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ABSTRACT
The Deferred Acceptance Algorithm (DAA) is the most
widely accepted and used algorithm to match students, work-
ers, or residents to colleges, firms or hospitals respectively.
In this paper, we consider for the first time, the complexity
of manipulating DAA by agents such as colleges that have
capacity more than one. For such agents, truncation is not
an exhaustive strategy. We present efficient algorithms to
compute a manipulation for the colleges when the colleges are
proposing or being proposed to. We then conduct detailed
experiments on the frequency of manipulable instances in
order to get better insight into strategic aspects of two-sided
matching markets. Our results bear somewhat negative news:
assuming that agents have information other agents’ prefer-
ence, they not only often have an incentive to misreport but
there exist efficient algorithms to find such a misreport.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Behav-
ioral Sciences - Economics

Keywords
Stable matchings; Gale-Shapley algorithm; matching markets;
college admission.

1. INTRODUCTION
Deciding which students get admitted to which college,

which workers get jobs at which firm, matching medical
students to hospitals for their internship or residency – all
these are examples of two-sided matching markets. In these
markets, agents from two disjoint sets are paired with each
other using a matching mechanism that takes into account
their reported preferences and capacities. The study of such
matching market mechanisms is an important field in micro-
economics. Alvin Roth and Lloyd Shapley were awarded the
Nobel memorial prize in economic science “for the theory of
stable allocations and the practice of market design”. Within
market design, the deferred acceptance algorithm (DAA)—
sometimes referred to as the Gale-Shapley algorithm [6]—is
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one of the most widely used centralized matching market
mechanism. The main focus of this paper is on DAA ap-
plied on the college admission market in which students are
matched to colleges.

One of the main reasons for the popularity of DAA for
real-world matching markets, is that it always yields a stable
matching. A matching is stable if no agent is assigned a
partner that is unacceptable to him or her and no two agents,
that are not matched with each other, prefer each other to
(one of) their respective matching partners.

However, a well-known drawback of DAA is that it is not
strategyproof, i.e., there exist instances for which an agent
has an incentive to misreport his preferences. This does
not stem from a design flaw of DAA but from the fact that
no stable matching algorithm is strategyproof (see [16], p.
622f). Two redeeming factors regarding this manipulability
could be (i) that finding a beneficial manipulation strategy
for a given agent, if one exists, could be computationally
intractable or (ii) that only an insignificantly small fraction
of instances of matching markets can be beneficially manipu-
lated. The following two research questions naturally arise:
Is the problem of finding a beneficial manipulation for a given
agent computationally feasible? Is a significant fraction of
instances of matching markets beneficially manipulable?

For manipulations by agents that can only be matched
to a single other agent, these questions have already been
partially answered in the work by Immorlica and Mahdian [7],
Kojima and Pathak [12] and Teo et al. [22]. The goal of this
paper is to examine strategic issues for agents that may have
capacity more than one, e.g., colleges in college admission
markets. These strategic issues can have profound effects on
the assessment of stable matching procedures since the strong
normative properties of DAA such as stability only hold as
long as agents report their truthful preferences. If agents
are frequently in a position to beneficially misreport their
preferences and if finding such a misreport is computationally
feasible, then the normative properties of DAA outcomes
may be compromised.

We show that the problem of finding a beneficial manipu-
lation for a given college is computationally feasible for both
variants assuming they have knowledge of the preferences
of all students and colleges. In particular, we prove that
under college-proposing DAA, for a given college, a beneficial
manipulation or the fact that no such manipulation exists
can be determined in polynomial time. The same problem
under student-proposing DAA is shown to be fixed-parameter
tractable w.r.t. the capacity of the college. Based on ex-
perimental results obtained by simulating college-proposing
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and student-proposing DAA, we further conclude that a sig-
nificant fraction of instances of matching markets can be
beneficially manipulated by at least one college.

2. RELATED WORK
Roth [16] showed that there exists no stable and strate-

gyproof matching mechanism for two-sided matching mar-
kets. This impossibility theorem inspired several avenues of
research relevant to this paper. Some researchers tried to de-
termine the relevance of this result for real-world applications
of DAA by investigating which fraction of instances of match-
ing markets is in fact beneficially manipulable [7, 12, 18, 22].
We complement this existing work by considering manipula-
tion by colleges via misrepresenting preferences in markets
of the college admission type in which agents are required to
submit complete preference lists. Regarding simulations, we
use Mallows mixture models instead of uniform distributions
to generate preferences whose structure is arguably more
realistic.

An orthogonal direction of research is that of identifying
domains for which a stable and strategyproof mechanism
does exist. This can be done by placing restrictions on the
admissible preferences [2, 1, 11, 9]. DAA has been shown to
be strategyproof for the proposing-side if all proposing agents
have capacity one [3, 19]. Proposees in general can however
potentially manipulate the outcome of DAA and the same
holds for proposing agents with capacity greater than one,
e.g., colleges in college admission markets.

There has also been work on algorithms to compute optimal
preference reports. Teo et al. [22] consider manipulation by
an individual women w in one-to-one markets when all other
agents state their preferences truthfully and show that a
beneficial manipulation by w, if one exists, can be found
in polynomial time both in the case in which women can
truncate their preference list as well as in the case in which
they need to submit complete preference lists.

