
Effective Approximations for Multi-Robot Coordination in
Spatially Distributed Tasks

Daniel Claes
University of Liverpool

dclaes@liverpool.ac.uk

Philipp Robbel
Massachusetts Institute of

Technology
robbel@mit.edu

Frans A. Oliehoek
University of Amsterdam
University of Liverpool

fao@liverpool.ac.uk
Karl Tuyls

University of Liverpool
k.tuyls@liverpool.ac.uk

Daniel Hennes
European Space Agency,

ESTEC
daniel.hennes@gmail.com

Wiebe van der Hoek
University of Liverpool

wiebe.van-der-
hoek@liverpool.ac.uk

ABSTRACT
Although multi-robot systems have received substantial re-
search attention in recent years, multi-robot coordination
still remains a difficult task. Especially, when dealing with
spatially distributed tasks and many robots, central control
quickly becomes infeasible due to the exponential explosion
in the number of joint actions and states. We propose a gen-
eral algorithm that allows for distributed control, that over-
comes the exponential growth in the number of joint actions
by aggregating the effect of other agents in the system into
a probabilistic model, called subjective approximations, and
then choosing the best response. We show for a multi-robot
grid world how the algorithm can be implemented in the well
studied Multiagent Markov Decision Process framework, as
a sub-class called spatial task allocation problems (SPAT-
APs). In this framework, we show how to tackle SPATAPs
using online, distributed planning by combining subjective
agent approximations with restriction of attention to current
tasks in the world. An empirical evaluation shows that the
combination of both strategies allows to scale to very large
problems, while providing near-optimal solutions.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms; Experimentation

Keywords
Robotics; Robot Planning and Plan execution; Robot Teams;
Multi-Robot Systems; Robot Coordination

1. INTRODUCTION
Although multi-robot systems are becoming more com-

mon in real world applications, in many cases, control still
has a centralized component, e.g. approaches using central-
ized planning or a single auctioneer for task allocation [5,
34]. These robots have limited autonomy and rely on the
central control component of the system for planning pur-
poses. Such approaches have two major limitations, namely

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

robustness and scalability. If a centralized planning algo-
rithm fails, for example, the whole system is affected and
becomes unavailable. Second, for each additional robot to
be added, the joint action and state spaces increase expo-
nentially, rendering it infeasible for any central algorithm to
solve larger problems optimally in general.

Trying to overcome these issues by decentralized solutions
introduces an important challenge in autonomous coordina-
tion of the multiple robots in the system. There are different
approaches to tackle this problem, for instance swarm ap-
proaches inspired by nature [22, 2, 8], or others based on
decentralized auctions [9, 3, 23], in which each robot bids
for tasks and task assignment ultimately follows from the
winning bid values. The swarm approaches are generally
reactive approaches that lack the possibility to plan ahead
(e.g., when tasks may appear stochastically in the environ-
ment) and the auctioning approaches rely heavily on reliable
communication during the bidding phase. Furthermore, af-
ter the tasks are auctioned off, agent policies are fixed and
remain unchanged until the next bidding phase.

In order to avoid these issues we develop a generic algo-
rithm that applies to various instances of the coordination
problem. We build on the idea from mean field game the-
ory [17] that for many tasks it may be sufficient to reason
about the aggregate effect of the other agents. This idea
has been proven to be useful in particular instances of off-
line planning for large agent teams, such as congestion-like
games and resource-coupled multiagent planning [16, 32, 1].
In this paper, we demonstrate that these ideas also bring
great improvements in effectiveness in a very general class
of online multi-robot planning problems. The key idea is to
aggregate the effect of other robots in the area by using their
locations as a proxy to predict their future actions and then
choosing the best response. Using this principle, a robot
does not need to reason about every other individual robot
but only needs to know in general which tasks are likely ser-
viced by another robot, in order to reduce the complexity
of its own planning. Because planning is done online and
at every time step, the algorithm is flexible in responding
to changes in the environment. This also implies that com-
munication between robots is strictly not required, however,
the robots do need to be able to observe the current state
(i.e., locations of the other robots), which can be enabled
through (local) communication.

We define the problem as sub-class of Multiagent MDPs

881

(MMDPs) [7] that we collectively refer to as Spatial Task
Allocation Problems (SPATAPs), and develop our algorithm
as a number of online planning approximations that are tai-
lored to exploit the characteristics of these problems. In par-
ticular, we investigate the general algorithm for settings with
negative interactions in which each task can be serviced by
a single agent. In such tasks, it makes sense to discount the
reward for tasks that are likely attended to by other agents.
Such approximate empathic reasoning was recently exploited
in the context of multi-robot exploration [24] by making use
of a modification of distributed value functions [27] (hence-
forth referred to as ‘MDVF’). We introduce a simplification
of this algorithm, empathy by fixed weight discounting (E-
FWD), that applies to all SPATAPs with negative interac-
tions.

While these subjective approximations bring improvements
in planning efficiency, they are not sufficient to make the
planning problem tractable. Another crucial contribution
of our approach is therefore the combination of the algo-
rithm with another approximation method, called Phase-
Approximation, that forms the basis of an approximate on-
line planning technique without any exponential dependence
on the number of agents or the number of state factors.

An empirical evaluation shows that these combined tech-
niques yield near-optimal solutions in cases in which the
optimum can be calculated and is highly scalable, while out-
performing the state-of-the-art.

2. PROBLEM DESCRIPTION & APPROACH
We consider a problem class that we refer to as spatial task

allocation problems (SPATAPs). In particular, SPATAPs
describe settings in which a team of agents needs to service a
set of tasks that are spatially distributed in an environment.
Each task can be performed by one or more agents, and
new tasks can appear in the world due to exogenous events
outside of the agents’ control.

