conducting
Monte Carlo trails using an optimal policy.

Table 1: The average runtime used by each algori-
thm in CMU, SUNY, NJU, and NTU

Algorithm CMU SUNY NJU NTU

CQ-learning 1.85s 0.39s 0.18s 6.92s
NegoQ 28.80s 3.42s 7.10s 409.70s
NegoQ-VFT 8.70s 2.48s 4.74s 112.11s
NegoQ-SVFT 9.43s 3.10s 4.40s 81.35s
NegoQ-MTGA 4.85s 1.88s 1.73s 31.99s

MTGA) perform better than CQ-learning in the game NJU.
In the game NTU, similar results can be observed in Figure
6 and we do not repeat here.

Table 1 shows the runtime results of the tested algori-
thms. Due to space limitation, we only show the average
runtime of CQ-learning, NegoQ and all variants of Nego-
Q obtained in the maps CMU, SUNY, NJU, and NTU. As
expected, CQ-learning and NegoQ are the fastest and the
slowest, respectively. With knowledge transfer, NegoQ is
greatly accelerated. For example, in CMU, the runtime tak-
en for the original NegoQ algorithm is 28.80s. By the VFT,
SVFT, and MTGAmechanisms, the corresponding runtimes
are 8.70s, 9.43s, and 4.85s. The process of computing MDP
similarities in SVFT and MTGA adds them extra runtime.
Therefore, it can be found that NegoQ-SVFT needs more
time to finish learning than NegoQ-VFT in CMU and SUN-
Y. For MTGA, since equilibrium computation is avoided in
most states, such extra time does not prevent it from being
the fastest among the three knowledge transfer mechanisms.
However, NegoQ-MTGA is still slower than CQ-learning as
equilibrium computation cannot be totally avoided.

5. CONCLUSIONS
In this work, we contribute three knowledge transfer mech-

anisms, value function transfer (VFT), selective value func-
tion transfer (SVFT), and model transfer-based game ab-
straction (MTGA) to improve multi-agent reinforcement learn-
ing (MARL) in multi-agent systems with sparse interactions.
Both VFT and SVFT utilize the agents’ single-agent value
functions to initialize their value functions in the MARL al-

759

0 5 10 15 20
0.5

1

1.5

2

2.5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

(a) CQ-learning

0 5 10 15 20
0

0.5

1

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

(b) NegoQ

0 5 10 15 20
0.5

1

1.5

2

2.5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

(c) NegoQ-VFT

0 5 10 15 20
0.5

1

1.5

2

2.5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

(d) NegoQ-SVFT

0 5 10 15 20
0.5

1

1.5

2

2.5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

(e) NegoQ-MTGA

Figure 5: The learning curves of CQ-learning, NegoQ, and all variants of NegoQ in NJU.

0 5 10 15 20

1

2

3

4

5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

Agent 4

(a) CQ-learning

0 5 10 15 20
−2

−1

0

1

2

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

Agent 4

(b) NegoQ

0 5 10 15 20

1

2

3

4

5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

Agent 4

(c) NegoQ-VFT

0 5 10 15 20

1

2

3

4

5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

Agent 4

(d) NegoQ-SVFT

0 5 10 15 20

1

2

3

4

5

episodes(x100)

a
v
e

ra
g

e
 r

e
w

a
rd

Agent 1

Agent 2

Agent 3

Agent 4

(e) NegoQ-MTGA

Figure 6: The learning curves of CQ-learning, NegoQ, and all variants of NegoQ in NTU.

gorithm. VFT conducts knowledge transfer in all states, but
SVFT only transfers knowledge in states where the agents’
local environmental dynamics are similar to those in the pre-
vious single-agent tasks. MTGA utilizes the agents’ previous
environment models to abstract the one-shot game in each
state. Compared with VFT and SVFT, MTGA does not
need to compute an equilibrium in most of the states and
does not require observability of all joint states and actions.
We choose NashQ [10], CEQ [6], NegoQ [11] as the ba-

sic learning algorithms and test the three knowledge trans-
fer mechanisms in benchmarks. The results show that the
three knowledge transfer mechanisms significantly improve
the learning performance of all the basic learning algorithms
(a jump start, better asymptotic performance, and high-
er total rewards are observed). Also, they achieve better
asymptotic performance and higher total rewards than the
state-of-the-art algorithm CQ-learning [4].
Since VFT and SVFT only modify the process of value

function initialization, their convergence properties totally
depend on the corresponding learning algorithms. For the
mechanism MTGA, there is no formal convergence guar-
antees currently since it changes the learning way of game
theory-based MARL. Therefore, one interesting future di-
rection is to theoretically analyze the convergence proper-
ty of MTGA. Besides transferring value functions and en-
vironment models, there are many other effective knowle-
dge transfer mechanisms in the transfer learning domain
(e.g., transferring options and features) [21]. It would also
be interesting to explore the performance of other knowle-
dge transfer mechanisms in multi-agent systems with sparse
interactions in the future.

