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ABSTRACT
PCP-nets generalize CP-nets to model conditional preferences with
probabilistic uncertainty. In this paper we use PCP-nets in a multi-
agent context to compactly represent a collection of CP-nets, thus
using probabilistic uncertainty to reconcile possibly conflicting qual-
itative preferences expressed by a group of agents. We then study
two key preference reasoning tasks: finding an optimal outcome
which best represents the preferences of the agents, and answer-
ing dominance queries. Our theoretical and experimental analysis
demonstrates that our techniques are efficient and accurate for both
reasoning tasks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Theory, Algorithms, Experimentation

Keywords
Preference modelling; preference reasoning; multi-agent systems;
reasoning with uncertainty.

1. INTRODUCTION
Preferences are ubiquitous in our everyday life; the study of how

to model and reason with them plays an important role in multi-
agent systems and AI [5, 6, 11, 22]. The ability to express prefer-
ences in a faithful but compact way, which can be handled effi-
ciently, is essential in many reasoning tasks including e-commerce,
combinatorial optimization, multi-agent planning and agreement,
and other scenarios where the number of options outstrips an agent’s
ability to view and rank all the available choices. Multi-attribute
preference modeling and reasoning causes a combinatorial explo-
sion, often leading to high computational cost [9, 10, 12]. The set
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of alternatives is often described as a product of multiple features,
for example, a user’s preferences over a set of cars, which can be
described by their colors, technical specifications, cost, reliability,
etc. Many compact representation languages that have been de-
veloped to tackle the computational challenges arising from these
problems e.g., conditional preference nets (CP-nets) [4], soft con-
straints [3, 22], and GAI-nets [13].

In this paper we assume individual agents express their prefer-
ences as CP-nets, a qualitative preference modeling framework that
allows for conditional preference statements. Agents may use these
preferences to make decisions about joint plans, actions, or items
in multi-agent environments: agents express their preferences over
a set of alternative decisions, and such preferences are aggregated
into a collective decision. Often in these settings we need to han-
dle partial preferences of agents [21] or reconcile preferences that
directly conflict. Voting has been used extensively to resolve these
conflicts [16–19, 24]. Recently, CP-nets have been extended to al-
low for modeling of uncertainty over preferences [2, 7]. This un-
certainty may be due to several different causes: an agent may be
unsure about his preference ordering over certain items, or there
could be noise in his preference structure due to lack of precision
in elicitation or errors during data collection (e.g., measurement er-
ror from remote sensors). We investigate the use of PCP-nets as a
structure to represent the preferences of a group of agents.

PCP-nets model uncertain preferences natively while maintain-
ing the preferential dependency structure employed by CP-nets [2,
7, 8]. However, in a PCP-net, a preference ordering over a vari-
able’s domain is replaced by a probability distribution over all pos-
sible preference orderings of the variable’s domain. Thus, a PCP-
net defines a probability distribution over a collection of CP-nets:
all those CP-nets that can be obtained from the PCP-net by choos-
ing an ordering from each probability distribution over orderings.

Given a PCP-net, we focus on two collective reasoning tasks that
agents may want to perform: finding the outcome that is most pre-
ferred by the agents or decide whether one outcome is collectively
preferred to another (a dominance query). Given a PCP-net, one
can define the optimal outcome in two natural ways: the most prob-
able optimal outcome, or the optimal outcome of the most probable
CP-net induced by the PCP-net. If the dependency structure of the
PCP-net has bounded in-degree, both kinds of optimal outcomes
can be found in time polynomial in the size of the PCP-net.

Previous efforts to tackle these collective reasoning problems
over CP-nets have primarily focused on the question of optimal-
ity [16] or dominance [23] and have not dealt with uncertainty.
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Generally, a voting method is defined in order to determine the
most preferred alternative. These methods are usually sequential
and work at the level of the individual variables [14–16, 24, 25]. In
contrast, we propose to aggregate the collection of CP-nets into a
single structure, a PCP-net, on which we directly perform collec-
tive reasoning tasks. This provides a formalism to perform other
preference reasoning tasks such as answering dominance queries,
in addition to finding the most preferred outcome. Moreover, we
can store or communicate between agents a single, compact struc-
ture instead of a possibly large collection of CP-nets.

We consider two methods for aggregating a collection of CP-nets
into a single PCP-net: by extracting the probability distribution di-
rectly from the CP-nets (proportional method, PR) or by minimiz-
ing a notion of error between the aggregated structure and the orig-
inal set of CP-nets (least-squares method, LS). We combine these
two methods with two ways of extracting an optimal outcome from
a PCP-net: the most probable optimal outcome and the optimal out-
come of the most probable induced CP-net. This gives us four ap-
proaches, each of which can be seen as a voting rule which takes as
input a profile of individual CP-nets and outputs a most preferred
outcome. We then analyze the methods experimentally, showing
that when aggregating the agents’ CP-nets, the proportion method
yields a PCP-net which more accurately captures the preferences
of the agents than the least-square method.

We observe that the outcome computed by the PR method on the
PCP-net, combined with taking the optimal outcome of the most
probable induced CP-net, exactly coincides with the result of se-
quential voting as proposed by Lang and Xia [14]. This indicates
that, even though in the construction of the PCP-net we make sev-
eral simplifying assumptions, we are able to recover the result of an
established voting method for the set of individual CP-nets which
make up the PCP-net. This is not surprising, as Lang and Xia’s se-
quential method was designed to obtain the outcome which best
satisfies the preferences of the whole collection of agents. Since
we can obtain this outcome by generating a PCP-net representing
the collection of given CP-nets we do more than just find a col-
lectively optimal outcome: we can also use the PCP-net to answer
dominance queries

We then study dominance. Given two outcomes, it is in general
computationally difficult to compute the probability that one dom-
inates the other one, since this is the sum of all probabilities of the
CP-nets, induced by the PCP-net, where dominance holds [2]. For
PCP-nets whose dependency graph is a polytree, for which domi-
nance is still difficult, we give a polynomial time approximation in
the form of a lower and an upper bound to the correct probability
value for dominance. We show, experimentally, that often the range
between the lower and upper bound is small, and in particular that
the lower bound is very close to the correct value. When the PCP-
net is obtained by aggregating a collection of CP-nets via the pro-
portion method, we show experimentally that our approximation of
dominance closely models dominance computed on the collection
of given CP-nets. The same result holds for a deterministic form of
dominance we call MP-dominance.