As a running example we consider a cleaning task in for
instance an office building. Dirt can appear at any location
at any given time in this world, since a human can spill
coffee, or leave paper on the floor, etc. A team of cleaning
robots, in this case the agents, has the task to continuously
keep the building clean. There is no central control of any
sort, but the robots can observe the location of other robots,
e.g. by using overhead cameras or communication. We will
assume that the office building can be represented using a
grid world, where each tile corresponds to a part of a room
of a fixed size, but other representations (such as a more
abstract graph) are also possible. The grid worlds can have
arbitrary shape, see Figure 1 for examples that we consider
in this paper.

The main problem is how the agents should plan their be-
havior in order to ensure that all tasks are serviced, i.e., in
this case, that all dirt is continuously cleaned while mini-
mizing interference between robots. Since there are nearly
no restrictions on the sort of tasks, SPATAPs provide a very
powerful and general model which are very hard to solve op-
timally. This is due to the fact that the joint action and state
spaces increase exponentially with the number of agents in
the system.

In fact, only a few methods can deal with such large prob-
lems. One approach that offers the required scalability is
the ‘partition organization’ [29]. In this approach, the prob-
lem is partitioned in (overlapping) regions and each agent

Algorithm 1 Aggregated best response

Require: D−i : set of other Agents
Require: h : planning horizon (timesteps)

for all agents j in D−i do
compute policy πSA for j
for t = 1 to h do

compute probability distribution ptj following πSA
end for

end for
for t = 1 to h do

//aggregate:
pm =

∑
j 6=i p

t
j

end for
compute best response of agent i given pm

is assigned to one region. This approach is well suited for
problems in which there is a straightforward partitioning,
such as symmetric worlds. However this is not always pos-
sible, especially when the task appearance probabilities are
not evenly distributed over the world or when specific tasks
can only be served by particular agents.

Another common approach, which we will treat in some
more detail in Sec. 4.1.1 under the name self-absorbed ap-
proximation, is to ignore the presence of other agents during
planning and to consider them as mere noise to each individ-
ual planning model. In the case of task allocation problems,
however, such approximations lead to poor performance (as
supported by our empirical evaluation), since the difficulty
in this type of problems revolves around the coordination of
which agent addresses which task.

We propose to exploit the key characteristics of SPATAPs—
independence of agent movement and the locality of tasks—
for efficient approximations during online planning. The
key idea is that an agent does not need to reason about all
other agents individually, but can reason about their aggre-
gated effect. In particular, if another agent is close to a
task location, we can reason that this task will be serviced
with a certain probability at some future time step. If we as-
sume a reasonable policy for the other agents we can predict
the probabilistic movements for all agents over the planning
horizon and use the aggregated presence mass (pm) as a
sufficient statistic for calculating our best response.

Algorithm 1 summarizes the idea described above. For
all other agents, we fix a policy π and, for the time span of
our planning horizon, predict their movements as following
π. By doing this we obtain a probability distribution of
the agents’ location for all time steps. These probability
distributions can be aggregated and used by each individual
agent to calculate a best response.

In the next section, we show that SPATAPs can be di-
rectly modeled as MMDPs, and explain why this is not of
immediate help since the complexity of solving the prob-
lems with standard MMDP methods remains prohibitively
high. Section 4 presents a remedy by introducing online ap-
proximate methods that exploit the key characteristics of
SPATAPs.

3. SPATAPS FORMULATED AS MMDPS
The problems we consider in this paper describe a set of

spatially distributed tasks that a team of agents or robots
needs to solve. A key characteristic of such problems is that
the outcome of an action is uncertain (cleaning the dirt or

882

(a) diamond world (b) corridor world (c) office world

Figure 1: Three possible SPATAP environments.

moving in the world may each fail with some probability,
e.g., due to wheel slip), and new tasks can appear due to
unforeseen exogenous events (e.g., a human spilling some
dirt). Therefore, SPATAPs can be seen as a special case of
MMDPs, which we will introduce next.

3.1 Multiagent MDPs
Markov decision processes (MDPs) provide a general frame-

work for sequential decision making under uncertainty [26].
The Multiagent MDP (MMDP) is the straight-forward ex-
tension to the case of multiple decision makers who observe
the full state of the environment:

Definition 1. A Multiagent Markov decision process
(MMDP) is defined as a tuple 〈D,S,A,P,R〉, where D =
{1, . . . ,n} is the set of n agents, S a finite set of states s of
the environment, A = A1 × · · · ×An the set of joint actions
a = 〈a1, . . . ,an〉, T the transition probability function spec-
ifying P (s′|s,a), and R(s,a) the immediate reward function.

An MMDP is called factored if its state space is spanned
by a set of state variables. Note that an MMDP is sig-
nificantly different from a Dec-MDP [6], since agents in an
MMDP, per definition, can observe the (global) state. A
(joint) policy π : S → A in an MMDP maps states s to joint
actions a, and is equivalent to a tuple of individual policies
πi : S → Ai. The Q-value of (s,a) under policy π is de-
fined as the expected sum of rewards when executing a in s
and following π afterwards. In this paper we will consider
(undiscounted) h-stage look-ahead planning, i.e., construct-
ing a plan that specifies actions from ‘now’, t = 0, to stage
t = h− 1. For this setting, the value function for each stage
t equals V t(s) = maxaQ

t(s,a), where

Qt(s,a) = R(s,a) +
∑
s′

Pr(s′|s,a)V t+1(s′). (1)

The optimal policy π∗ and corresponding optimal value func-
tions Qt, maximize the expected reward for every (s,a).
Solving MMDPs can be done in a similar fashion as (single-
agent) MDPs [26]. However, since the number of joint ac-
tions is exponential in the number of agents and the number
of states is exponential in the number of factors (itself usu-
ally dependent on the number of agents), this is intractable
for even small problems in practice.

3.2 SPATAPs
SPATAPs can be defined as a sub-class of MMDPs with

some additional structure. Underlying a SPATAP is a map
that specifies the potential task locations L and that defines
AM , the set of movement actions. E.g., for the “dirt clean-
ing” example, all agents are homogeneous and share a com-
mon (movement) action space AM = {N, E, S, W, STAY }.