The computational complexity problem of computing a
manipulation has already been studied in great depth for vot-
ing rules (see e.g., [5, 4]). For one-to-one matching markets,
Kobayashi and Matsui [10] and Sukegawa and Yamamoto [21]
considered the complexity of computing beneficial manipula-
tion for groups of agents. In general agents may be allowed
to express some lesser preferred agents as unacceptable. Sta-
bility of matching requires that no agent is matched to an
unacceptable agent. An agent can implicitly express some
agent j as unacceptable by not including j in its preference
list. In view of this allowance, an agent may misreport his
preference by blacklisting/dropping an agent but not black-
listing a lesser preferred agent or by truncating his preference
list by not including some least preferred acceptable agents
in the list. Jaramillo et al. [8] have recently shown that
truncation of true preferences is an exhaustive manipulation
strategy for agents with capacity one. This result implies
that the problem of finding a beneficial manipulation for
a given student s under college-proposing DAA is solvable
in polynomial time by checking each truncated preference
list. In many real-world matching markets agents are re-
quired to submit complete preference lists, which prevents
manipulation via blacklisting or truncation [22]. This is a
reasonable assumption as seen in the context of college ad-
missions: as long as all the applying student satisfy some
minimum requirements, they cannot be deemed unacceptable
by any college. Colleges may want each slot should be filled,

preferably by good students, but by any student if necessary.
If agents are not allowed to express truncated preference lists,
it effectively means that agents are not allowed to express any
agent as unacceptable. Agents may still manipulate in these
markets by submitting preference lists that are complete but
do not reflect their true preferences. We call manipulation
via submitting such a falsified preference list misrepresenting
preferences. Even if agents are aware of the preferences of
the other agents, misrepresenting preferences at least guar-
antees the agent a match whereas dropping or truncation
strategies by the agent may leave the agent empty-handed
in uncertain scenarios. In many-to-one and many-to-many
markets the outcome of a stable matching procedure does
not only depend on the submitted preferences, but also on
the reported capacities. It was first shown by Sönmez [20]
that underreporting capacities, i.e. claiming a capacity q′ < q
where q is the capacity of a college, can lead to a beneficial
manipulation. When indifferences in students preferences are
allowed, colleges can also benefit from overreporting capaci-
ties, i.e. claiming a capacity q′ > q where q is the capacity
of a college.

While previous work is focussed on manipulation by agents
with capacity one, we investigate the computational complex-
ity of finding a beneficial manipulation for a given college in
college admission markets.

3. MODEL
Two-sided matching markets contain two disjoint sets of

agents A and B. Every agent i has preferences >i over the
agents on the other side of the market. If a >i a

′ then agent
i prefers being matched with a over being matched with a′.
We call the set >= (>i)i∈A∪B consisting of the preference
relations of all agents a preference profile. Throughout this
paper we assume all agents to have strict, complete, and
transitive preferences unless indicated otherwise. The goal
in these markets is to find a mapping µ from agents of
one set to agents of the other set, called a matching, with
a ∈ µ(b)⇔ b ∈ µ(a).

Famous examples of two-sided matching markets are the
marriage problem and the college admission problem as first
introduced by Gale and Shapley [6]. In the marriage problem
each man/woman is matched with at most one woman/man.
In such a case, we speak of a one-to-one matching market.
In a market (C, S, q,>) of the college admission type, which
we focus on in this paper, we have a set C of colleges and
a set S of students. Generic representatives of these groups
are denoted by c and s, respectively. Every student may
only be matched to one college whereas every college c is
equipped with a capacity (or quota) value q(c) ≥ 1 denoting
the number of students it may be matched with. Such a
market is referred to as a many-to-one matching market.
There also exist markets for many-to-many matching, e.g.,
for matching firms and workers, each of which may work for
several firms. However, these markets will not be considered
in detail in this paper.

When dealing with many-to-one (or many-to-many) match-
ing markets, we need to extend the preference relation >c

of a college c to preferences over sets of students in a mean-
ingful way. To this end, we assume responsive preferences
throughout this paper: for all S′ ⊂ S with |S′| < q(c) and
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s, s′ ∈ S \ S′ it holds that

S′ ∪ {s} >cS
′ ∪ {s′} if and only if s >c s

′ and

S′ ∪ {s} >cS
′.

Note that a college c only prefers adding an additional student
to its set of matches over not doing so if its capacity q(c)
is not yet filled. Any matching that assigns more than q(c)
students to a college c is not valid. Thus each agent expresses
preferences over sets of agents by only expressing preferences
over agents. When there is incomparability between two sets
of allocations with respect to responsiveness, we will assume
that the agent is indifferent between them. Alternatively,
even if an agent is not indifferent among such sets, when
we consider beneficial manipulations, we will only consider
those in which the result of manipulation dominates the
original allocation with respect to the responsive relation.
For example, if the preferences are a > b > c > d and if
{b, c} is the match, then {a, d} cannot be the outcome of a
beneficial manipulation since {a, d} is not better outcome
than {b, c} with respect to the responsive relation.

4. DEFERRED ACCEPTANCE
ALGORITHMS

The deferred acceptance algorithm (DAA) was first offi-
cially introduced in 1962 by Gale and Shapley.1 Today,
DAA is applied on numerous real world problems (see e.g.,
http://www.matching-in-practice.eu).

An execution of DAA consists of several rounds. In each
round, agents from one side of the market, the proposers,
propose to agents of the other side, the proposees, to be
matched with them. Proposees can tentatively accept a
proposal, but may revoke their acceptance should they in
a later round receive a proposal from an agent they prefer
to their tentative match. Their final decisions regarding
their matching partners are therefore deferred until the final
round.

Depending on whether students or colleges are consid-
ered the “proposing” side during the algorithm, there are
two variants of DAA for the college admission market, i.e.,
student-proposing and college-proposing DAA.