Our results suggest that the PCP-net obtained via the proportion
method from a given collection of CP-nets is a compact and ac-
curate aggregation model of the input profile. Using the PCP-net
representation of a profile of CP-nets allows us to not only save
space but also answer both optimality and dominance queries us-
ing accurate and efficient (for the case of polytrees) heuristics.

2. PCP-NETS
We give a brief introduction to PCP-nets, as defined by Bigot et

al. [2] and Cornelio et al. [7]. We assume that the domain of each

variable is binary and that the induced width k of the dependency
graph is bounded by a constant.

DEFINITION 1. A PCP-net (Probabilistic CP-net) is a directed
graph where each node represents a variable (often called feature)
F = {X1, . . . , Xn} each with binary domainsD(X1), . . . ,D(Xn).
For each feature Xi, there is a set of parent features Pa(Xi) that
can affect the preferences over the values of Xi. This defines a de-
pendency graph in which each node Xi has edges from all features
in Pa(Xi). Given this structural information, for each feature Xi,
instead of giving a preference ordering over the domain of Xi (as in
the CP-nets), we give a probability distribution over the set of all
preference orderings (total orderings over D(Xi)) for each com-
plete assignment on Pa(Xi).

DEFINITION 2. Given a feature X in a PCP-net, its PCP-table
is a table associating each combination of the values of the parent
features of X with a probability distribution over the set of total
orderings over the domain of X .

Note that PCP-nets are a strict generalization of CP-nets. When
a PCP-net is restricted to probability distributions in {0, 1} we re-
cover the definition of CP-nets [4].

Given a PCP-net Q, a CP-net induced by Q has the same vari-
ables, with the same domains, as Q. The edges of the induced CP-
net are a subset of the edges in the PCP-net. Thus, CP-nets induced
by the same PCP-net may have different dependency graphs. More-
over, the CP-tables are generated accordingly for the chosen edges:
for each independent feature, one ordering over its domain (i.e., a
row in its PCP-table) is selected; for dependent features, an order-
ing is selected for each combination of the values of the parent fea-
tures. Each induced CP-net has an associated probability, obtained
from the PCP-net by taking the product of the probabilities of the
orderings chosen in the CP-net.

More precisely, given a PCP-net, we have a probability p for
each row u : x > x̄ of each PCP-table, while the probability of
u : x̄ > x corresponds to 1− p.

DEFINITION 3. Given a PCP-netQ and an induced CP-net C,
we can define C by its CPTs (Conditional Preference Tables). Let
q̄ be the set of all rows of the CPTs that define C. We define the
probability of C, fpC(q̄), to be the product of the probabilities of
the qi ∈ q̄.

Hence, a PCP-net induces a probability distribution over the set of
all induced CP-nets.

EXAMPLE 1. Consider the PCP-net in Figure 1 with two fea-
tures, X1 and X2, with domains DXi = {xi, x̄i}. On the left side
a graph that pictures a preferential dependency between variable
X1 and X2, and on the right side the preference tables, showing
for each ordering of the values of X1 the corresponding proba-
bilities, and for each value of X1 the probability of observing a
given ordering over values of X2. Figure 2 describes a CP-net
that has been induced from the PCP-net of Figure 1. The proba-
bility associated to this CP-net is defined by the following formula:
fpC(q̄) = [(1− q1

1) · (1− q2
1) · q2

2 ].

2.1 Optimality
An outcome in a PCP-net is a complete assignment to all the

variables. We consider two notions of optimality for outcomes:
• The most probable optimal outcome: the outcome with the
highest probability of being optimal. The probability of an outcome
o being optimal is the sum of the probabilities of the induced CP-
nets that have o as the optimal outcome.
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X1 X2

X1 orderings P
x1 > x̄1 q1

1

x̄1 > x1 1− q1
1

X1 values X2 orderings P

x1
x2 > x̄2 q2

1

x̄2 > x2 1− q2
1

x̄1
x2 > x̄2 q2

2

x̄2 > x2 1− q2
2

Figure 1: A PCP-net.

X1 X2
X1 orderings
x̄1 > x1

X1 values X2 orderings
x1 x̄2 > x2

x̄1 x2 > x̄2

Figure 2: A CP-net induced by the PCP-net in Figure 1.

• The optimal outcome of the most probable induced CP-net:
the optimal outcome of the induced CP-net with the highest proba-
bility.
Notice that the optimal outcome of the most probable induced CP-
net may be different from the most probable optimal outcome [7].
To compute these two outcomes, it is possible to generate two Bayesian
networks and compute their maximal joint probability [20]. Com-
puting the result for either notion of optimal outcome has polyno-
mial computational complexity if the induced width of the depen-
dency graph of the PCP-net is bounded [7].

2.2 Dominance

DEFINITION 4 (DOMINANCE FOR PCP-NETS). Given a PCP-
net Q and a pair of outcomes o and o′, a dominance query returns
the probability thatQ |= o > o′. That is:

PQ(o > o′) =
∑

C induced byQ
s.t. C|=o>o′

P(C) .

Since a CP-net C is a PCP-net with probability values in {0, 1},
a dominance query returns either 0 or 1, where 0 corresponds to
C 6|= o > o′ and 1 corresponds to C |= o > o′.