There further exists a task structure, defined by a set of
task types T =

{
T0,T1, . . . ,T|T |

}
. Each type Tk has an as-

sociated set of task states Tk that indicate the status of
the task. In our running example, T1 could have states
T1 = {very dirty, dirty, nearly clean}. T0 refers to a spe-
cial type indicating there is no task and only has one state
T0 = {CLEAR}. We use T =

⋃
k Tk to denote the set of all

task states. Each task type Tk may optionally be associated
with one (or more) particular action aTk to perform that
task. Each agent i can perform movement and task actions.
The agent team can be homogeneous, i.e., have the same
capabilities, but the framework also allows agents that have
different capabilities, or differences in how effective an agent
is at a particular task.1

These SPATAP-specific components can now be used to
define the induced MMDP. Agents and their actions are un-
changed. A state is a tuple s = 〈λ,τ〉, where λ is the vector
of locations (λi denotes the location of agent i), and τ is the
task status vector (τx denotes the task status at location x).
The transition function can be factored as

P (λ′,τ ′|λ,τ,a) =
∏
x∈L

pTx (τ ′x|τx,λ,a)
∏
i∈D

pMi (λ′i|λi,ai) (2)

where pT are task transition probabilities and pM are agent
movement probabilities.2 The task transition probabilities
pT are assumed to be conditionally independent given the
locations and actions of the agents and encode the proba-
bility of progressing toward finishing the tasks, as well as
exogenous events that spawn new tasks.

The reward function is additively factored and is the sum
of task rewards RT and movement costs RM :

R(s,a) =
∑
x∈L

RTx (τx,λ,a) +
∑
i∈D

RMi (λi,ai). (3)

As the name ‘movement cost’ implies, the functions RMi will
typically specify negative rewards. For the task reward func-
tions, it is also natural to specify a cost for every stage that
the task is not completed (consider the robot rescue set-
ting where victims require attention as quickly as possible).
More options are possible, e.g., a business may want to use
as the reward function the actual amount of money a par-
ticular assignment will generate. Note that the model also
supports rewards that depend on the next state by taking

1The approximation method we introduce in Sec. 4.1, does
assume homogeneous agents, but the approach can be ex-
tended to heterogeneous teams by applying the same tech-
nique to each ‘type’ of agent.
2Movements are independent, effectively assuming that
lower-level path-planning will avoid collisions within the
same location.

883

the expectation over next states. E.g.,

RTx (τx,λ,a) =
∑
τ ′x

Pr(τ ′x|τx,λ,a)RTx (τx,λ,a,τ
′
x). (4)

3.3 Locality Assumptions
While the above lays out the general form of SPATAPs,

such problems are, in general still very difficult since the
terms pTx and RTx are non-local, i.e., they depend on all the
agents, including those that are far away from location x. In
order to gain more traction on the problem, we will assume
that a task at a particular location x will only be influenced
by a subset of agents. This subset we call the locality scope
L(x,τx,λ,a) and it depends on the location x, the task type
and state encoded by τx, and λ,a. For instance, in our ex-
ample L(x,τx,λ,a) for a dirty location x will only contain
those agents at x that perform the ‘clean’ action. In the re-
mainder of this paper, we will simply write aL for the action
profile of agents in the locality scope. As such, we will con-
sider task transitions of the form pTx (τ ′x|τx,λL,aL). Similarly,
we will assume that the task rewards can be expressed as
RTx (τx,λL,aL).

Each SPATAPs is an MMDP, so MMDP solution methods
apply. Unfortunately, both the number of states and joint
actions are very large for these problems (see Table 1). As
a result, even state-of-the-art MDP solvers that exploit fac-
tored structure [19] have problems with the smallest SPAT-
APs. One would hope that the special structure of SPATAPs
may make them easier to solve but, unfortunately, this is not
the case in general:

Theorem 1. Optimally solving SPATAPs is as hard as
solving MMDPs; i.e., SPATAPs are ‘MMDP-hard’.

Proof. We reduce from the problem of solving an MMDP
by creating a SPATAP with a single location and a sin-
gle task. The task states correspond to the states of the
MMDP and similarly can we derive pTx and RTx from the
transitions and reward of the MMDP. The optimal solution
of this SPATAP is the optimal solution of the MMDP.

This theorem illustrates that while the concept of tasks is
very general and powerful, this comes at a worst-case com-
putational cost. Nevertheless, SPATAPs offer ample oppor-
tunities to exploit their specific characteristics. In particu-
lar, in the following sections, we propose two types of ap-
proximation techniques that each directly exploit problem
structure.

4. ONLINE APPROXIMATIONS
We introduce two orthogonal approximation approaches

for online planning for SPATAPs, that increase efficiency by
exploiting two characteristics of real-world SPATAPs.

First, SPATAPs exhibit independence of movement and
locality of task transitions and rewards, which implies that
agents in many cases can act relatively independently of
each other. To exploit this property, we consider subjec-
tive approximations that reduce the complexity introduced
by the large number of agents. In particular, we propose
a novel ‘empathic’ subjective approximation method that
combines the computational benefits of subjective approxi-
mations with an approximate reasoning over the team mem-
bers as introduced in Algorithm 1.

Second, for SPATAPs that exhibit only infrequent appear-
ance of new tasks, planning about the currently active tasks
can be expected to yield good performance. We propose to
exploit this using a novel ‘phase approximation’ technique,
which reduces the complexity introduced by the large num-
ber of states.

Both techniques transform a larger input MMDPs into
approximate, smaller output (M)MDP models that lever-
age the unique properties of SPATAPs. The resulting mod-
els can be solved optimally using standard online planning
methods. Moreover, both techniques are highly comple-
mentary and their combination yields approximate solution
methods that are robust, scalable, and easy to implement:
each agent can simply use its individual, online (single-agent)
MDP planning method applied to a subjective phase MDP,
which leverages the techniques described above.