Student-proposing DAA

1. Each student applies to his favorite college.

2. Each college rejects all applications from students that
are unacceptable to it. If a college received at most q
applications from acceptable students so far, all those
students are put on the colleges waiting list. Otherwise
the college puts its favorite q students among all ap-
plicants on the waiting list and rejects all remaining
ones.

3. Each student that was rejected in the previous step
applies to his favorite among the colleges he or she has
not yet applied to.

4. Steps 2 and 3 are repeated until it holds for all students
that they were either not rejected in the previous step
or already applied to all colleges acceptable to them.

1Roth reported later that DAA has already been in use by
the National Resident Matching Program (NRMP) since 1951
for matching medical students to hospitals for their medical
internship or residency in the United States. There, DAA
naturally evolved through a trial and error process that is
described in [17].

5. Each college admits all students on its waiting list.

By the use of the waiting list, all final admissions are
deferred to the end of the procedure. The algorithm can
easily be adapted to colleges making offers to students.

College-proposing DAA

1. Each college makes offers to its q favorite students.

2. Each student keeps the offer of his or her favorite ac-
ceptable college among those that made an offer to
him/her so far (if such a college exists) and rejects all
others.

3. Each college that was rejected in the previous step
makes offers to its k favorite among the students it
has not yet made offers to, where k is the number of
students that rejected that college in the previous step.
If there are less than k students left that the college
did not yet make offers to, it makes offers to all those
students.

4. Steps 2 and 3 are repeated until it holds for all colleges
that they were either not rejected in the previous step
or already made offers to all students acceptable to
them.

5. Each student gets admitted by the college whose offer
he kept.

A result regarding DAA in general that is frequently used
when arguing about manipulation is that, if preferences are
strict, the order in which proposers are considered, i.e., make
their proposals, does not affect the outcome of DAA [14].
This means that given strict preferences, each variant of DAA
has a unique outcome.

In many real-world matching markets agents are required
to submit complete preference lists, which prevents manipu-
lation via blacklisting or truncation. This effectively means
that agents are not allowed to express any agent as unac-
ceptable. Agents may still manipulate in these markets by
submitting preference lists that are complete but do not
reflect their true preferences. We call manipulation via sub-
mitting such a falsified preference list misrepresenting pref-
erences. Even if agents are aware of the preferences of the
other agents, misrepresenting preferences at least guarantees
the agent a match whereas dropping or truncation strategies
by the agent may leave the agent empty-handed in uncertain
scenarios.

5. MANIPULATION OF
STUDENT-PROPOSING DAA

We show that it can be checked in polynomial time whether
a given college c ∈ C can misrepresent its preferences and
obtain a better outcome. Let S,C be the agents of a many-
to-one matching market and µ denote the matching that is
obtained by applying student-proposing DAA to this market.
First it is shown in that whenever the market admits a
beneficial manipulation µ′ by a college c ∈ C, then there also
exists a beneficial manipulation µ′′ by c s.t. |µ(c)\µ′′(c)| = 1.
We then use this fact to reduce the problem to that of
finding a beneficial manipulation via misrepresentation for
a given proposee in a one-to-one matching market, which
was shown by Teo et al. [22] to be solvable in polynomial
time. We describe some key concepts that we will use for
our algorithmic result.
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New Proposals In order for a college c to potentially
benefit from a manipulation, it must during the manipulated
execution of DAA receive proposals from students that do
not propose to it during the execution of DAA under truthful
preferences and that it prefers to some of its matches under µ.
Since all agents but c are assumed to state their preferences
truthfully, any such new proposals must somehow be caused
by c misrepresenting its preferences. We formally define
a new proposal as follows: Let s ∈ S, c ∈ C and µ′ be a
manipulation s.t. s proposes to c during the manipulated
execution of DAA leading to µ′. We call the proposal from
s to c a new proposal if s does not propose to c during the
execution of DAA under truthful preferences.

Rejection in favor The only way a misrepresentation of
preferences by c can cause new proposals, is if it leads to
c rejecting some student(s) t it does not reject during the
truthful run of DAA. Since the only students that c receives
proposals from during the truthful run of DAA and does
not reject are those it is matched with, we obtain t ∈ µ(c).
Therefore, after being rejected by c, t will make one or more
new proposals to colleges c′ s.t. c >t c

′, if such colleges exist.
If t is accepted by some such c′, this college might reject

another student s′ in favor of t. Formally, let s′, t ∈ S and
c′ ∈ C. We say that c′ rejects s′ in favor of t if both s′ and
t propose to c′ during the execution of student-proposing
DAA and one of the following holds:

1. At the time at which t proposes to c′, c′ has q(c′)
temporary matches. Student s′ is the least preferred,
according to >c′ , among those temporary matches and
t >c′ s

′. Therefore c′ rejects s′ in order to be able to
accept t.

2. At the time at which s′ proposes to c′, c′ has q(c′)
temporary matches and rejects s′. Student t is among
those temporary matches. If s′ had proposed to c′

before t, 1. would have applied. Therefore c′ would
not have rejected s′ if t had not proposed to it and
everything else stayed the same.