Bigot et al. [2] prove that dominance for PCP-nets is #P-hard,
even if the the dependency structure is acyclic, the longest path has
length 3 and each node has at most one outgoing edge and at most 4
parents. They give an algorithm to obtain dominance for a binary-
valued tree structured PCP-net that takes O(22s2n) where n is the
number of features and s the Hamming distance between o and o′.

Boutilier et al. [4] prove that evaluating a dominance query for
binary-valued CP-nets has complexity O(n) for tree structured CP-
nets, polynomial for polytrees, NP-complete for acyclic CP-nets
that are directed path singly connected, and NP-complete for CP-
nets with bounded path number between two nodes. The difficult
cases remain of course difficult for PCP-nets since CP-nets are a
restricted form of PCP-nets.

3. AGGREGATION METHODS
We consider collections of CP-nets [4], also called profiles in

voting theory terminology. A profile of CP-nets is a set of CP-nets
on the same set of variables: P = (C1, · · · , Cm). We focus on
O-legal profiles [14] of acyclic CP-nets where each variable has a
binary domain.

DEFINITION 5. (O-legality) A profile of m CP-nets over n vari-
ables is said to be O-legal if all the dependency graphs of the CP-
nets share a topological ordering of the variables.

This assumption is widely used in computational social choice and
preference reasoning, and is often sufficient for tractability.

We start from an O-legal profile of m CP-nets over variables
X1, · · · , Xn each with a binary domain. We define the relative
frequency of a CP-net Ci, written as freqi as the percentage of
times Ci appears in P . In the following, a profile will be written
as P = ((C1, freq1), · · · , (Ck, freqk)), with

∑k
i=1 freqi = 1.

The use of relative frequencies is relevant in domains with a high
number of variables and a low number of voters as in some cases
(e.g. political parties) many agents may express the same prefer-
ences. We use the same formulation in the case where CP-net is
unique, we can “count” all these as 1’s and we merely introduce
the counts in this way to ease discussion.

Given a profile P of CP-nets, there may be no PCP-net which
induces exactly the same distribution over the CP-nets in P . This
can be seen in the following example.

EXAMPLE 2. Given a profile of CP-nets over two variables X1

and X2:
(C1, 0.5) : (x1 > x̄1), (x1 : x2 > x̄2) and (x̄1 : x̄2 > x2)
(C2, 0.4) : (x1 > x̄1), (x1 : x̄2 > x2) and (x̄1 : x2 > x̄2)
(C3, 0.1) : (x1 > x̄1) and (x2 > x̄2).
The PCP-net representing such a profile must satisfy the following
system of equations, where q̄ = (q1

1 , q
2
1 , q

2
2), q1

1 is the probability
of x1 > x̄1, q2

1 is the probability of x1 : x2 > x̄2, and q2
2 is the

probability of x̄1 : x2 > x̄2:
fpC1

(q̄) = q1
1q

2
1(1− q2

2)

fpC2
(q̄) = q1

1(1− q2
1)q2

2

fpC3
(q̄) = q1

1q
2
1q

2
2

⇒


fpC1

(q̄) = 0.5

fpC2
(q̄) = 0.4

fpC3
(q̄) = 0.1

This system has no solution for q̄ ∈ [0, 1]3.

In general, the system is over-constrained and will rarely admit a
solution. Therefore, we need to define aggregation methods that
work even when there is no PCP-net that exactly recovers the input
profile of CP-nets.

We now define two methods to represent a profile of CP-nets
using a PCP-net. As we are not guaranteed to find a PCP-net repre-
senting the exact distribution of induced CP-nets in the profile we
must resort to methods approximating this ideal distribution. The
first method we propose generates a PCP-net by taking the union
of the dependency graphs of the given CP-nets and determining the
probabilities in the PCP-tables from the frequencies of the CP-nets
in the profile.

DEFINITION 6. Given a profile of CP-nets P = (Ci, freqi),
the Proportion (PR) aggregation method defines a PCP-net whose
dependency graph is the union of the graphs of the CP-nets in the
profile. Given a variable X and an assignment u to its parents, the
probabilities in the PCP-tables are defined as follows:

P(x > x̄|u) =
∑

Ci:x>x̄|u

freqi

(and P(x̄ > x|u) = 1 − P(x > x̄|u))), i.e., the probability of
the ordering x > x̄ for variable X , given assignment u of Pa(X),
is the sum of probabilities of the CP-nets that have that particular
ordering over the domain of X , given u.

The second method minimizes the mean squared error between the
probability distribution induced by the PCP-net over the CP-nets
given in the input and the relative frequency observed in the input.
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DEFINITION 7. Let P = (Ci, freqi) be a profile of CP-nets.
The Least Square (LS) aggregating method defines a PCP-net whose
underlying graph is the union of the graphs of the CP-nets and the
probabilities qij in the PCP-tables that solve the following problem:

argmin
q̄∈[0,1]r

k∑
i=1

[fpCi
(q̄)− freqi]

2

where q̄ is the vector of qij ordered lexicographically with i as the
first variable, qij is the probability variable of the j-th row of the
PCP-table of the variable Xi in the PCP-net, r is the number of
PCP-table-rows in the whole PCP-net, Ci are the k CP-nets ob-
served in the profile P and fpCi

(q̄) is the function of probability of
the CP-net Ci introduced in Definition 3.

The LS method requires solving a linear program with a lin-
ear number of equations (one for each CP-net in the initial pro-
file). However, computing fpCi

may require exponential time as
the PCP-net resulting from a generic profile may have an exponen-
tial number of cp-statements. We can ensure that the union graph
of an O-legal profile has bounded width – making LS a polynomial
method – by assuming the following O-boundedness condition: for
each feature j there are sets PP (Xj) ⊆ {X1, . . . , Xn} of possi-
ble parents such that (1) |PP (Xj)| < k for all j, and (2) for all
individuals i, Pai(Xj) ⊆ PP (Xj).