In this paper we assume that the agents use the resulting
MDPs to perform online planning over a fixed lookahead
horizon (h), but more sophisticated (e.g., adaptive horizon
[14]) methods can be applied too.

4.1 Subjective Approximations
The first set of techniques by which we bring computa-

tional leverage to the (online) planning process is the im-
plementation of the approach described in Section 2, which
aims to address the complexity due to the presence of multi-
ple agents. They increase planning efficiency by distributed
approximation: decomposing the larger problem into a set of
approximate smaller planning problems, one for each agent.

4.1.1 Self-absorbed Agent Approximation
The extreme case of subjective approximation is to plan

for each agent independently, assuming that it is the only
agent present in the problem. This is a common approach
[15], and we refer to this type of approach as the ‘self-
absorbed agent’ approximation. A self-absorbed agent i only
models its own location and thus has individual states si =
〈λi,τ〉. It also assumes that the transitions only depend on
its own actions

pSAi (s′i|si,ai) =

[∏
x∈L

pT,SAx (τ ′x|τx,λi,ai)

]
pMi (λ′i|λi,ai)

RSAi (si,ai) =

[∑
x∈L

RT,SAx (τx,λi,ai)

]
+RMi (λi,ai). (5)

It may be difficult to map pTx (τ ′x|τx,λL,aL), RTx (τx,λL,aL) to
pT,SAx (τ ′x|τx,λi,ai) and RT,SAx (τx,λi,ai) respectively. How-
ever, in many cases, it is possible to assume a default effect
or default action for the other agent (e.g., we can assume
that there will be no other agent cleaning the same spot).
Another approach is to treat the agents as noise [15], by
imposing some (e.g., uniform) distribution over λ−i,a−i.

Formally, we define a subjective MDP (S-MDP) for agent i
as a tuple

〈
Ss,Ai, pSAi , RSAi

〉
, where Ss is the subjective

state space of states si = 〈λi,τ〉. Solving a S-MDP can
be done with standard techniques, yielding value functions
V SA,ti (si) and QSA,ti (si,ai), which directly follow from (1).

The S-MDP improves significantly over the MMDP for-
mulation in terms of complexity (see Table 1). As shown,
there is no longer any exponential dependence on the num-
ber of agents in an S-MDP, which directly means that it ad-
mits more efficient solutions. However, we expect that self-

884

Table 1: Sizes of the state and actions spaces of the consid-
ered models. |D| is the number of agents, A∗ denotes the
largest individual action set. Planning times are a polyno-
mial function of these quantities.

state space action space

MMDP |L||D| · |T||L| |A∗||D|

S-MDP |L| · |T||L| |A∗|
Phase-MMDP |L||D| · |T||pL| |A∗||D|

SP-MDP |L| · |T||pL| |A∗|
k-SP-MDP |L| · |T|k |A∗|

absorbed agent approximations are insufficient in domains
where agents need to perform a fair amount of coordination.
Next, we propose a number of approaches that do account
for interactions between agents.

4.1.2 Empathy by Predicting other Agents’ Locations
As summarized in Algorithm 1, the key idea is the follow-

ing: in order to compute a best-response from the perspec-
tive of one agent, it only needs to predict what tasks will
be tackled by the other agents. That is, it only cares about
the aggregate effect of the actions of the rest of the team,
but not about which team member addresses which task in
particular. In order to predict what tasks will be addressed
by the rest of the team, we use the predicted probability for
agents being at a location as a proxy for them addressing
the task at that location. We refer to this as presence mass
(pm).

In particular, from the perspective of an agent i, we want
to be able to predict the location λtj of all other agents j 6= i,
t-stages from now. That is, we want to compute the prob-
ability distribution Pr(λtj |s0) where s0 is the full MMDP
state ‘now’ (i.e., at the time when the agent performs this
prediction).

To compute these ‘presence mass’ distributions, one needs
to assume particular behavior of the other agents. One pos-
sibility is to assume that other agents perform a random
walk [24]. This assumption, however, leads to uninforma-
tive uniform distributions over states when predicting fur-
ther into the future. To avoid this problem, we assume that
the other agents use a self-absorbed model with quantile re-
sponse (i.e., we assume that the other agents take actions
according to a Boltzmann distribution [31] specified using
the self-absorbed agent approximation VSA). Fig. 2 (mid-
dle) illustrates that this leads to more sensible predictions.
When there are multiple agents present, we can accumu-
late the presence mass distributions into a single ‘sufficient
statistic’ and therefore do not need to account for every sin-
gle agent during planning. We use the accumulated presence
mass distribution for the next model.

4.1.3 Empathy by Fixed Weight Discounting
After calculating the aggregated presence mass of the other

agents, the planning agent has to choose its response. Dis-
tributed value functions (DVFs) [27] allow agents to share
their value function. This, however, leads to a lot of com-
munication overhead. The MDVF [24] approach is inspired
by DVFs and implements agent collaboration by using a
second value function (specifically, VSA) to discount the val-
ues of future states. In the resulting formulation, however,
MDVF agents do not share their value functions. Instead,

each agent computes VSA in parallel and uses it to discount
the VMDV F values.

Realizing this, we propose a more straightforward ap-
proach: we do not discount using VSA, but just use the
next-stage value function. We refer to this simplification as
empathy by fixed-weight discounting (E-FWD). The result-
ing value function is given by

QFWD,t
i (si,ai) = RSA(si,ai) +

∑
s′

pSA(s′i|si,ai)[(
1− fi

∑
j 6=i

Pr(st+1
j = s′i|s0)

)
V FWD,t+1
i (s′i)

]
. (6)

where RSA and pSA are the self-absorbed model components
(these are the same for all agents and hence we drop the
subscript i to simplify notation). The last probability term
is the presence mass of an agent j being at the location
specified by s′i t + 1 stages into the future, i.e., Pr(st+1

j =

s′i|s0) = Pr(λt+1
j |s

0) with λt+1
j the location specified by s′i.