Important Sets of Students A student never proposes
to the same college twice. Therefore it holds for any student
t ∈ µ(c) that c rejects in order to manipulate DAA, that
c is not matched with t under µ′. Let T = µ(c) \ µ′(c)
denote the set of students that c is matched with under µ
and rejects in order to manipulate the outcome of DAA. Let
S∗ = µ′(c)\µ(c) denote the set of students that c is matched
with under µ′, but not under µ. According to definition
of responsive preferences, in order for µ′ to be a beneficial
manipulation for c w.r.t. µ, it must hold that for each t ∈ T
there exists a distinct s ∈ S∗ s.t. s >c t. We therefore obtain
|T | = |S∗|. Under responsive preferences, a college c does not
reject any proposals from acceptable students s, i.e. s >c ∅,
as long as its capacity q(c) is not yet filled. Therefore if c
rejects an acceptable student s, it must have received q(c)
proposals from students s′ s.t. s′ >c s, i.e. an acceptable
student may only be rejected in favor of another student.
Note that this implies that only colleges c with |µ(c)| = q(c)
who receive more than q(c) proposals during the truthful run
of DAA can manipulate the outcome of student-proposing
DAA via misrepresenting their preferences, as formally stated
in the following lemma.

Lemma 1. Let S,C be the agents of a many-to-one match-
ing market in which all colleges are required to submit com-
plete preference lists and µ the matching obtained by applying
student-proposing DAA to this market. Given responsive
preferences over sets, only colleges c ∈ C s.t. |µ(c)| = q(c)
who receive more than q(c) proposals during the truthful run
of DAA can manipulate the outcome of student-proposing
DAA via misrepresenting preferences.

Proof. Assume that c ∈ C can manipulate DAA via
misrepresenting its preferences while all other agents state
their preferences truthfully. Then during the manipulated
execution of DAA, c must accept a student it does not accept
during the truthful run of DAA or reject a student it does
not reject during the truthful run of DAA.

Since all students are effectively acceptable to c, under
responsive preferences c must accept all proposals from stu-
dents as long as its capacity is not yet filled. Therefore if
|µ(c)| < q(c) and/or c receives ≤ q(c) proposals during the
truthful run of DAA, c may not reject any of these proposals
and there exist no students that c receives a proposal from
and does not accept. Since by assumption c can manipulate
the outcome of DAA, we obtain that |µ(c)| = q(c) and c
receives more than q(c) proposals during the execution of
DAA under truthful preferences.

In order to be able to reject a student t ∈ T , c must accept
q(c) proposals from students s 6= t. Since any new proposals
only occur after c rejected some t ∈ T , this implies that
c must accept at least one proposal from a student u s.t.
u 6∈ µ(c) and u also proposes to c during the truthful run of
DAA. Therefore ∀t ∈ T : u <c t according to the truthful
preferences.

Let U denote the set of students u that c temporarily
accepts in order to reject students t ∈ T in favor of u. Since c
can only reject a single student t ∈ T in favor of each student
u ∈ U , we obtain |U | = |T | and thereby also |U | = |S∗|. Due
to students u being less preferred than students t according
to the truthful preferences, c may not be matched with any
u ∈ U in a beneficial manipulation: U∩µ′(c) = ∅. Therefore c
must reject all students u ∈ U again upon accepting proposals
from students s ∈ S∗. Since |U | = |S∗| this means that
whenever c receives a new proposal from a student s ∈ S∗, a
student u ∈ U is rejected in its favor.

Chain of Rejections Since c is matched with no student
s ∈ S∗ under µ, but it holds for all those students that there
exists at least one student t ∈ µ(c) that s is preferred to, no
student s ∈ S∗ proposes to c during the truthful run of DAA.
Therefore all proposals from some s ∈ S∗ to c that are made
during the manipulated run of DAA are new proposals.

As stated above, since c is assumed to be the only manip-
ulating college, all new proposals must, directly or indirectly,
be caused by c rejecting students t ∈ T . Obviously the
rejection of a student t ∈ T can not immediately cause any
new proposals to c. Upon being rejected by c, t will propose
to colleges c′ <t c in order of his or her preferences until t is
either accepted by some such c′ or proposed to all colleges.

If t is accepted by such a college c′, a student s′ might be
rejected in favor of t. According to definition of ‘rejecting in
favor’, c′ does not reject s′ if t does not propose to it while
everything else stays the same. Since t does not propose
to c′ during the truthful run of DAA, we obtain that s′ is
not rejected by c′ during the truthful run. Therefore any
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s1 s2 s3 s4 t1 t2 t3 u1 u2 u3

c1 c2 c3 c4 c c c ? ? ?
c2 c3 c c c1 c2 c3 ? ? ?
? c ? ? ? c4 ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? c c c

c c1 c2 c3 c4

s4 t1 s1 t3 t2
t3 s1 t2 s2 s4
s2 ? s2 s3 ?
t1 ? ? ? ?
s3 ? ? ? ?
t2 ? ? ? ?
s1 ? ? ? ?
u1 u1 u1 u1 u1

u2 u2 u2 u2 u2

u3 u3 u3 u3 u3

Figure 1: Example of a preference profile in a many-
to-one matching market.

proposals made by s′ after being rejected by c′ are new
proposals.

Should it hold that s′ ∈ S∗ and s′ is not accepted by any
c′′ s.t. c′ >s′ c

′′ >s′ c, then the new proposal by s′ to c is
caused by:

1. c rejecting t, who then proposes to c′

2. c′ rejecting s′ in favor of t, who then proposes to c

We say that c rejecting t triggered a chain of rejections lead-
ing to s′ proposing to c. Clearly such a chain of rejections
could include more steps. Student s′ might instead be ac-
cepted by some college c′′ who rejects another student s′′ in
its favor and so on.

Illustrative Example Before we proceed with our ar-
gument, consider the following example of a many-to-one
matching market with sets

S ={s1, s2, s3, s4, t1, t2, t3, u1, u2, u3}
C ={c, c1, c2, c3, c4}

and the preference profile depicted in Figure 5, where “?”
indicates that the preferences over the agents that are not
mentioned explicitly are irrelevant.