Computing the PCP-net using method PR may also require ex-
ponential time, as for LS, because the PCP-net resulting from a
generic profile may have an exponential number of cp-statements.
However, PR also becomes a polynomial method if we have the
O-boundedness condition.

4. COMPUTING OPTIMALITY
Let P be the set of all CP-net profiles P of m voters over a set

of alternatives X , a CP-voting rule r : P → X is a function that
maps each profile P into an alternative r(P ) ∈ X .1

We define four voting rules by combining the two aggregation
methods PR and LS presented in Definition 6 and 7 with the two
possible ways of extracting an optimal outcome from a PCP-net:
• PRO: PR and most probable optimal outcome;
• PRI : PR and optimal outcome of most probable induced CP-net;
• LSO: LS and most probable optimal outcome;
• LSI : LS and optimal outcome of most probable induced CP-net.
Computing the optimal outcome for PRO and PRI is polynomial if
the graph of the resulting PCP-net has bounded width. This prop-
erty can be obtained via the O-boundedness condition.

The four methods may produce different outcomes:

OBSERVATION 1. There exists a profile of CP-nets P such that

{PRO(P ), PRI(P )} ∩ {LSO(P ),LSI(P )} = ∅

and there exists P such that

PRO(P ) 6= PRI(P ) (or LSO(P ) 6= LSI(P )).

It is interesting to observe that PRI returns the same result as the
sequential voting rule with majority [14], that consists of applying
the majority rule “locally” on each issue in the order given by O.

THEOREM 1. Given any profile of CP-nets, PRI produces the
same result as sequential voting with majority.

1In what follows we assume that CP-voting rules use lexicographic
tie-breaking to return a unique winner.

PROOF. Consider a variable Xi with domain {xi, x̄i}, and an
assignment u for the parents of Xi. With sequential voting we
choose the value of the domain that corresponds to the first value
of the ordering that maximizes the following:

max
j∈{1,··· ,m}

{[
∑

Cj :xi>x̄i|u

P(Cj)], [1−
∑

Cj :xi>x̄i|u

P(Cj)]}.

With PRI , we create a PCP-net that has, for the row in the PCP-
table of Xi corresponding to assignment u for its parents, the prob-
ability

∑
Cj :xi>x̄i|u P(Cj) for xi > x̄i and 1−

∑
Cj :xi>x̄i|u P(Cj)

for x̄i > xi. To compute the CP-tables of the most probable in-
duced CP-net, we choose the orderings with maximal probability:
for each variable Xi, given u, we choose the ordering that maxi-
mizes the following probability:

max
j∈{1,··· ,m}

{[
∑

Cj :xi>x̄i|u

P(Cj)], [1−
∑

Cj :xi>x̄i|u

P(Cj)]}.

To compute the optimal outcome of the most probable induced CP-
net, we choose the greater literal in the ordering that appears in
the CP-table, given u. This is for a generic variable Xi and assign-
ment u, thus is true for all the variables and assignment of their
parents.

Other notions of optimal outcome may be defined. For exam-
ple, the outcome that maximizes the average number of outcomes
worse than it in the induced CP-nets. But this kind of optimality is
computationally hard and thus we focus on optimal outcomes that
can be computed in polynomial time.

4.1 Experimental Evaluation: Optimality
In this section we describe our experiments to evaluate the qual-

ity of the outcomes returned by the four voting rules. We compare
the results of these four voting rules with a baseline named PLUR,
which outputs the result of the plurality voting rule applied to the
initial profile of CP-nets. PLUR takes the optimal outcome of each
CP-net and returns the outcome which is optimal for the largest
number of CP-nets. We then compare these five voting rules using
two different scoring functions, each of which is computed using
dominance queries on the input profile of CP-nets.

Let F and G be two CP-voting rules, and let T be a set of O-legal
CP-profiles. Given a profile P , we first define three parameters:
d>P (F,G) = |{C ∈ P : F (P ) >C G(P )}|, d<P (F,G) = |{C ∈
P : G(P ) >C F (P )}| and d./P (F,G) = |{C ∈ P : F (P ) ./C
G(P )}|. Note that d>P + d<P + d./P = |P |. We then define the
function DomP (F,G) as:

1 if d>P (F,G) > max{d<P (F,G), d./P (F,G)}
−1 if d<P (F,G) > max{d>P (F,G), d./P (F,G)}
0 otherwise.

We use the following notion of pairwise score:

PairScoreT (F,G) =

∑
P∈T DomP (F,G)

|T |

Note that this score belongs to the interval [−1, 1]. Our second
scoring function is inspired by Copeland scoring:

CopelandScoreT (F ) =
∑

G∈V \{F}

PairScoreT (F,G)

where V = {PRO,PRI , LSO, LSI ,PLUR}. Observe that this score
belongs to the interval [−4, 4].

For all our experiments we randomly generate profiles of CP-
nets, and PCP-nets. Generating PCP-nets i.i.d. is non-trivial [1] and
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Figure 3: CopelandScore vs. the number of features.

therefore we use an approximation method for random generation
of CP-nets and probabilities.

To generate O-legal profiles of CP-nets, we consider a fixed or-
dering X1, · · · , Xn of features. We also take as input the maxi-
mum in-degree for each feature, k. For each CP-net in the profile
we first generate its acyclic dependency graph. For each feature Xi,
we randomly choose its in-degree d, 0 ≤ d ≤ min{k, i−1}. Next,
we randomly choose d parents from the features {X1, · · · , Xi−1}.
When the graph is built, we fill in the CP tables choosing randomly
one element of the domain (since the domain is binary). For a PCP-
net, we generate the dependency graph and CP tables as for a CP-
net, and then we randomly assign probabilities to CPT rows.

We show results for some specific parameter values, similar re-
sults were observed also for other values of n and k.