Finally, fi is a fixed weight that determines how much the
value of a next state is discounted. We follow [24] and set
fi to maxR(s,a)/maxV (s,a). An example illustrating this
discounting is shown in Fig. 2 (right).

4.2 Phase-Approximations
While subjective approximations reduce the complexity

due to multiple agents, they do not sufficiently reduce the
complexity of the state space. To overcome the complexity
of the state space, we propose a different way of approaching
the problem. Rather than seeing each location x ∈ L as a
potential location for a task that may appear or disappear
over the planning horizon, we focus only on the current ‘task
phase’, i.e., the currently active set of tasks indicated by
those locations x for which τx 6= CLEAR. By focusing only
on these locations, the number of task states induced is much
smaller, allowing for big increases in planning efficiency.

4.2.1 Phase MMDPs
We formalize this idea by means of the so-called phase-

MMDP, which, given a global state s = 〈λ,τ〉, can be
defined as follows. A Phase-MMDP for state s, is an
MMDP 〈D,Sp,A, P p, Rp〉. The considered task locations
in this MMDP, however, are restricted to the set of pL =
{x ∈ L | τx 6= CLEAR} of phase task locations, i.e., the set
of ‘active’ locations where there is a task. Thus, the state
space Sp is spanned by the set L|D| of joint locations and the
set T|pL| of all possible task vectors for the active locations.
We write pτ ∈ T|pL| for the restriction of τ to the locations
in pL. A phase-MMDP state is a tuple ps = 〈λ,pτ〉. The
transition (and reward) function follow from equation 2 (and
3) by restricting the product (summation) to pL.

A phase-MMDP provides leverage by restricting the num-
ber of states compared to the regular MMDP formulation.
However, this is highly dependable on the number of active
tasks, and, in the worst case, it does not reduce the state
space at all. Also, it does not address the large joint action
space (see Table 1). This motivates the combination of the
previously introduced techniques.

4.2.2 Subjective Phase MDPs
Realizing that subjective and phase-approximations yield

complementary gains, we propose to combine both approx-
imations in a formalism that we refer to as subjective phase

885

0

244.05

1

248.00
A0

2

246.02

3

246.02

4

248.00

5

249.97

T
6

248.00

7

248.00

8

249.97

T

9

248.00

10

246.02

11

246.02
A1

12

244.05

0

0.00

1

0.01
A0

2

0.00

3

0.00

4

0.01

5

0.21

T
6

0.01

7

0.02

8

0.73

T

9

0.01

10

0.00

11

0.00
A1

12

0.00

0

233.32

1

234.40
A0

2

234.48

3

235.60

4

234.96

5

245.02

T
6

235.80

7

236.71

8

237.82

T

9

235.57

10

234.48

11

235.60
A1

12

233.36

Figure 2: Left: A sample state for a diamond shaped gridworld with two agents (A0, A1) and two active task locations and
VSA for the current state. Middle: The presence mass of A1 from the viewpoint of A0. Right: The discounted value function
VEFWD for A0 resulting for this configuration.

MDP (SP-MDP). An SP-MDP for agent i is a subjective
model, meaning that it includes only the actions of agent i
itself, moreover, it is a phase approximation, meaning that
the states only include task states for active tasks. Specif-
ically, a local state is a tuple si = 〈λi, pτ〉, where λi is the
location of agent i and pτ is the phase task vector. In an
SP-MDP, the number of actions is the number of individual
actions and the number of states is potentially much smaller
due to the phase-approximations assumption (see Table 1).

4.2.3 kSP-MDPs
As mentioned, in the worst case there are many active

tasks, which means that the number of states will still be
prohibitive. However, by the combination of subjective and
phase-approximations, it is possible to exploit the problem
structure even further. In particular, the subjective model of
each agent may make different approximations by exploiting
what parts of the current state are relevant to that agent.

For instance, in the construction of the SP-MDP for an
agent i, we can now make use of the location of that agent,
by restricting the state space of the SP-MDP to include
only task locations for the k nearest tasks. We refer to the
resulting model as kSP-MDP. The number of states of the
kSP-MDP is given by |Sksp| = |L| · |T|k.

As is clear from Table 1, the kSP-MDP is the only model
that is guaranteed not to have any exponential complexi-
ties. Standard dynamic programming for a h-step lookahead
MDP takes time O(h|S|2|A|), and thus is feasible for large
problems when using the kSP-MDP model.

4.3 Social Laws
One of the drawbacks of subjective approximations is that

when deploying a team of identical agents, this can lead to
agents behaving identically when this is not desired. For
instance, when two agents are in the same location, they
will make the same assumptions about the other agents’ be-
havior and thus compute the same value function. Conse-
quently they will take the same action and (with probability
depending on the movement model) end up in the same next
location.

Although this phenomenon exposes a principal flaw of sub-
jective approximations, in SPATAPs these issues are easy to
deal with by employing social laws [28]. For instance, in our
experimental evaluation we employ the following social law:
whenever more than one agent is in the same location, these
agents select their actions based on their IDs: the agent with

the lowest ID selects the action with the highest expected
reward, the next agent selects the second best action, etc.

5. EXPERIMENTS
In this paper we have introduced a number of approxima-

tions that culminated in a model without any exponential
dependence on the number of agents or state factors. This
model can therefore be efficiently solved online using stan-
dard MDP techniques. Since the approximations that we
introduced are not bounded, we report the results of an em-
pirical evaluation aimed at determining the solution qual-
ity afforded by these approximations. For this purpose, we
implemented a dirt-world simulation in which agents plan
online, in a distributed fashion, using the kSP-MDP model.
The movement transition probabilities pMi are such that a
movement can fail (the agent remains at its previous loca-
tion) with 10% probability. The task at location x is deter-
ministically completed if any agent i performs action STAY
at that location. A task appears at a location x with proba-
bility 0.05 (but an agent staying at a location prevents task
appearance). The team of agents receive reward +1 for ev-
ery clean location at every time step. We do not consider
movement costs. Agents solve their individual kSP-MDPs
for (a maximum of) h = 20 steps lookahead, using regular
dynamic programming.3 Unless reported differently, we use
the k = 4 nearest tasks.