Given capacities q(c) = 3 and q(ci) = 1 for all i ∈ {1, ..., 4}
student-proposing DAA results in

µ =

(
s1 s2 s3 s4 t1 t2 t3 u1 u2 u3

c1 c2 c3 c4 c c c ∅ ∅ ∅

)
.

If c misrepresents its preferences as

s4 >c s2 >c s3 >c u1 >c u2 >c u3 >c s1 >c t3 >c t1 >c t2

student-proposing DAA instead gives

µ′ =

(
s1 s2 s3 s4 t1 t2 t3 u1 u2 u3

c2 c c c c1 c4 c3 ∅ ∅ ∅

)
.

All colleges strictly prefer µ′ to µ, while u1, u2 and u3 are
indifferent between the two matchings and all remaining
students strictly prefer µ to µ′.

In this example we have T = {t1, t2, s3}, S∗ = {s2, s3, s4},
and U = {u1, u2, u3}.

All proposals by u1, u2, u3 as well as proposals from all
remaining students to their most preferred college occur dur-
ing both the truthful and the manipulated execution of DAA.
Any additional proposals made during the manipulated run of
DAA are new proposals. Those new proposals are illustrated
in Figure 5. The graph contains three paths representing
chains of rejections triggered by the manipulating college c
rejecting some t ∈ T and leading to some s ∈ S∗ proposing
to c:

c

t1

t2

t3

c1 s1

c2 s2

t2

c3

c4 s4

s3

s2

c u2

u1

u3

Figure 2: Illustration of chains of rejections in the
manipulation example. An edge from s ∈ S to c ∈ C
indicates s proposing to c, an edge from c ∈ C to
s ∈ S indicates c rejecting s in favor of an incoming
proposal.

1. c→ t1 → c1 → s1 → c2 → t2 → c4 → s4

2. c→ t2 → c2 → s2 → c3 → s3

3. c→ t3 → c3 → s2

Beneficial Manipulation by Rejecting a Single Match
We show that each chain of rejections triggered by the ma-
nipulating college c rejecting some t ∈ T leads to a distinct
s ∈ S∗ proposing to c. Moreover, it holds for all t ∈ T that
there exists a manipulation that is achieved via c misrep-
resenting its preferences while all other agents state their
preferences truthfully, s.t. T ′ = {t} and some s ∈ S∗ pro-
poses to c during the manipulated run of DAA. Using those
results, we then show that whenever college-proposing DAA
admits a beneficial manipulation by a college c, then it also
admits a beneficial manipulation by c s.t. |T ′| = 1.

Lemma 2. Let c ∈ C s.t. c can beneficially manipulate
DAA. Then it holds for each t ∈ T that the rejection of t by
c triggers exactly one chain of rejections leading to a distinct
s ∈ S∗ proposing to c.

Proof. According to definition of in favor, a college re-
jects at most one student in favor of another student propos-
ing to it. The rejection of some t ∈ T by c can therefore
trigger at most one chain of rejections. Once such a chain
leads to some s ∈ S∗ proposing to c, some u ∈ U is rejected
in favor of s. Since c also rejected all students u ∈ U during
the truthful run of DAA, the rejection of u by c during the
manipulated run of DAA will by itself not lead to any new
proposals to c.

After being rejected by c, u will propose to colleges less
preferred than c, if such colleges exist. Since all colleges c′ s.t.
c >u c

′ >u µ(u) reject u during the truthful run of DAA and
all colleges but c state their preferences truthfully, u will also
be rejected by all those colleges c′ during the manipulated
execution of DAA. Therefore u will propose to µ(u).

If µ(u) = ∅ or µ(u) does not reject either u or another
student v ∈ µ(µ(u)) in favor of u, then no new proposals are
triggered. Since µ(u) states its preferences truthfully, new
proposals can therefore only be triggered if µ(u) previously
received a new proposal itself, namely from a student s′ it
prefers to at least one of its matches under µ.

Such a new proposal can only have been caused by a chain
of rejections triggered by c rejecting some t ∈ T . Prior to
being proposed to by u and receiving any new proposals,
µ(u) is either matched with < q(µ(u)) students or the least
preferred among its temporary matches is a student that
µ(u) also rejects during the truthful run of DAA. Therefore
s′ proposing to µ(u) does not immediately cause any new
proposals.

In sum, c rejecting u can only lead to new proposals if a
chain of rejections triggered by c rejecting some t ∈ T lead
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to the new proposal by s′ to µ(u). Then the new proposals
caused by c rejecting u were initially triggered by c rejecting
t.

Therefore each chain of rejections triggered by c rejecting
some t ∈ T can lead to at most one s ∈ S∗ proposing to c.
Since as stated above each t ∈ T can trigger at most one
such chain and |T | = |S∗|, we obtain that each t ∈ T triggers
exactly one chain of rejections leading to a distinct s ∈ S∗
proposing to c.

Using this insight, we now show that it holds for each t ∈ T
that if c misrepresents its preferences s.t. T ′ = {t}, some
s ∈ S∗ proposes to c during the such manipulated execution of
DAA. Note that this does not yet imply that c can beneficially
manipulate DAA via such a misrepresentation, since it does
not necessarily hold that s >c t.

Lemma 3. Let c ∈ C s.t. c can beneficially manipulate
DAA, t ∈ T and µ′′ be a manipulation resulting from c
misrepresenting its preferences s.t. T ′ = {t}. Then some
s ∈ S∗ proposes to c during the manipulated execution of
DAA yielding µ′′.