In both the experiments in Figure 3 and Figure 4, we compute
the mean CopelandScore over 100 O-legal profiles of CP-nets and
we consider two parameters: the number of features and the num-
ber of individuals in the profile. In the experiment in Figure 3 we
investigate the quality of all the voting rules, varying the number of
features and fixing the number of individuals in the profile. In Fig-
ure 4 we analyze the quality of the voting rules, varying the number
of individuals in the profile and fixing the number of features.

In the first set of experiments (Figure 3) the profiles have 20
individual CP-nets and the number of features varies from 1 to 10,
and each has at most 2 parents.

According to the CopelandScore score, the best voting rule is
PRI , and we observe that PR is consistently better than LS using
either the O or I method. PRI is consistently better than PRO and
LSI is also better than LSO . Hence, the most probable optimal out-
come (O) is worse than the optimal outcome of the most probable
induced CP-net (I) in both the PR and the LS method. The variance
in Figure 3 could be explained by the fact that, with more features,
the number of pairs of outcomes that are incomparable increases.
There is also a noticeable difference of behavior between even and
odd numbers of features (and even and odd numbers of individuals
in Figure 4). Our conjecture is that an odd number of features (resp.
individuals) leads to more decisiveness in the voting rules.

In the second set of experiments (Figure 4) the profiles have
n = 3 and at most k = 1 parent per feature, and the number
of individual CP-nets varies in [1, 30]. We observed that the num-
ber of CP-nets in the profile does not significantly influence the
CopelandScore of the voting rule.
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Figure 4: CopelandScore vs. the number of CP-nets.

5. DOMINANCE IN PCP-NETS
In this section we analyse how PR performs on dominance test-

ing. We then study algorithms to compute an approximation of the
dominance value, whose exact computation is hard.

The aggregation method PR is also efficient in terms of domi-
nance. To show this we compare the result of dominance tests on
random pairs of outcomes in CP-net profiles and their associated
PCP-net. Given two outcomes o and o′, the dominance value in the
initial profile is the relative frequency of CP-nets that entail o > o′.
In our experiments, in Table 1, the two values of dominance had
maximum difference 0.047 when varying the number of features
and the number of CP-nets in the profile. Thus the approximation
induced by a PCP-net generated with the PR method, given a pro-
file of CP-nets, is accurate both for optimality and for dominance.

n features 1 2 3 4 5 6
difference 0.0 0.023 0.028 0.037 0.045 0.047

Table 1: Difference between the value of dominance in the ini-
tial profile of CP-nets and in the PCP-net aggregated with PR.

Computing the probability of dominance for separable PCP-nets
(with no edges in their dependency graph) is polynomial, but com-
puting the exact value of the probability of dominance for a more
structured PCP-net is hard. In the next sections we detail algorithms
to compute both a lower bound (Section 5.1) and an upper bound
(Section 5.2) in polynomial time for PCP-nets where the depen-
dency graph is a polytree.

5.1 Lower Bound
We consider only binary-valued PCP-nets that have a polytree

structure. This category includes directed trees.
From O-legality, we can assume we have an order O over n fea-

tures Xi such that ∀i ∈ {1, · · · , n}, Pa(Xi) ⊆ {X1, · · · , Xi−1}.
Notation: Given an outcome o = o1o2 · · · on let o �Xi indicate

oi and o �S indicate o �s1 · · · o �sm where S = {s1, · · · , sm} ⊆
{X1, · · · , Xn} and S is such that ∀si ∈ S [Pa(si) ⊂ S]. Given
a CP-net C and two outcomes o and o′, when we use the notation
o �S> o′ �S we mean that the comparison is considered in the sub-
CP-net C′ that has the features in S and the arcs in C that connect
them, with the corresponding CP-tables.

DEFINITION 8. Given a PCP-net Q with n variables Xi and
given two outcomes o and o′, let Diff be the set of feature indices
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that have different values on o and o′. The lower bound for domi-
nance for o > o′ inQ is defined as follows:

PL
Q(o > o′) =

∏
i∈Diff

(1− pi)

where ∀i ∈ Diff, pi are defined as:

pi =

{∏
u∈Uo,o′

i

P(o′ �Xi> o �Xi |u) if Pa(Xi) 6= ∅

P(o′ �Xi> o �Xi) if Pa(Xi) = ∅

where u is an assignment of the parents of Xi and Uo,o′

i is the
set of all assignments to Pa(Xi) such that, given Y ∈ Pa(Xi), if
o �Y = o′ �Y then u �Y = o �Y = o′ �Y otherwise, if o �Y 6= o′ �Y
then u �Y ∈ {y, ȳ}.

We require Definition 9 and the following lemmas in the proof
of Theorem 2 (proofs omitted for space).

LEMMA 1. Given an acyclic CP-net C with n nodes and two
outcomes o and o′, if o ./ o′ then there exists index i ∈ {1, · · · , n}
such that o �X1···Xj 6./ o′ �X1···Xj ∀j < i and o �X1···Xl./
o′ �X1···Xl ∀l ≥ i.

DEFINITION 9. Given two oucomes o and o′ such that o ./
o′, we say that they are incomparable for the index i if i satisfies
Lemma 1.

LEMMA 2. Given an acyclic CP-net C with n nodes formed
by two connected components C1 and C2, and given two different
outcomes o and o′ such that [(o �C1> o′ �C1 and o �C2< o′ �C2)
or (o �C1< o′ �C1 and o �C2> o′ �C2)] then o ./ o′.

THEOREM 2. Given a PCP-net Q and two outcomes o and o′,
PL
Q(o > o′) is a lower bound for PQ(o > o′).

PROOF. Given o and o′ such that o = (x1x2 · · ·xn) and o′ =
y1y2 · · · yn the formula can be written as: (1−pi0)(1−pi1) · · · (1−
pim) where ij ∈ Diff are the ordered indices of variables that
change value from o to o′. Computing some products we obtain
the following equivalent formula:

[(1− pi0)]− [(1− pi0)(pi1)]− [(1− pi0)(1− pi1)(pi2)]− · · ·

· · · − [(1− pi0)(1− pi1) · · · (1− pim−1)(pim)].