In order to assess overall solution quality, we compare
the approach with the global MMDP solution. Note that
the global MMDP, unlike the phase-MMDP approximation,
considers all locations on the board potential task locations,
even currently ‘inactive’ ones. We use SPUDD [19], the
state-of-the-art optimal solver for factored MDPs, to pro-
vide the value of the optimal solution for horizon 10, and
compare this to the average value generated by 100 dirt-
world simulations with online planning4. Table 2a shows
the results for this comparison. SPUDD was only able to
scale to 2x2 and 3x3 gridworlds with two and three agents
respectively. For these problems, the approximations per-
form very well; even the naive self-absorbed approximation
achieves over 93 % of optimal. The proposed simplification

3Increasing the lookahead beyond 20, did not increase the
performance in our experiments. Shortening it does hurt
performance in the larger problems, since it may lead agents
to conclude that a task can never be addressed.
4Even though SPUDD is not specialized for MMDPs, it cur-
rently still is the best optimal solver for such problems.

886

world SA MDVF EFWD SPUDD

2x2 93.32% 97.86% 98.41% 100%
3x3 94.73% 96.83% 97.24% 100%

(a)

world |L| n |S| |A|
Line 12 2 5.90e + 05 25

Diamond 13 3 1.80e + 07 125
Corridors 18 3 1.53e + 09 125

4x4 16 4 4.29e + 09 625
6x6 36 5 4.16e + 18 3125

Office 66 6 6.10e + 30 15625

(b)

Table 2: (a) Relative values of the three approaches averaged across a set of randomly drawn starting states and compared
to the SPUDD optimum value function. (b) Larger dirt-world benchmarks.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

t

V

SA

MDVF

EFWD

max V

Figure 3: Mean reward over time for a 4x4 gridworld (ini-
tially full) with three agents.

E-FWD even yields slightly higher rewards than the more
complex MDVF.

In order to provide insight in the differences in behavior
between the approaches, we investigate the rewards received
over the different stages per episode. Figure 3 shows the
mean reward per time step (mean is taken over 10 episodes)
in a 4x4 gridworld filled with tasks. As the figure shows,
the reward increases at first and then converges close to the
maximum reward achievable per time step (which is 16 and
received when all squares are clean). Interesting to note is
that VSA outperforms the empathic approximations in the
first time steps but then converges to a lower average reward.
This is probably again due to the lack of considering the ef-
fects of other agents when using VSA. The agents first select
the tasks greedily, thus close tasks, and the tasks further
away are not covered. The empathic approaches avoid this
pitfall: by discounting the values of locations quickly reach-
able by many other agents, the locations only reachable by
a protagonist are incentivized.

To examine the impact of restricting planning to only the
k nearest tasks, we performed an experiment in which we
vary k, holding other parameters fixed. For this experi-
ment, we used a “full” 4x4 gridworld, i.e. dirt is present
everywhere, with three agents that used the E-FWD algo-
rithm to select their actions. Results shown in Figure 4a, are
averaged over 100 runs of horizon 20 with 95% confidence
intervals. Additionally shown are the number of states for
each k (the dashed line). The figure clearly shows that,
although k = 1,3 perform poorly, there is no significant dif-
ference for k ≥ 4, which explains our choice of k = 4 for
all the other experiments. Finally, we test the performance
of our approximations on a number of larger test problems,
listed in Table 2b. The “Line” world is a straight line of 12
states, and the “Corridors” and “Office” world are shown in
Figure 1. These problems are too large to be solved opti-
mally, e.g., our largest test domain “Office” has 6.10e + 30
states and 15625 actions, which makes it well beyond any-
thing that can be solved optimally.

We compare our approach against the “partition” ap-

U.B. EFWD % of U.B.

Line 1104.8 875.5 79.2%
Diamond 1227.9 1052.6 85.7%
Corridors 1657.2 1379.3 79.6%

4x4 1518.0 1332.1 87.8%
6x6 3242.9 2490.2 76.8%

Office 5137.7 3618.6 70.4%

Table 3: Performance of EFWD as compared to an upper
bound for problems that cannot be solved optimally.

proach as described in Section 2. We automatically calculate
the partitions by assigning each location to the closest agent.
If there are multiple agents with the same distances, the lo-
cation is added to both partitions. We refer to this approach
as “PART”. PART still suffers from the fact that large re-
gions lead to too large local problems which we addressed
by also restricting to the k nearest tasks in these problems.

Each method is run for 100 steps and repeated 10 times
with random initial positions for the agents, while the world
always being “full”. Figure 4b shows the mean total reward
including the 95% confidence intervals, i.e. non-overlapping
error-bars mean statistically significant results. The self-
absorbed approach performs the worst for every setting. The
simplifications of E-FWD do not lead to a loss: there is
no significant difference with MDVF and both have higher
means and smaller variance than PART. Especially in more
complex worlds, i.e. the “Corridors” and the “Office”, the
PART approach has a very high variance due to the different
partitioning for each run. E-FWD is more reliable because
it does not depend on the initial partitioning.

Additionally, we computed a theoretical (loose) upper
bound by assuming that at every stage the expected number
of tasks appears (fractions of tasks are allowed) and that all
agents are able to clean an assigned task within two time
steps. In other words, the upper bound assumes that in one
step each agent uses a ‘teleport’ move to reach the location
of a next task, which is then serviced in the second step.
Clearly, this upper bound is an overestimation of the opti-
mal value, since at each time step new tasks appear at ran-
dom locations and agents generally need more than one-step
travel times to these tasks. However, as demonstrated in Ta-
ble 3 the proposed approximations yield rewards relatively
close to this upper bound. For instance, about 75% in the
6x6 world and about 70% in the “Office” world are achieved,
indicating that our proposed approach demonstrates reason-
able behavior even for these huge problems.