Proof. According to Lemma 2, the rejection of t by c
triggers a chain of rejections leading to a distinct s ∈ S∗
proposing to c. If that chain is not affected by any other
t′ ∈ T \ {t}, then clearly c can misrepresent its preferences
such that T ′ = {t}, leading to s proposing to c. Unaffected
means that the students that are rejected along that chain
are 6∈ T and did not propose to the college they are rejected
from as part of a chain leading from some t′ ∈ T \ {t} to
some s ∈ S∗ proposing to c.

We consider the two ways in which the chain of rejections
triggered by c rejecting t can be affected by some t′ ∈ T \ {t}
separately.

1. A student rejected along that chain is some t′ ∈ T . 2

Let c′ be the college that rejects t′ and s′ be the student
in whose favor c′ rejects t′. Then c′ was at some point
proposed to by t′ and rejected a student s′′ in its favor.
Since s′ >c′ t

′ and t′ >c′ s
′′ we obtain by transitivity

of preferences that s′ >c′ s
′′.

Therefore if t′ does not propose to c′, but s′ does, c′

will reject s′′ in its favor. Since c′ rejecting s′′ in favor
of t′ was part of the path from t′ to some s ∈ S∗, the
new path containing c′ rejecting s′′ for s′ will also end
in this same s ∈ S∗.

2. A student s′ that is rejected by some c′ along the chain
only proposed to c′ due to a chain of rejections triggered
by some c rejecting some t′ ∈ T \ {t}.
Let s′′ be the student that c′ rejected in favor of s′ and
s′′′ be the student in whose favor c′ rejected s′. Then
the chain of rejections that is triggered by c rejecting
t′ and includes s′ proposing to c′ which rejects s′′ in
its favor leads to some s ∈ S∗ proposing to c. Since
s′′′ >c′ s

′ and s′ >c′ s
′′ we obtain by transitivity of

preferences that s′′′ >c′ s
′′.

Therefore if s′ does not propose to c′, but s′′′ does, c′

will reject s′′ in its favor. Since c′ rejecting s′′ in favor
of s′ was part of the path from t′ to some s ∈ S∗, the
new path containing c′ rejecting s′′ for s′′′ will also end
in this same s ∈ S∗.

2The first chain of rejections in the example is an instance
of this case.

Therefore it holds for each t ∈ T that c can misrepresent
its preferences s.t. T ′ = {t} and some s ∈ S∗ proposes to
c during the manipulated execution of DAA, though not
necessarily s.t. s >c t.

Using Lemma 3, we prove the following.

Theorem 1. If a given college c can beneficially manipu-
late student-proposing DAA via misrepresenting preferences,
then there also exists a beneficial manipulation by c s.t.
|T ′| = 1.

Proof. Let tk be the least preferred student among T ,
i.e. ∀t′ ∈ T \ {tk} : t′ >c tk. Then according to Lemma
3 there exist a misrepresentation of preferences by c and a
student s ∈ S∗ s.t. T ′ = {tk} and s proposes to c during
the manipulated execution of DAA yielding µ′′. Since all
students s ∈ S∗ are strictly preferred to tk,c will accept
this proposal and thereby µ′′(c) = {s} ∪ µ(c) \ {tk}. The
manipulation µ′′ is therefore beneficial for c w.r.t. µ.

Reduction to One-to-One Using Theorem 1, we show
that the problem of deciding whether a given college c ∈
C can beneficially manipulate student-proposing DAA via
misrepresenting its preferences when all other agents state
their preferences truthfully can be reduced to that of finding
a beneficial manipulation via misrepresentation for a given
proposee in a one-to-one matching market. We first show
that the execution of student-proposing DAA for a many-to-
one matching market can be simulated via executing DAA
for an associated one-to-one market as suggested in [19, p.
133ff]:

Lemma 4. Let C, S be the agents of a many-to-one match-
ing market, P their preference profile and µm2o denote the
matching that results from applying student-proposing DAA
to the market. Then there exists a one-to-one matching mar-
ket with sets of agents C′, S and preference profile P ′ and
a mapping function f : C → C′ s.t. ∀c ∈ C : µm2o(c) =⋃

ci∈f(c) µo2o(ci) where µo2o denotes the matching that re-
sults from applying DAA to the one-to-one market, and
∀s ∈ S : f(µm2o(s)) 3 µo2o.

By combining Theorem 1 and Lemma 4, we reduce the
problem of deciding whether a given college c can beneficially
manipulate DAA to that of deciding whether at least one
agent ci ∈ f(c) can beneficially manipulate DAA in the
related one-to-one market. This is formally stated in the
following theorem.

Theorem 2. Let C,S be the agents of a many-to-one
matching market, P their preference profile and c ∈ C. Then
c can beneficially manipulate student-proposing DAA via
misrepresenting its preferences if and only if in the associated
one-to-one market with sets of agents C′, S, preference profile
P ′ and mapping function f there exists at least one ci ∈ f(c)
s.t. ci can beneficially manipulate DAA via misrepresenting
its preferences.

The problem of finding a beneficial manipulation via mis-
representation for a given proposee in one-to-one matchings
was shown to be solvable in polynomial time in [22]. We
therefore obtain our final result.

Theorem 3. The problem of deciding whether a given col-
lege c ∈ C can beneficially manipulate student-proposing DAA
via misrepresenting its preferences is solvable in polynomial
time.
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Proof. By Theorem 2, we can decide the problem by
checking whether in the associated one-to-one market at
least one ci ∈ f(c) can beneficially manipulate DAA via
misrepresenting its preferences. Since |f(c)| = q(c) and a
possible beneficial manipulation for a given proposee in a
one-to-one market, can be found in polynomial time, the
statement follows.