6. ACKNOWLEDGMENTS
We would like to acknowledge the support for this work

from the National Science Foundation of China (Grant Nos.
61432008, 61175042, 61321491, 61202212), and the Program
for Research and Innovation of Graduate Students in Gener-
al Colleges and Universities, Jiangsu (Grant No. CXLX13 049).

REFERENCES
[1] B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju.

Sample bounded distributed reinforcement learning for
decentralized pomdps. In Proceedings of the 26th

AAAI Conference on Artificial Intelligence, pages
1256–1262, 2012.

[2] R. I. Brafman and M. Tennenholtz. R-MAX - A
general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, 3:213–231, 2002.

[3] C. Daskalakis, P. W. Goldberg, and C. H.
Papadimitriou. The complexity of computing a nash
equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009.

[4] Y.-M. De Hauwere, P. Vrancx, and A. Nowé. Learning
multi-agent state space representations. In Proceedings
of the 9th International Conference on Autonomous
Agents and Multiagent Systems, pages 715–722, 2010.

[5] N. Ferns, P. Panangaden, and D. Precup. Metrics for
finite markov decision processes. In Proceedings of the
20th Conference in Uncertainty in Artificial
Intelligence (UAI ’04), pages 162–169, 2004.

[6] A. Greenwald, K. Hall, and R. Serrano. Correlated
Q-learning. In Proceedings of International Conference
on Machine Learning, pages 242–249, 2003.

[7] C. Guestrin, M. G. Lagoudakis, and R. Parr.
Coordinated reinforcement learning. In Proceedings of
the 9th International Conference on Machine Learning
(ICML 2002), pages 227–234, 2002.

[8] C. Guestrin, S. Venkataraman, and D. Koller.
Context-specific multiagent coordination and planning
with factored mdps. In Proceedings of the 18th
National Conference on Artificial Intelligence, pages
253–259, 2002.

[9] Y. D. Hauwere, P. Vrancx, and A. Nowé. Solving
sparse delayed coordination problems in multi-agent
reinforcement learning. In International Workshop on
Adaptive and Learning Agents (ALA 2011), pages
114–133, 2011.

[10] J. Hu and M. Wellman. Nash Q-learning for
general-sum stochastic games. The Journal of
Machine Learning Research, 4:1039–1069, 2003.

[11] Y. Hu, Y. Gao, and B. An. Multiagent reinforcement
learning with unshared value functions. IEEE
Transactions on Cybernetics, doi:10.1109/TCYB.
2014.2332042, accepted.

760

[12] Y. Hu, Y. Gao, and B. An. Accelerating multi-agent
reinforcement learning by equilibrium transfer. IEEE
Transactions on Cybernetics, doi:10.1109/TCYB.
2014.2349152, accepted.

[13] J. R. Kok, P. J. Hoen, B. Bakker, and N. A. Vlassis.
Utile coordination: Learning interdependencies among
cooperative agents. In Proceedings of the 2005 IEEE
Symposium on Computational Intelligence and Games
(CIG05), pages 29–36, 2005.

[14] J. R. Kok and N. A. Vlassis. Sparse cooperative
Q-learning. In Proceedings of the 21st International
Conference on Machine Learning (ICML 2004), pages
61–68, 2004.

[15] G. Kuhlmann and P. Stone. Graph-based domain
mapping for transfer learning in general games. In
Proceedings of the 18th European Conference on
Machine Learning (ECML 2007), pages 188–200, 2007.

[16] M. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the 11th International Conference on Machine
Learning, pages 157–163, 1994.

[17] F. S. Melo and M. Veloso. Learning of coordination:
Exploiting sparse interactions in multiagent systems.
In Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems, pages
773–780, 2009.

[18] F. S. Melo and M. M. Veloso. Decentralized mdps
with sparse interactions. Artifitial Intelligence,
175(11):1757–1789, 2011.

[19] I. Szita and C. Szepesvári. Model-based reinforcement
learning with nearly tight exploration complexity
bounds. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
1031–1038, 2010.

[20] A. Taylor, I. Dusparic, E. Galván-López, S. Clarke,
and V. Cahill. Transfer Learning in Multi-Agent
Systems Through Parallel Transfer. In Workshop on
Theoretically Grounded Transfer Learning at the 30th
International Conference on Machine Learning
(Poster), 2013.

[21] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685,
2009.

[22] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning
via inter-task mappings for temporal difference
learning. Journal of Machine Learning Research,
8:2125–2167, 2007.

[23] P. Vrancx, Y. D. Hauwere, and A. Nowé. Transfer
learning for multi-agent coordination. In Proceedings
of the 3rd International Conference on Agents and
Artificial Intelligence (ICAART 2011), pages 263–272,
2011.

[24] C. Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

761