6. RELATED WORK
In this work, we define approximate models which we can

solve optimally. This should be contrasted with efforts to ap-

887

1 2 3 4 5 6 7
150

160

170

180

190

200

k

V

1 2 3 4 5 6 7
0

500

1000

1500

m
a
x
.
#
s
t
a
t
e
s

(a) varying k

Line Diamond Corridors

700

800

900

1000

1100

1200

1300

1400

V

PART

SA

MDVF

EFWD

4x4 6x6 Office

1

2

3

V
in

1
0
3

PART

SA

MDVF

EFWD

(b) Different problem sizes

Figure 4: (a) Mean reward and number states for k-nearest task phase MDP with a 4x4 gridworld and three agents while
increasing k. (b) Mean reward for various gridworlds as presented in Table 2b.

proximately solve exact models (e.g., [20]). The restrictions
of the local problem of each agent to a subset of state fac-
tors is reminiscent of converting to a Dec-MDP, but in fact
fundamentally different, since the observation of the global
state s is used to construct the agents’ kSP-MDPs. More-
over, despite recent advances, e.g., [12], Dec-MDP solution
methods do not nearly scale to problems of the size consid-
ered here, or are suitable only for transition and observa-
tion independent settings [4, 11] (which our setting is not).
While there have been other approximate methods for solv-
ing MMDPs, these typically depend on pre-specifying the
fixed, or context-dependent coordination structure [18, 21,
30]. For SPATAPs, however, fixed coordination structures
are a poor choice and the number of contexts to be consid-
ered is huge. In addition, these methods are not aimed at
exploiting the particular structure present in SPATAPs, in-
dependence of movement and locality of tasks. To overcome
the problem of pre-specifying interaction structures one can
try to learn them [25, 10], but the premise underlying these
methods is that there are only few states in which the agents
need to coordinate. In contrast, in SPATAPs, the agents
need to coordinate their task selection in all states.

Swarm approaches based on ant and honeybee colony
behavior rely on local interactions in the environment to
achieve coordination in multi-robot systems. From these
local interactions global intelligence emerges at the group
level, i.e. self-organization, capable of achieving efficient co-
ordination in foraging and coverage tasks. Although these
swarm solutions are efficient and effective for foraging and
coverage problems, they do not consider the dynamic ap-
pearance of new or different (sub)tasks that can arrive at
unpredictable moments in the environment [22, 2, 8]. Fur-
thermore, [8] considers sequential interdependent tasks in
which subtasks must be completed one after the other in
order to complete an overall task. This work however is
limited to the foraging problem and two subtasks.

Approaches for assigning agents to tasks based on auc-
tions [9, 3] are closely related, but either do not reason about
subsets of tasks [9], or do not properly address the sequential
nature of the task in SPATAPs [3, 23]. SPATAPs also relate
to more general resource allocation problems [33] (agents
can be interpreted as resources). We, however, allow reallo-
cation at every time step and consider spatially distributed
tasks and travel times.

The idea of interacting with the aggregate effect of other
agents is studied in detail in the field of mean-field games

[17], where the focus lies on characterizing equilibria. A
few approaches have tried to extend these ideas to engineer-
ing settings such as taxi-fleet optimization [32, 1] and theme
park crowd management [16] via off-line planning. However,
since these approaches perform off-line planning, these ap-
proaches are restricted in the richness of the state space that
can be used as the basis for action selection. The ‘aggregate
effect’ in these approaches typically consists of the number
of agents present in different zones which directly affects
utility for the protagonist. In our case, we use the predicted
future agent locations as a proxy for their behaviors, which
in turn will affect the utility of the protagonist.

Finally, the subjective approximations presented in this
paper can be interpreted as online planning for a special in-
stance of a level 1 interactive POMDP [15, 13]. In contrast
to standard interactive POMDP solution methods, however,
we propose dedicated approximation algorithms that exploit
the characteristics of SPATAPs by using location as the
proxy for the other agents’ policies.

7. CONCLUSIONS & FUTURE WORK
This paper introduces SPATAPs, a general sub-class of

MMDPs suitable for spatially distributed problems that a
team of agents or robots needs to solve. Such tasks are
characteristic of many realistic multi-robot systems, such
as mobile sensor nets, distributed transportation and task
assignment, multi-robot exploration, etc. To combat the
complexity of general MMDP algorithms, we propose to use
phase- and subjective approximations, and combine both to
yield an efficient online planning method for SPATAPs. An
extensive empirical evaluation shows that the proposed com-
bination of approximation techniques yields near-optimal re-
sults for problem instantiations that we could solve opti-
mally and further scales to much larger problems with thou-
sands of states and joint actions. In future work we will focus
on quality guarantees for the proposed approach, as well as
demonstrating the approach on real teams of robots. Other
promising directions of future work include application of
approximate online MDP planning methods, and identifying
methods for ‘positive interaction’ settings, in which there are
joint tasks for which two or more agents are required.

Acknowledgments
F.O. is supported by NWO Innovational Research Incentives
Scheme Veni #639.021.336.

888

8. REFERENCES
[1] Asrar Ahmed, Pradeep Varakantham, and Shih-Fen

Cheng. Uncertain congestion games with assorted
human agent populations. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, pages 44–53, 2012.

[2] S. Alers, K. Tuyls, B. Ranjbar-Sahraei, D. Claes, and
G. Weiss. Insect-inspired robot coordination: foraging
and coverage. In Artificial life 14, pages 761–768, 2014.

[3] Sofia Amador, Steven Okamoto, and Roie Zivan.
Dynamic multi-agent task allocation with spatial and
temporal constraints. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial
Intelligence, pages 1384–1390, 2014.

[4] Raphen Becker, Shlomo Zilberstein, Victor Lesser, and
Claudia V. Goldman. Transition-independent
decentralized Markov decision processes. In AAMAS,
pages 41–48, 2003.

[5] Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis
Maldonado, Lorenz Mösenlechner, Dejan Pangercic,
Thomas Rühr, and Moritz Tenorth. Robotic
Roommates Making Pancakes. In 11th IEEE-RAS
International Conference on Humanoid Robots, Bled,
Slovenia, October, 26–28 2011.