Consider the first term: 1− pi0 . If the variable Xi0 is independent
then pi0 = P(o′ �Xi0

> o �Xi0
), so (1 − pi0) = P(o �Xi0

>

o′ �Xi0
). Otherwise the set Uo,o′

i0
has only one element u. Thus

pi0 = P(o′ �Xi0
> o �Xi0

|u) then (1 − pi0) = P(o �Xi0
>

o′ �Xi0
|u). So, we call qi0 the probability P(o �Xi0

> o′ �Xi0
)

(or P(o �Xi0
> o′ �Xi0

|u)). Then the formula is equivalent to:

[qi0 ]− [(qi0)(pi1)]− [(qi0)(1− pi1)(pi2)]− · · ·

· · · − [(qi0)(1− pi1) · · · (1− pim−1)(pim)].

We note that each term of the sum contains qi0 . The probability qi0 ,
used in computing the probabilities of CP-nets induced byQ, is the
probability in Q that xi0 > yi0 (or xi0 > yi0 |u) and corresponds
to the probability of the set of all CP-nets that have that row in their
CP-tables. Let’s call this set S0.

When we restrict to the set S0, we restrict our attention to in-
duced CP-nets for which o > o′. We exclude those for which
o′ > o by insisting that they contain the CPT row that says that
xi0 > yi0 (or xi0 > yi0 |u). The idea is to remove from S0 all

the induced CP-nets in which o ./ o′. In each step of the sum we
remove a subset of S0. Analyzing a generic j-term of the sum:

[(qi0)(1− pi1) · · · (1− pij−1)(pij )]

we observe that we are removing from S0 a subset S̄j , the set of in-
duced CP-nets defined by [(qi0)(1 − pi1) · · · (1 − pij−1)(pij )].
We consider also the set Sj of the induced CP-nets defined by
[(qi0)(1 − pi1) · · · (1 − pij−1)(1 − pij )] and we observe that Sj

and S̄j are a partition of the set Sj−1. That implies that we do not
remove the same CP-net more than once, because we are removing
partitions. In particular when we remove the probability of the j-
term of the sum, we remove the probability of the set S̄j . The final
probability that we obtain is the probability of the set Sm (as we
can see from the first formulation of the formula).

We prove that each set S̄j contains all the induced CP-nets that
have o ./ o′ for index ij , and thus the set Sj contains only CP-nets
such that: (x1x2 · · ·xij z > y1y2 · · · yij z ∀z) and (x1x2 · · ·xij z1

>
./ y1y2 · · · yij z2 ∀z1 6= z2) where z, z1, z2 are a completion for

a complete outcome over all the variables X1, · · · , Xn. (Given a
partial outcome õ over variables X1, · · · , Xj a completion of õ is
an assignment to the remaining variables Xj+1, · · · , Xn.)

We prove that, given an induced CP-net C from Q and two out-
comes o and o′, if for C they are incomparable for index ij then
C ∈ S̄j . Let o and o′ be outcomes that are incomparable for index
ij for the induced CP-net C. We prove that C ∈ S̄j . We prove this
by contradiction. If C 6∈ S̄j then either (1) C ∈ S̄k with k < j or
(2) C ∈ Sj . If we consider (1) C ∈ S̄k with k < j, this implies
that o and o′ are incomparable for ik < ij and it is a contradiction
because ij is the minimum index for the incomparability. If we con-
sider (2) C ∈ Sj , we have that o �X1,··· ,Xij−1 6./ o′ �X1,··· ,Xij−1 ,
because o and o′ are incomparable for index ij . We suppose that
o �X1,··· ,Xij−1> o′ �X1,··· ,Xij−1 (the case with ’<’ is symmet-
ric). Then we prove that also o �X1,··· ,Xij

> o′ �X1,··· ,Xij
, to

reach a contradiction.
If Xij is an independent node it is easy to show that o �X1,··· ,Xij

>

o′ �X1,··· ,Xij
. We take a worsening path P from o �X1,··· ,Xij−1

to o′ �X1,··· ,Xij−1 : P = o �X1,··· ,Xij−1→ O1 → O2 → · · · →
o′ �X1,··· ,Xij−1 . The path P̄ = o �X1,··· ,Xij−1 oij → O1oij →
O2oij → · · · → o′ �X1,··· ,Xij−1 oij → o′ �X1,··· ,Xij−1 o′ij is
a worsening path from o �X1,··· ,Xij

(= o �X1,··· ,Xij−1 oij ) to
o′ �X1,··· ,Xij

(= o′ �X1,··· ,Xij−1 o′ij ).
Now we consider the case in which Xij is not an independent

node. Because C is polytree structured, the sub-CP-net C̃ of the
nodes X1, · · · , Xij−1 is formed by |Pa(Xij )| connected compo-
nents, each one containing exactly one parent of Xij . Thus, there
aren’t conflicts with the needs of the ancestors.

We have two cases. The first case is the case in which Xij

has no shared parents. In this case, for each u ∈ Uo,o′

ij
we can

have a worsening path P from o �X1,··· ,Xij−1 to o′ �X1,··· ,Xij−1

that contains u because the parents belong to different connected
components and we can permute the order in which we make the
changes to the single connected components. Then we have P =
o �X1,··· ,Xij−1→ o1 → o2 → · · · → ol → · · · → o′ �X1,··· ,Xij−1

where ol contains u (ol �Pa(Xij
)= u). Thus, if a CP-net belongs

to Sj , that means that there exists at least one u ∈ Uo,o′

ij
such

that in the CP-table of Xij there is the row u : xij > yij , then
a worsening path from o �X1,··· ,Xij

to o′ �X1,··· ,Xij
is P̃ =
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o �X1,··· ,Xij−1 xij → o1xij → o2xij → · · · → olxij →
olyij → · · · → o′ �X1,··· ,Xij−1 yij .