Regarding the problem of finding an optimal manipulation
for a college under college-proposing DAA, we immediately
get a polynomial algorithm by iteratively applying the steps
from the proof of Theorem 3. As long as there still is a
beneficial manipulation, we find it in polynomial time and
the number of possible improvements for a single college is
polynomial in the input size.

Corollary 1. A college’s optimal manipulation by mis-
representing preferences under student-proposing DAA can
be found in polynomial time.

Note, however, that there may be many optimal strategies
as many matchings are incomparable under responsive pref-
erences.

6. MANIPULATION OF
COLLEGE-PROPOSING DAA

We show that the problem of deciding whether a given
college c ∈ C can beneficially manipulate college-proposing
DAA via misrepresenting its preferences when all other agents
state their preferences truthfully is fixed-parameter tractable.
The worst case complexity of finding a beneficial manipula-
tion for c, if one exists, depends only on its capacity q(c),
not on the size of the market. Let S,C be the agents of a
many-to-one matching market and µ denote the matching
that is obtained by applying DAA to this market. In general,
a college c ∈ C can manipulate the outcome of DAA by
accepting a student it does not accept during an execution of
DAA under truthful preferences or by rejecting a student it
is matched with under µ. Under college-proposing DAA, this
can be achieved by making new proposals or by not proposing
to a student the college is matched with under µ. Making
new proposals can never lead to a beneficial manipulation,
as formally stated in the following lemma.

Lemma 5. Let S,C be the agents of a many-to-one match-
ing market and µ the matching that is obtained by applying
DAA to the market. Given responsive preferences over sets,
no college can benefit from a manipulation in which it pro-
poses to a student it does not propose to during an execution
of college-proposing DAA under the truthful preferences.

A beneficial manipulation can therefore only be achieved
by falsifying preferences s.t. c does not propose to at least
one student s ∈ µ(c) during the manipulated execution of
DAA. When considering manipulation via misrepresenting
preferences, this implies that only colleges that fill their
capacity under µ can beneficially manipulate DAA. Using
Lemma 5, we can prove the following lemma.

Lemma 6. Let S,C be the agents of a many-to-one match-
ing market in which all agents are required to submit complete
preference lists, µ the matching resulting from applying DAA
to the market and c ∈ C s.t. c can beneficially manipulate
DAA via misrepresenting its preferences. Then |µ(c)| = q(c).

Proof. According to Lemma 5, a college can only benefi-
cially manipulate college-proposing DAA by not proposing
to student(s) it is matched with under µ. Since all students
s ∈ S are acceptable to all colleges c ∈ C, a college pro-
poses to students in order of its preferences until either its
capacity is filled or it proposed to all students. Therefore
any college that does not fill its capacity must propose to all
students.

For colleges c with |µ(c)| < q(c) the question of whether
this college can beneficially manipulate DAA can therefore
trivially be answered without any further computations. The
same applies to all colleges c with capacity q(c) = 1, as
implied by the following lemma. In sum, only colleges c with
|µ(c)| = q(c) > 1 can potentially benefit from manipulating
college-proposing DAA. A beneficial manipulation is achieved
by misrepresenting preferences s.t. c does not propose to a
set of students R ⊆ µ(c) where |R| ≥ 1. It is easy to see that
if it is at all possible for c to misrepresent its preferences
s.t. it does not propose to any student r ∈ R, then this
can also be achieved by c misrepresenting its preferences s.t.
all students s ∈ S \ R are listed according to the truthful
preferences, followed by all students r ∈ R in arbitrary order.

We now use these insights to show that the problem of
deciding whether a given college c ∈ C can beneficially
manipulate college-proposing DAA via misrepresenting its
preferences when all other agents state their preferences
truthfully can be solved via at most 2q(c)−1 − 1 executions
of DAA and is thereby fixed-parameter tractable w.r.t. the
parameter q(c).

Theorem 4. Let S,C be the agents of a many-to-one
matching market. At most 2q(c)−1 − 1 executions of DAA
are necessary in order to determine whether a given college
c ∈ C can beneficially manipulate the outcome of DAA via
misrepresenting preferences.

Proof. Let S,C be the agents of a many-to-one matching
market and µ the matching that is obtained by applying DAA
to this market. According to Lemma 5, a college can only
beneficially manipulate DAA by not proposing to student(s)
it is matched with under µ. Further, by Lemma 6, only
colleges c ∈ C with |µ(c)| = q(c) > 1 are able to achieve a
beneficial manipulation.

Let c ∈ C s.t. |µ(c)| = q(c) > 1, sl be the least preferred,
according to >c, student among µ(c) and R ⊆ µ(c) s.t.
sl ∈ R. Assume that c can beneficially manipulate DAA by
misrepresenting its preferences s.t. all students s ∈ S \ R
are listed according to the truthful preferences, followed by
all students r ∈ R in arbitrary order. According to Lemma
5, c does not propose to any student u s.t. sl >c u during
the manipulated execution of DAA. Therefore the same
beneficial manipulation can be achieved by c misrepresenting
its preferences s.t. all students s ∈ {sl} ∪ S \ R are listed
according to the truthful preferences, followed by all students
r ∈ R \ {sl} in arbitrary order. A beneficial manipulation for
c, if one exists, can therefore be found by picking non-empty
subsets R ⊆ µ(c) \ {sl} and computing the outcome of DAA
if c states its preferences s.t. all students s ∈ S \R are listed
according to the truthful preferences, followed by students
r ∈ R in arbitrary order. Since |µ(c) \ {sl}| = q(c)− 1, DAA

must be executed for at most 2q(c)−1 − 1 sets R.