[6] Daniel S. Bernstein, Robert Givan, Neil Immerman,
and Shlomo Zilberstein. The complexity of
decentralized control of Markov decision processes.
Mathematics of Operations Research, 27(4):819–840,
2002.

[7] Craig Boutilier. Planning, learning and coordination
in multiagent decision processes. In Proc. of the 6th
Conference on Theoretical Aspects of Rationality and
Knowledge, pages 195–210, 1996.

[8] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro
Birattari, and Marco Dorigo. Self-organized task
allocation to sequentially interdependent tasks in
swarm robotics. Autonomous Agents and Multi-Agent
Systems, 28(1):101–125, 2014.

[9] Jesús Capitán, Matthijs T. J. Spaan, Luis Merino, and
Ańıbal Ollero. Decentralized multi-robot cooperation
with auctioned POMDPs. International Journal of
Robotics Research, 32(6):650–671, 2013.

[10] Yann-Michaël De Hauwere, Peter Vrancx, and Ann
Nowé. Learning multi-agent state space
representations. In AAMAS, pages 715–722, 2010.

[11] Jilles S. Dibangoye, Christopher Amato, Olivier
Buffet, and François Charpillet. Exploiting
separability in multiagent planning with
continuous-state MDPs. In Proceedings of the
Thirteenth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages
1281–1288, 2014.

[12] Jilles Steeve Dibangoye, Christopher Amato, and
Arnaud Doniec. Scaling up decentralized MDPs
through heuristic search. In UAI, pages 217–226, 2012.

[13] Prashant Doshi, Yifeng Zeng, and Qiongyu Chen.
Graphical models for interactive POMDPs:
representations and solutions. Autonomous Agents and
Multi-Agent Systems, 18(3):376–416, 2008.

[14] Greg Droge and Magnus Egerstedt. Adaptive
look-ahead for robotic navigation in unknown
environments. In IROS, pages 1134–1139, 2011.

[15] Piotr J. Gmytrasiewicz and Prashant Doshi. A
framework for sequential planning in multi-agent
settings. Journal of Artificial Intelligence Research,
24:49–79, 2005.

[16] Geoffrey J. Gordon, Pradeep Varakantham, William
Yeoh, Hoong Chuin Lau, Ajay S. Aravamudhan, and
Shih-Fen Cheng. Lagrangian relaxation for large-scale
multi-agent planning. In 2012 IEEE/WIC/ACM
International Conferences on Intelligent Agent
Technology, IAT 2012, Macau, China, December 4-7,
2012, pages 494–501, 2012.

[17] Olivier Guéant, Jean-Michel Lasry, and Pierre-Louis
Lions. Mean field games and applications. In
Paris-Princeton Lectures on Mathematical Finance
2010, volume 2003 of Lecture Notes in Mathematics,
pages 205–266. Springer Berlin Heidelberg, 2011.

[18] Carlos Guestrin, Shobha Venkataraman, and Daphne
Koller. Context specific multiagent coordination and
planning with factored MDPs. In AAAI, pages
253–259, 2002.

[19] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig
Boutilier. SPUDD: Stochastic planning using decision
diagrams. In UAI, pages 279–288, 1999.

[20] Levente Kocsis and Csaba Szepesvári. Bandit based
Monte-Carlo planning. In Machine Learning: ECML
2006, volume 4212 of Lecture Notes in Computer
Science, pages 282–293. Springer, 2006.

[21] Jelle R. Kok and Nikos Vlassis. Collaborative
multiagent reinforcement learning by payoff
propagation. Journal of Machine Learning Research,
7:1789–1828, 2006.

[22] Nyree Lemmens and Karl Tuyls. Stigmergic landmark
optimization. Advances in Complex Systems, 15(8),
2012.

[23] Han lim Choi, Luc Brunet, and Jonathan P. How.
Consensus-based decentralized auctions for robust
task allocation. IEEE Transactions on Robotics, 2009.

[24] Laëtitia Matignon, Laurent Jeanpierre, and
Abdel-Illah Mouaddib. Coordinated multi-robot
exploration under communication constraints using
decentralized markov decision processes. In AAAI,
pages 2017–2023, 2012.

[25] Francisco S. Melo and Manuela Veloso. Learning of
coordination: exploiting sparse interactions in
multiagent systems. In AAMAS, pages 773–780, 2009.

[26] Martin L. Puterman. Markov Decision
Processes—Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., 1994.

[27] Jeff G. Schneider, Weng-Keen Wong, Andrew W.
Moore, and Martin A. Riedmiller. Distributed value
functions. In Proc. of the International Conference on
Machine Learning, pages 371–378, 1999.

[28] Yoav Shoham and Moshe Tennenholtz. On social laws
for artificial agent societies: off-line design. Artificial
Intelligence, 73(1–2):231 – 252, 1995.

[29] Jason Sleight and Edmund H. Durfee. A
decision-theoretic characterization of organizational
influences. In AAMAS, pages 323–330, 2012.

[30] Matthijs T. J. Spaan and Francisco S. Melo.
Interaction-driven Markov games for decentralized
multiagent planning under uncertainty. In AAMAS,
pages 525–532, 2008.

889

[31] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. The MIT
Press, March 1998.

[32] Pradeep Varakantham, Shih-Fen Cheng, Geoffrey J.
Gordon, and Asrar Ahmed. Decision support for agent
populations in uncertain and congested environments.
In Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada., 2012.

[33] Jianhui Wu and Edmund H. Durfee. Resource-driven
mission-phasing techniques for constrained agents in
stochastic environments. Journal of Artificial
Intelligence Research, 38:415–473, 2010.

[34] Yu Zhang and Lynne E. Parker. Task allocation with
executable coalitions in multirobot tasks. In IEEE
International Conference on Robotics and Automation,
ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota,
USA, pages 3307–3314, 2012.

890