The second case is the case in which Xij has shared parents. In
this case Xij can have only a unique shared parent node (otherwise
it introduces an undirected cycle). We suppose that also in this case,
there exists a path P from o �X1,··· ,Xij−1 to o′ �X1,··· ,Xij−1 that

contains u, for each u ∈ Uo,o′

ij
. We build a path P̃ as in the previous

point, but we have to consider the interaction of the other nodes that
have shared parents with Xij . If Xij and Xc share a parent, Xp,
there are two cases: (A) Xc needs the same value for Xp as Xij .
In this case we can change the value of Xij and Xc in an arbitrary
order. (B) Xc needs a different value for Xp as Xij . In this case in
the path the value of Xp changes, for example, from a value xp to
x̄p. If Xc needs xp then first we change its value then we change
Xp and finally Xij . If Xc needs x̄p then first we change the value of
Xij then we change Xp and finally Xc. It is possible because Xij

and Xc have only a shared parent. If the two nodes have more than
one shared parent maybe they need two incomparable assignments
of the shared parent and in that case there does not exist a path
between them. Thus C ∈ S̄j .

Observe that the lower bound is a product of at most n factors.
The computation of each factor is at most O(2k) multiplications,
where k is the maximal number of parents. Thus the formula can
be computed in O(n2k) time.

EXAMPLE 3. Consider a PCP-net G as defined in Figure 5 and
the outcomes o = x1x2x̄3x4x5 and o′ = x1x̄2x3x4x̄5. The lower
bound is: PL

G (o > o′) = [1−P(x̄2 > x2)] · [1−P(x3 > x̄3|x1)] ·
[1− P(x̄5 > x5|x4)] = 0.4 · 0.3 · 0.9 = 0.108.

We observe that if we apply the formula for the lower bound
to separable PCP-nets, the resulting probability is the same as the
actual value of dominance and can be computed in O(n) time. First
we prove the following theorem.

THEOREM 3. Given a PCP-netQ over n features X1, · · · , Xn

with binary domainsDi = {xi, x̄i}∀i ∈ {1, · · · , n} and given two
outcomes o and o′ then

P(o � o′) =

 ∏
i∈Diff+(o,o′)

pi

 ·
 ∏

j∈Diff−(o,o′)

(1− pj)


with the convention that for a feature Xi with domainDi = {xi, x̄i}
we have pi = P(xi � x̄i) in the PCP-net (and thus (1 − pi) =
P(x̄i � xi)) and where Diff+ and Diff− are a partition of Diff.
Diff+ is the set of indexes of variables such that o �Xi= xi and
o′ �Xi= x̄i and Diff− is the set of indexes of variables such that
o �Xi= x̄i and o′ �Xi= xi .

X1 X2

X3 X4

X5

x1 > x̄1, 0.3 x2 > x̄2, 0.4

x1x2 : x4 > x̄4, 0.4
x1x̄2 : x4 > x̄4, 0.8
x̄1x2 : x4 > x̄4, 0.3
x̄1x̄2 : x4 > x̄4, 0.5

x1 : x3 > x̄3, 0.7
x̄1 : x3 > x̄3, 0.1

x4 : x5 > x̄5, 0.9
x̄4 : x5 > x̄5, 0.2

Figure 5: A PCP-net.

Now we can prove the following theorem.

THEOREM 4. Given a PCP-netQwith a separable dependency
graph and two outcomes o and o′, then PQ(o > o′) = PL

Q(o > o′).

PROOF. We prove that the formula for the lower bound in the
case of separable PCP-nets is equal to the formula described in
Theorem 3. We observe that each formulation is a product of factors
and each factor corresponds to a variable that has a different value
in o and o′. Each variable that has a different value in o and o′ has
a unique factor in each formulation. We prove that the factors that
correspond to the same variable coincide in the two formulations.

Suppose we have a PCP-net that has the following PCP-tables:
Xi : xi > x̄i, qi where qi is the probability P(xi > x̄i).

We consider two cases: the first one is the case of a variable
Xi such that o �Xi= xi and o′ �Xi= x̄i. In the formulation of
dominance for separable PCP-nets (Theorem 3), we have a factor
that corresponds to qi because the variable Xi belongs to the set
Diff +(o, o′). In the lower bound formulation we have a factor that
corresponds to:

(1−P(o′ �Xi> o �Xi)) = (1−P(x̄i > xi)) = P(xi > x̄i) = qi .

The second case is the case of a variable Xi such that o �Xi= x̄i

and o′ �Xi= xi. In the formulation of Theorem 3, we have a factor
that corresponds to (1− qi) because the variable Xi belongs to the
set Diff−(o, o′). In the lower bound formulation we have a factor
that corresponds to:

(1− P(o′ �Xi> o �Xi)) = (1− P(xi > x̄i)) = 1− qi .

Thus, the two formulations coincide.

5.2 Upper Bound
We say that a feature X in a PCP-net has a fixed ancestor over

two outcomes o and o′ if X is independent or all the variables Y ∈
Anc(X) (ancestors of X) have the same value in o and o′: o �Y =
o′ �Y ∀Y ∈ Anc(X). We denote this set as the set of all fixed-
ancestor variables FA. As before let Diff be the set of the indexes
of features that have different value on o and o′.

DEFINITION 10. Given a PCP-net Q with n variables Xi and
given two outcomes o and o′, the dominance upper bound for o >
o′ inQ is:

PU
Q(o > o′) =

∏
j∈(Diff∩FA)

P(o �Xj> o′ �Xj |u)

where u is the assignment of the parents: u = o �Pa(Xj)= o′ �Pa(Xj).

The formula above is a product of at most n factors, whose compu-
tation takes O(1), hence O(n) in total.