Since every possible manipulation of a college c under
college-proposing DAA corresponds to a non-empty sub-
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set R ⊂ µ(c), we can find an optimal manipulation by check-
ing every possible subset. Just as in the proof of Theorem 4,
this implies a bound of 2q(c)−1 − 1 on the number of DAA
executions.

Corollary 2. Finding a college’s c optimal manipulation
by misrepresenting preferences under student-proposing DAA
is fixed-parameter tractable w.r.t. the parameter q(c).

7. EXPERIMENTAL RESULTS
We performed a series of simulations on randomly gener-

ated markets to estimate the fraction of instances of matching
markets that can be beneficially manipulated by a single col-
lege if all other agents state their preferences truthfully. DAA
was first executed under the truthful preferences once, in
order to obtain the resulting matching µ. For each college
c ∈ C s.t. |µ(c)| = q(c) > 1 we then computed all non-
empty subsets R ⊆ µ(c)\{sl}, where sl is the least preferred,
according to >c, student among µ(c). Subsequently, DAA
was executed with c misrepresenting its preferences s.t. all
students s ∈ S \R are listed according to the truthful prefer-
ences, followed by all students r ∈ R for different sets R, until
either a beneficial manipulation by c was found or all sets R
were checked in this manner. In our simulations, the fraction
of manipulable instances of matching markets lay between
5.7% and 81.2% for student-proposing (36.53% on average)
and between 13.6% and 100% for college-proposing DAA
(69.93% on average). These experimental results suggest
that the fraction of matching markets that can be benefi-
cially manipulated is significant, independently of whether
the student-proposing or the college-proposing version of
DAA is used.

Preferences of both students and colleges were generated
using the PrefLib tool by Mattei and Walsh. The tool enables
the generation of preference data using different methods,
among which we chose those of impartial cultures (IC) and
Mallows mixtures (MM) [13]. Under IC, each (complete)
preference list has the same probability, i.e. preferences are
generated uniformly at random. This is a standard method
for generating random preference profiles for simulations,
which was for example also used by Teo et al. [22] as well
as by Roth and Peranson [18]. Preference profile generation
using MM is parametrized by a set of reference rankings R
and a noise parameter φ ∈ [0, 1].

We consider markets with 100 to 200 students and 15 to 30
colleges. These numbers were chosen to allow us to compare
the degree of manipulability of markets with different ratios
of |S| to |C|, while keeping the computational effort involved
within reasonable limits. For each of these markets, we
generated 1000 sets of preference profiles each using IC as
well as MM with a number of different parameter values.
The capacities of colleges were generated using the following
two methods.

1. Capacities were generated uniformly at random be-

tween 1 and
⌈
|S|
|C|

⌉
.

2. Capacities were initialized using method 1. While∑
c∈C q(c) < |S|, a college was selected uniformly at

random and its capacity increased by 1.
We applied both methods to each generated preference pro-
file. This allows us to compare the manipulability of markets
in which it is likely that some students remain unmatched
(method 1) to those in which each student is guaranteed
to be admitted to some college (method 2). To allow for a

better comparison of the degree of manipulability by colleges
in student-proposing and college-proposing DAA, the same
preference profiles were used to simulate DAA in both kinds
of markets. In all simulations, the percentage of instances
that can be beneficially manipulated is considerably higher
under college-proposing DAA than under student-proposing
DAA. On average 33.42%, at least 7% and up to 70.7% more
instances are manipulable under college-proposing DAA than
under student-proposing DAA. Instances that are manipula-
ble by at least one college, however, can on average be bene-
ficially manipulated by less colleges under college-proposing
DAA (9.07% on average) than under student-proposing DAA
(16.61% on average).

8. SUMMARY AND FUTURE WORK
In this paper, we examine two issues regarding colleges

manipulating DAA: frequency of manipulable instances and
the complexity of manipulation. We investigated both issues
w.r.t. manipulation by colleges in many-to-one markets, in
which participants are required to submit complete prefer-
ence lists. We summarize our contributions in the context of
previously existing results in Table 1. Based on our experi-

DAA variant proposer proposee

one-to-one strategyproof in P (Teo et al. [22])

many-to-one
strategyproof in P (Thm. 3)

(student-proposing)

many-to-one
FPT (Thm. 4) in P (from one-to-one)

(college-proposing)

many-to-many FPT (from Thm. 4) in P (from Thm. 3)

Table 1: Computational complexity of manipulating
DAA by misrepresenting preferences in markets with
complete preference lists, strict and responsive pref-
erences and fixed capacities. The results in bold are
from this paper.

mental results on markets, we concluded that a significant
fraction of instances of matching markets can be beneficially
manipulated by at least one college, independently of whether
student-proposing or college-proposing DAA is used. Our
results indicate that college-proposing DAA is significantly
more likely to be beneficially manipulable. However, the
average percentage of colleges that could benefit from a ma-
nipulation, given that the market is manipulable by at least
one college, was considerably lower under college-proposing
DAA. Another interesting result concerns the capacities of
colleges. In all our simulations, markets in which the ca-
pacities of colleges were chosen such that every student is
guaranteed to be admitted to some college were considerably
more prone to manipulation than those in which some stu-
dents remained unmatched. A natural extension of our work
is to investigate whether these results transfer to matching
markets in which agents are allowed to submit preference lists
of arbitrary length. So far, no complexity results regarding
manipulation by colleges in these kinds of markets exist.
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