THEOREM 5. Given a PCP-net Q and two outcomes o and o′,
PU
Q(o > o′) is an upper bound for PQ(o > o′).

PROOF. It is equivalent to prove that all CP-nets induced by Q
that support o > o′ have the row u : o �Xj> o′ �Xj for all the
variables Xj ∈ (Diff ∩ FA). We prove this sentence by contra-
diction: we consider an induced CP-net C that contains the row
u : o′ �X> o �X for a X ∈ (Diff ∩ FA) and we prove that
C |= (o′ > o) ∨ (o ./ o′).We have two cases: (1) X is an inde-
pendent node. Then the flip o �X→ o′ �X can’t be a worsening
flip. That implies that all the worsening paths starting from o do
not contain a flip for variable X , so o′ can’t be reached. (2) X is
a dependent node. Thus, the set Anc(X) = {Xi1 , · · · , Xik} with
k ≥ 1 and all of them have fixed value on o and o′. We call u the
assignment of Pa(X) in o and o′. Thus, each worsening path from
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Figure 6: Interval size vs. number of features.

o has the value u for Pa(X) in each step of the path, because all the
ancestors of X are fixed. This implies that no worsening path from
o contains other assignments for the parents of X . Thus, no worsen-
ing path starting from o contains a flip for variable X , so o′ can’t be
reached. Thus C 6|= (o > o′) and so C |= (o′ > o)∨(o ./ o′).

EXAMPLE 4. Consider the PCP-net G and the two outcomes o
and o′ as in Example 3. Diff = {2, 3} as they have different val-
ues on o and o′ and fixed ancestors. The variable X5 has different
values on o and o′and its ancestor X2 has different values in o and
o′. Thus the upper bound is: PU

G (o > o′) = P(x2 > x̄2) · P(x̄3 >
x3|x1) = 0.4 · 0.3 = 0.12.

5.3 Experimental Evaluation: Dominance
Computing the lower bound and the upper bound gives us an

interval in which the true value of the probability of dominance
lies. We tested experimentally the size of the interval varying the
number of features and, fixing the number of features, varying the
maximal number k of parents that a feature can have.

We generate polytree structured CP-nets and PCP-nets as we
do for general acyclic CP-nets and PCP-nets. However, when we
need to generate parents, for each node Xi we add parents, one
by one, using rejection sampling on X1, · · · , Xi−1, rejecting those
that add cycles in the underlying undirected graph, until we reach
the in-degree or exhaust the set of possible parents.

Figure 6 shows the size of the interval as a function of the number
of features, n, and of k. In this experiment we vary n ∈ [0, 30] and
fix the maximum k to n − 1, n/2 and n/4. We compute the mean
of the dominance interval over 100 PCP-nets for each value of n
and for each PCP-net we take the mean over 100 outcome pairs.
We observe that the mean interval size is small.

Table 2 shows the distance between our lower bound and the true
value of the dominance probability as we vary the number of fea-
tures. In this experiment we vary the number of features n ∈ [0, 7]
and we fix the maximum k to n − 1, n/2 and n/4. We compute
the mean over 20 PCP-nets for each value of n and for each PCP-
net we take the mean over 25 outcome pairs (total mean over 100
cases). Observe the true value is very close to the lower bound and
the maximal distance is 0.0034.

In our experiments, the distance between the lower bound to the
true dominance probability is generally very small. It seems to grow

n : 1 2 3 4 5 6 7
Pa : n − 1 0.0 0.0 0.002 0.002 0.002 0.008 0.004
Pa : n/2 0.0 0.0 0.008 0.006 0.0 0.004 0.004
Pa : n/4 0.0 0.0 0.0 0.0 0.0034 0.002 0.006

Table 2: Distance between our lower bound and the true prob-
ability of dominance.

as a function of the number of nodes and parents. Thus, the lower
bound can be considered a good approximation of the true dom-
inance probability with a maximal error equal to the size of the
interval.

5.4 Dominance as a Decision Problem
In some settings it could be enough to get a yes/no answer from a

dominance query, rather than the exact probability value.We define
the following notion of approximate dominance: MP-dominance.

DEFINITION 11 (MP-DOMINANCE FOR PCP-NETS). Given a
PCP-netQ and a pair of outcomes o and o′, a most probable dom-
inance query (MP-dominance) asks a dominance query to the most
probable CP-net induced byQ.

Given a profile of CP-nets and two outcomes, we compare MP-
dominance queries on the PCP-net aggregated with PR with the
answers to the true/false dominance queries on both (1) the initial
profile of CP-nets and (2) the profile of CP-nets induced by the
PCP-net. A profile of CP-nets returns True if the frequency of CP-
nets that entail dominance is greater then the frequency of those that
do not, and False otherwise. Our experiments (results omitted for
space) show that the percentage of times these different methods
give the same yes/no result is above 90%. This supports the fact
that aggregating CP-nets with the PR method to get a PCP-net is
also reasonable for dominance seen as a decision-making problem.

6. CONCLUSIONS
In this paper we evaluated the use of PCP-nets as a compact rep-

resentation language for the preferences of a set of agents. Start-
ing from a profile of individual CP-nets, we introduced and eval-
uated two aggregation methods for the definition of a PCP-net, a
first one based on relative frequencies of pairwise preferences (PR)
and a second one based on the exact distribution of CP-nets (LS).
Our theoretical and experimental results suggest that using the PR
method in the input profile to construct a PCP-net is accurate with
respect to answering both optimality and dominance queries. Since
optimality queries under this method can be shown to be equivalent
to performing sequential voting, our proposed aggregation method
is a direct generalisation of this setting. By generating a compact
representation of the full preference profile using PCP-nets, we are
also able to perform either exact or approximate dominance rea-
soning on a profile of individual CP-nets. Moreover, for the case
of polytree PCP-nets, we showed that our proposed approxima-
tion techniques yield results that are very close to the probability
of dominance in the initial profile of individual CP-nets.
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